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The accurate estimation of point correspondences is
often required in a wide variety of medical image-
processing applications. Numerous point correspon-
dence methods have been proposed in this field, each
exhibiting its own characteristics, strengths, and weak-
nesses. This paper presents a comprehensive compari-
son of four automatic methods for allocating
corresponding points, namely the template-matching
technique, the iterative closest points approach, the
correspondence by sensitivity to movement scheme,
and the self-organizing maps algorithm. Initially, the four
correspondence methods are described focusing on their
distinct characteristics and their parameter selection for
common comparisons. The performance of the four
methods is then qualitatively and quantitatively com-
pared over a total of 132 two-dimensional image pairs
divided into eight sets. The sets comprise of pairs of
images obtained using controlled geometry protocols
(affine and sinusoidal transforms) and pairs of images
subject to unknown transformations. The four methods
are statistically evaluated pairwise on all image pairs and
individually in terms of specific features of merit based
on the correspondence accuracy as well as the registra-
tion accuracy. After assessing these evaluation criteria
for each method, it was deduced that the self-organizing
maps approach outperformed in most cases the other
three methods in comparison.
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INTRODUCTION

P oint correspondence is defined as a procedure
for allocating homologous points on two or

more images. This is of particular importance in
medical imaging, where point correspondence
methods are used in a wide variety of applications,
such as the geometric alignment of two or more

medical data sets1 (X-rays, computed tomography
(CT), magnetic resonance, positron emission to-
mography (PET), dental, etc.) obtained from the
same patient (intra-subject registration) or from
different subjects (inter-subject registration). Other
crucial applications include mammogram screen-
ing,2 3D reconstruction,3 determination of camera
location,4 motion analysis,5 structure from mo-
tion,6 and the determination of a subject’s point of
gaze.7

Generally, point correspondence algorithms
comprise of two steps; the detection or definition
of control points and the estimation of the corre-
spondences. The first step concerns either the
manual definition of control points on one image1

or their detection by an automatic algorithm.8

Control points are usually points of geometrical
interest such as L-shaped corners or T-shaped or
Y-shaped junctions. Once the control points are
defined, the estimation of the corresponding points
is feasible. Generally, this estimation involves the
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optimization of an objective function, starting from
an initial guess and eventually achieving a solution
through an iterative process. The objective func-
tion measures either the similarity between image
patches8–15 or the distance between sets of
points.16–19 The wide diversity in the implementa-
tion of point correspondence methods gave birth to
numerous novel techniques. Some of these techni-
ques are derivations from simple concepts (such as
pattern matching),8,11,20,21 while others are consid-
erably more complex,22–25 involving statistical
analysis and neural networks.
Previous comparative studies consider point

correspondence methods as part of image registra-
tion schemes and compare them directly with other
conventional image registration methods.26,27 Par-
ticularly, in,26 a survey of various feature-based
and area-based registration methods is presented
for two-dimensional multimodal data. On the other
hand, Matabosch et al.27 are concerned with the
comparison of algorithms for aligning surfaces on
three-dimensional data sets.
In this paper, a comprehensive study is pre-

sented in order to evaluate and compare the
accuracy of four point correspondence algorithms.
Those include the template matching (TM),10 the
iterative closest points (ICP),16 the correspondence
by sensitivity to movement (CSM),15 and the self-
organizing maps (SOMs) algorithms.25 Most of the
methods included in this study are well-established
schemes with several descendant methods and
variations. For instance, the template-matching
algorithm is cited well over 5,000 times (Google
Scholar, 2008); the iterative closest point algo-
rithm is cited 1,975 times (Scorpus, 2008), while
sensitivity to movement and the self-organizing
maps are cited in 24 and ten works, respectively
(Scorpus, 2008). Each of the selected techniques
presents a unique approach for allocating corre-
spondences, featuring numerous distinctive
aspects. The four algorithms are described in the
following sections. All methods were extensively
tested over a total of 132 two-dimensional (2D)
pairs of retinal and dental images. The particular
image pairs were acquired from fully controlled
geometry protocols (known affine and sinusoidal
transformations) as well as from semi-controlled
geometry protocols (unknown transformations).
Eight sets of pairs were formed. The accuracy of
all four algorithms was evaluated qualitatively, in
terms of visual assessment, as well as quantita-

tively in terms of several features of merit
(FOM),28 combined with statistical evaluation. In
cases where the actual correspondences were not
known due to the image acquisition process, the
features of merit used for quantitative evaluation
were based on image registration accuracy. On the
other hand, when the actual correspondences were
known in advance, the features of merit employed
were based on point accuracy of correspondence.
The rest of the paper is organized as follows. The

“Methods” section describes the protocols used to
acquire the eight data sets featured in this study. It
also examines each of the four tested point
correspondence algorithms and the methodology
used to compare them. The “Results” section
presents the results and the techniques used to
obtain them and finally the “Discussion” section
evaluates some of the major factors affecting the
assessed point correspondence methods.

METHODS

Data Acquisition

Eight data sets of medical images were used in
this study. Four sets (sets I–IV) were created from
images using fully controlled geometry proce-
dures. Those four data sets consisted of ten
reference images each. The corresponding images
were produced by applying local (sinusoidal) or
global (affine) transformation models on the
reference images. The parameters utilized to
produce those sets are described in the following
sections. Hence, a total of 40 controlled geometry
image pairs, divided into four sets, were contrib-
uted to this study. The first two sets (sets I and II)
consist of retinal images while the rest of the
produced pairs (sets III and IV) consist of dental
medical data. An additional 20 retinal image pairs
(set V) were considered. Those pairs were
employed to evaluate the performance of the four
compared methods on images subject to unknown
transformations.
All retinal images were acquired using the

IMAGEnet 1024 system, which is a fully func-
tional digital imaging system for acquisition,
analysis, storage, and retrieval of retinal images.
Digital red-free images of size 512×512 pixels
and pixel size of 10 μm were directly obtained
using a charge-coupled camera that was mounted
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on the Topcon TRC-50IX, providing 50° angle of
coverage, 39-mm working distance, and a green
filter, which causes the retinal blood vessels to
appear dark.
Furthermore, 72 dental image pairs, acquired

under semi-controlled geometry, were included in
the study through the following protocol: a dry
mandible was mounted on a device which permit-
ted the object and the film to be rotated vertically
and horizontally relative to the central part of the
X-ray beam. The reference radiograph was taken
with the central ray of the X-ray beam perpendic-
ular to the long axes of the teeth as judged
subjectively and with no resulting overlaps of
adjacent tooth surfaces. Corresponding images
were then obtained by moving the object either
vertically or horizontally relative to the X-ray
beam at angles of 0°, 3°, and 6°. This corresponds
to motion about the x- and y-axis in three-
dimensional space. In two dimensions, those
movements could be approximated by affine
transformations with unknown parameters. Three
dry mandibles were used in order to produce a
total of 72 in vitro dental pairs grouped into three
further sets of 24 image pairs each (sets VI–VIII).
All dental radiographs were digitized with a flat
scanner (Agfa Arcus II) producing 8-bit grayscale
image files. The focus of the object and the object-
to-film distance were kept constant at 40 cm and
0.5 cm, respectively. The size of the in vitro
radiographs used in the study was 428×310 pixels.
A summary of all eight data sets used in this study
is shown in Table 1.

Point Correspondence

Point correspondence algorithms can be broadly
divided in two categories: those that require the
extraction of control points from both images

(reference and corresponding) and those that
require the extraction of control points from one
image only (reference). The main representative of
the first category is the ICP algorithm, where a
least-squares approach is used iteratively in order
to find the parameters that best describe the
transformation between the two point sets. On the
other hand, the algorithms of the second category
use either block-matching or feature-matching
approaches in order to find pairs of homologous
points. This section provides a description of each
method in comparison, focusing on its distinct
characteristics.

Control Points Extraction

The first step in any point correspondence
approach is to allocate and extract an initial set of
control points from the reference image. There are
numerous methods for extracting points of interest
from medical images.8,29–30 As the efficiency of
those methods varies with the nature of the subject
images, two techniques were employed throughout
this study to obtain the initial control points:

(a) The method described in29 which is opti-
mized for detecting bifurcations in retinal
images

(b) The general purpose method adopted by
Likar and Pernus8 for obtaining points around
edges and ridges on dental images, which is
suitable for working with a large number of
points

In the first case, the number of extracted
bifurcation points is determined automatically by
the algorithm, while for the dental images, a fixed
number of 200 control points were extracted from
each reference image.

Table 1. Overview of the Data Sets Used in the Study

Set Number of image pairs Modality Acquisition Transformation

Set I 10 Retinal

Controlled geometry (reference transformed)

Affine
Set II 10 Retinal Sinusoidal
Set III 10 Dental Affine
Set IV 10 Dental Sinusoidal
Set V 20 Retinal Semi-controlled geometry Unknown
Set VI 24

Dental Semi-controlled geometry Unknown
Set VII 24
Set VIII 24
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Automatic Correspondence Methods
in Comparison

As mentioned, this study examines four well-
established point correspondence algorithms;
namely the template matching, the iterative closest
point, the correspondence by sensitivity to move-
ment, and the self-organizing maps algorithms. In
the following sections, an overview of the four
algorithms is provided, emphasizing on their
individual properties.

Template-Matching Method

TM is one of the most commonly used methods
for allocating correspondences.10 The reason for
this is that the technique itself is rather flexible and
quite simple to implement. Numerous variations of
the method have been devised, some of which
favor accuracy, while others target at improving
execution time.12–14 Whatever the case, the basic
principle of all template-matching schemes is the
same: a sub-image (template) from the reference
image is compared with a pool of possibly trans-
formed sub-images from the corresponding image.
In particular, a sub-image of fixed size (template)
is initially generated from a selected area of the
reference image IR. In our case, the initial control
points are considered to be the central pixels of
each sub-image. Then, for each control point, the
template propagates along each pixel of the corre-
sponding image IC. The similarity between the
template and the sub-image of the corresponding
image underneath it is usually assessed through a
measure of match. The pixel of the corresponding
image, for which the measure of match obtains its
optimum value, is considered to be the corre-
sponding point of the control point defining the
center of the current template. The generic template-
matching scheme employed for the purposes of this
study utilizes a correlation function as a measure of
match. In addition, the template is compared with
transformed sub-images of the corresponding image
using the similarity transformation, which is mod-
eled by four parameters for rotation (one parameter),
scaling (one parameter), and translation along the
x- and y-axis (two parameters, one for each axis).
Finally, the size of the templates was fixed to
21×21 pixels.
The typical template-matching approach for

allocating point correspondences is a rather simple

technique to implement. Moreover, the algorithm
incorporates exhaustive search tactics, which ren-
der it quite accurate. On the other hand, exhaustive
searches are somewhat inefficient when it comes to
time-critical applications. As a result, all template-
matching methods usually require a considerable
amount of time to converge.

Iterative Closest Point Algorithm

The ICP algorithm16 is broadly used for allocat-
ing corresponding points due to its robustness,
simplicity, and fast execution time. The algorithm
itself is a flexible framework which can be
customized according to the application needs.
As a result, numerous variants of the ICP have
been devised over the years.19 The key property of
ICP is that it requires the extraction of control
points from both images. Then, an iterative
procedure is applied: for each control point of the
reference image, the closest control point from the
corresponding image is obtained. Then, using a
standard least-squares approach, the parameters of
the desired transformation are calculated and the
control points from the corresponding image are
transformed using the specific parameters. The
iterations are terminated when a suitable criterion
has been satisfied (e.g., the number of iterations
has reached a maximum value, the mean square
error of the least-squares approach is below a
threshold, etc.). In our case, an elastic transforma-
tion based on the thin-plate spline (TPS) deforma-
tion was adopted to transform the candidate
corresponding points.31 The TPS transform com-
prises of a global affine component and a local
elastic component, thus providing ICP with addi-
tional flexibility to cope with elastic deformations
on the subject images. Moreover, the average
square distance between the point sets was
considered as a measure of match for the ICP
implementation used throughout this study. The
ICP algorithm eventually converges to an optimal
set of corresponding points, provided that proper
points of interest were selected on both the
reference and the corresponding image.
The basic idea of ICP is to calculate corre-

spondences between two or more point clouds. In
our case, the first point cloud is considered to be
the set of initial points on the reference image,
while the second one is a set of candidate points on
the corresponding image. All ICP variants adopt a
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trial-and-error approach to allocate corresponden-
ces. As a result, the accuracy of the estimated
corresponding points should improve after each
iteration (trial). In general, the more iterations are
completed, the more accurate are the results
obtained. In the present study, the maximum
number of iterations was set to 500 in order to
maximize the efficiency of the algorithm.

Correspondence by Sensitivity to Movement
Algorithm

The CSM algorithm is an advanced variant of the
template-matching10 scheme for allocating point
correspondences. Template-matching-based techni-
ques estimate corresponding points by matching a
region from the reference image to a region from
the corresponding image (one-to-one match) and
hence a unique correspondence is calculated per
control point. On the other hand, CSM considers
several candidate corresponding points for each
control point, using a weighting scheme.15

The algorithm comprises of three distinct stages.
Firstly, a number of candidate corresponding
points are allocated for each control point from
the reference image. These points are bound to a
specific region on the corresponding image. A
similarity measure is then calculated for each
candidate point. In our case, a simple correlation
scheme was employed. The candidate points
together with their similarity measures form the
match map of the current control point. From the
match map of the control point, a “tentative” point
is calculated as follows:

~qi ¼
PM
i¼1

Ki vi
!

PM
i¼1

Ki

ð1Þ

where vi! is the vector from the control point to point
i in the match map. Ki is a constant defined by
Ki ¼ MoMi

1þ vi!
�� ��2, where MoMi is the similarity value

(measure of match) for point i. The sums involved in

Eq. 1 are over the entire match map of M elements
During the second stage of the algorithm, the

control points on the reference image are slightly
displaced towards all eight possible neighboring
positions and a new match map is estimated in
each case. Each new tentative point is calculated as

before, while taking distances from the control
point to each point in the match map into account.
Consequently, a cloud of tentative corresponding
points is estimated for each control point. The final
stage of CSM involves analyzing the distribution
of those tentative points for each control point. If
the tentative points are scattered along a line, the
point closest to the line is considered as the
corresponding point; otherwise, the centroid of
the scatter is selected.

Self-Organizing Maps Algorithm

The SOMs is a neural network algorithm, which
is able to train itself in an unsupervised manner,
through an iterative process.17 The SOMs model
was introduced by Kohonen25 and comprises of a
layer of m neurons arranged in a one-dimensional
or two-dimensional grid. In our case, each control
point Pj from the reference image is considered as
a neuron with weight vector wj, which holds the
parameters of a local transformation. The local
transformation preferred in this study is a similar-
ity transformation. The network is firstly initialized
by setting the weight vector wj of every neuron j to
the parameters of the identity similarity transfor-
mation. After the network is properly initialized,
the training iterations begin. At each iteration n, a
random signal s(n) is generated and presented to
the network. The random signal generator is
similar to the one used in simulated annealing.17

The components of the random signal are random
numbers within a predefined range and correspond
to the parameters of a local similarity transforma-
tion. The generated random signal is then applied
to all network neurons. The neuron j with weight
vector wj is declared as the winning neuron,
according to the rule below:

j ¼ argmax
i

MoM �Ai IRð Þ; �Ts nð Þ Aið Þ ICð Þ
� �n o

ð2Þ

where Ai is a square region centered around Pi;
Ts(n)(Ai) is a similarity transformation of the region
Ai with parameter vector s(n); µAi(I) denotes the
restriction of an image I to the region Ai and MoM
is the preferred measure of match, which in our
case is the correlation coefficient.
This practically means that the wining neuron is

the one that achieves the maximum measure of
match subsequent to the application of signal s(n).
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After the winning neuron j is found, the neuron
itself as well as its neighboring neurons i have
their weight vectors modified according to the
following equation:

wi nþ 1ð Þ ¼ wi nð Þ þ hij nð Þ s nð Þ � wi nð Þ½ � ð3Þ

where hij is a Gaussian-type function which
depends on the distance between the winning
neuron and its neighboring neurons and n. At
this point, a single iteration is complete; hence, a
new random signal is presented to the network
and the process described above is repeated. The
training of the network terminates after a fixed
number of iterations is reached (for example, n=
5,000). After the training is completed, the
weight vectors of the neurons contain the op-
timal local transformation parameters. The con-
trol points obtained from the reference image are
then transformed according to those parameters
in order to produce their estimated corre-
sponding points.

Comparison Details

The performance of each featured point corre-
spondence algorithm depends on a number of
parameters. The optimal parameters were selected
after a series of trials on several image pairs from
all available sets, in order to enhance the validity
of the study. Those parameters are summarized in
Table 2. As can be seen in Table 2, identical
parameters were used for common properties of
the four methods in order to conduct a meaningful
and fair comparison. The major parameters affect-
ing each scheme are further examined in the
“Discussion” section.

Evaluation Methods

The four point correspondence methods were
compared pairwise using several FOMs and by
conducting statistical analysis.28, 32 As shown in
Table 3, three quantitative features of merit were used
throughout this study: one when the actual
corresponding points were known (FOM1) and two
when no prior knowledge of actual correspondences
was available (FOM2, FOM3). The preferred FOMs
were based on the root mean squared distance
(RMSD), the mean edge distance, and the inverse
mutual information metrics (FOM1, FOM2, and
FOM3, respectively). All FOMs are described in some
further detail later. The first step in the evaluation
process was to calculate all features of merit for all
image pairs. Then, for each set, FOM and pair of
methods, a statistical comparison was performed by
means of Student’s paired t test. The null hypothesis
was that the two compared methods did not differ
significantly in terms of the particular feature of merit
used. A 95% confidence level was considered to
assess the null hypothesis in our case. In order to
examine the degree of variation between two meth-
ods, the statistical relevance metric28 was employed:

rim1;m2 Sð Þ ¼ 1� FOMi
m2 Sð Þ

FOMi
m1 Sð Þ

� �
� 100 ð4Þ

where r im1;m2 Sð Þ defines the statistical relevance of
the improvement of method m2 over method m1 for
an image pair S, using the feature of merit i(FOMi(S)).
This scheme assumes that methodm2 is strictly better
than method m1; in other words, m2 exhibits a lower
feature of merit than m1 for the particular image pair
or simply FOMi

m2 Sð Þ < FOMi
m1 Sð Þ.

After all individual statistical relevance metrics
have been calculated, an average statistical rele-

Table 2. Parameters Used for the Qualitative and Quantitative Evaluation of the TM, ICP, CSM, and SOMs Algorithms

Parameter TM ICP CSM SOMs

Measure of match Correlation coefficient Mean square distance Correlation coefficient similarity
Transformation Similarity Thin-plate splines
Search optimization Simulated annealing – Simulated annealing –

Maximum displacement (pixels) 80 –
80

Maximum rotation (°) 25 -
25

Maximum scaling 10% –
10%

Stopping number of iterations – 500 – 5,000
Template size (pixels) 21×21 – – –

Match-map size (pixels) – – 15×15 –
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vance was estimated for all images in a set
between two methods. The average statistical
relevance was recorded only for the cases where
the null hypothesis was rejected, namely the two
methods differed significantly as per the specific
FOM. Using this scheme, all four examined point
correspondence methods were compared pairwise.

RESULTS

As mentioned, eight data sets were used to
qualitatively and quantitatively evaluate the four
point correspondence methods in comparison. The
first four sets comprise of images acquired through
controlled geometry procedures while the remain-
ing four sets were obtained using semi-controlled
geometry protocols. The performance of the four
point correspondence methods is evaluated sepa-
rately for the two aforementioned cases.

Controlled Geometry Data

Four data sets were acquired by transforming
the reference images using known transformations.
Each reference image was transformed using either
a known global transformation (affine) or a known
local transformation (sinusoidal). Thus, each point
(x, y) on the reference images was transformed to
its new coordinates x0; y0� �

in order to form a total
of 40 corresponding images. The global transfor-
mation, which was employed for sets I and III, was
an affine one:

x0 ¼ s cos � x� xcð Þ � s sin � y� ycð Þ þ tx þ xc
y0 ¼ s sin � x� xcð Þ þ s cos � y� ycð Þ þ tY þ yc

ð5Þ

where s is the scaling factor; θ is the rotation angle
and tx and ty are the displacements along the

horizontal and the vertical axis, respectively. The
coordinates (xc, yc) define the central point of the
reference image. In our case: s=1.02, θ=10°, tx=5
and ty=−5.
The local deformation, applied in sets II and IV,

was a sinusoidal one:

x0 ¼ xþ a sin y
T

� �
y0 ¼ yþ a cos x

T

� � ð6Þ

where a=8 and T=128.0. The two transformations
defined in Eqs. 5 and 6 are demonstrated on a
retinal image (pair 6) from set I in Figure 1.
Figure 1a presents the reference image itself, while
Figure 1b, c shows the two corresponding images
as these were produced after applying the affine
and the sinusoidal transforms, respectively. As can
be seen in Figure 1, the local and global trans-
formations used in this study have been selected to
represent realistic medical data. Hence, only
relatively small rotations, translations, and defor-
mations were considered.
As mentioned, the adopted comparison proce-

dure assumes a predefined set of control points on
the reference image in order to estimate their
correspondences. In case of sets I–IV, those points
were allocated using two automatic point extrac-
tion algorithms: one for extracting 200 points of
interest from dental images8 (sets III and IV) and a
separate one for allocating bifurcation points on
the retinal data29 (sets I and II). In the latter case,
the number of extracted points depended on the
morphology of the retinal images (number of
bifurcations). Once the control points have been
defined for each reference image, their actual
corresponding points are calculated using Eq. 5
for global and Eq. 6 for local transformations,
respectively.
Qualitative evaluation was performed by means

of visual assessment. In this case, the actual and
the estimated points are superimposed on the
corresponding images. It follows that the better
the estimated points match with their actual
counterparts, the higher is the accuracy of the
method. Typical examples are presented in Figure 2
up to Figure 4, which demonstrate retinal (set I)
and dental (set III) image pairs, respectively. In all
cases, actual corresponding points are presented as
solid circles, while estimated points are defined by
transparent circles. In particular, as can be seen in

Table 3. The Features of Merit (FOMs) Used to Evaluate TM,
ICP, CSM, and SOMs for Images Subject to Both Known and

Unknown Transformations

FOMi Preferred Metric

Root mean squared distance (i=1) FOM1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

Qi � ~Qi


 

2s

Mean edge distance (i=2) FOM2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

Ei � ~Ei


 

s

Inverse mutual information (i=3) FOM3 ¼ 1
H IRð ÞþH IGTRð Þ�H IR ;IGTRð Þ
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Figure 2, the SOMs method outperforms on
average all other methods by achieving superior
match between the estimated and actual cor-
responding points. This is more clearly visible
when examining a zoomed section of Figure 2,
shown in Figure 3. From the example illustrated on
those two figures, it may be concluded that SOMs
(Figs. 2e and 3d) clearly outperform both ICP
(Figs. 2c and 3b) and CSM (Figs. 2d and 3c). On
the other hand, TM (Figs. 2b and 3a) follows
SOMs closely for the particular example, but a
more detailed examination in Figure 3 reveals that
it is marginally less accurate than SOMs. The
SOMs algorithm also achieves superior point
correspondence accuracy compared to the other
three methods in comparison for the dental image
set. A typical example is depicted in Figure 4,
using 200 control points. As can be seen there,
SOMs (Fig. 4e) achieve a better match compared
to TM (Fig. 4b), ICP (Fig. 4c), and CSM (Fig. 4d).
In this case, where images subject to known

transformations are considered, the actual corre-
spondences can be trivially calculated. Therefore,
in order to quantitatively assess the four methods,
the corresponding points obtained using each
technique were compared against the actual corre-
spondences using the RMSD between the estimat-
ed and the actual corresponding points.33 The
RMSD is defined as follows:

FOM 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Qi � ~Qi



 

2
vuut ð7Þ

where Qi and ~Qi i ¼ 1; 2; . . . ;Nð Þ are the actual
and the estimated corresponding points, respec-
tively. Obviously, the lower is the FOM1 measure-
ment, the better is the correspondence obtained.
Using the feature of merit described in Eq. 7, the

four methods were compared pairwise for all
images in sets I–IV. The results concerning all
sets subject to known transformations are shown in
Table 4 in terms of the average statistical relevance
metric, using FOM1. In Table 4, a “+” sign next to
a measurement hints that the first method is
systematically better than the second one, while a
“−” sign suggests the opposite. A “*” symbol

Fig 1. Generation of test images using a controlled geometry
protocol. a Reference retinal image from set I (pair 6); b Affine
transformation. c Sinusoidal deformation. A grid is superimposed
on all images to show the effect of the transformation.

b
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denotes that the two compared methods do not
exhibit significant statistical difference. It follows
that the larger are the values shown in Table 4, the
greater is the difference between the two compared
methods. As can be seen in Table 4, SOMs
outperform in most cases TM, ICP, and CSM for
the particular feature of merit. The SOMs approach
is especially advantageous over the dental images
(sets II and IV), where it systematically outper-
forms all other three methods. On the other hand,
CSM outperforms both TM and ICP in the cases
where retinal images are involved (sets I–II).
Finally, TM and ICP perform equally on average,
leading to inconclusive statistical analysis in most
cases, which is denoted by a “*” in Table 4.
The four methods were also quantitatively

assessed independently through their average
FOM1 values. The results are shown in Table 5,
where all image pairs from sets I–IV are examined.
As can be seen in Table 5, SOMs achieve lower
average FOM1 values than all other three methods
in comparison. Moreover, SOMs exhibit a very
low standard deviation of the FOM1 metric in most
cases, which indicates that the particular method
achieves uniformly distributed performance.

Semi-controlled Geometry Data

The remaining four data sets considered in this
paper were subjected to unknown transformations.
As mentioned previously, 20 retinal image pairs
were acquired through a semi-controlled geometry
protocol (set V). In addition, three more sets (sets
VI–VIII) of dental images, consisting of 24 pairs
each, were obtained from a separate in vitro study.
As a result, a total of 92 image pairs were available
in order to test the four methods in comparison on
images with unknown transformations.
For set V of retinal images, the ideal corre-

sponding points were known beforehand (bifurca-
tion points). In this case, points were extracted in
both images using the methodology described in.29

Therefore, the methods illustrated before can be
used to assess the four point correspondence
methods both qualitatively, through visual assess-
ment, and quantitatively, using the feature of merit
quoted in Eq. 7. In Table 6, all four methods are
compared pairwise using the statistical methodol-
ogy described previously. As can be seen in
Table 6, SOMs clearly outperform both TM and
CSM on average, followed by ICP. TM is the

worst-performing method for the particular set of
retinal images. Moreover, all 20 image pairs of set
V are examined individually, in terms of their
recorded FOM1 metric, in Table 7. The conclu-
sions drawn previously are confirmed there, as
SOMs achieve a lower average FOM1 measure-
ment, followed by ICP, CSM, and finally TM.
For the remaining three sets of images obtained

through a semi-controlled geometry protocol (sets
VI–VIII), the actual corresponding points are
unknown. Therefore, in this case, the four methods
were evaluated through an image-registration-
oriented approach for both qualitative and quanti-
tative assessment. The initial points of interest were
first extracted using the algorithm proposed in.8 The
four methods (TM, ICP, CSM, and SOMs) were
then applied to each image pair from sets VI–VIII.
The estimated corresponding points produced by
each method were subsequently used to calculate an
affine transformation to register the corresponding
images, through the least-squares method in con-
junction with singular value decomposition.34 The
preferred affine transformation is shown below.
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where a1, a2, a3, a4, dx, and dy define the pa-
rameters of the affine transformation. The regis-
tered images were re-sampled using the bilinear
interpolation method.35 Finally, the performance of
the four methods was evaluated by means of the
registration quality of the produced registered corre-
sponding images.
The registration quality of the four methods in

comparison was visually assessed by superimposing
the edges of the reference image on the aligned
corresponding image. The edges were detected by
applying the Canny edge detector.36 An example is
shown in Figure 5, featuring an image from set VII.
As can be seen in Figure 5, the registered image
produced using the corresponding points estimated
through the SOMs method (Fig. 5h) is more accurate
than the other three methods in comparison (Fig. 5b,
d, f). The outline of the edges in Figure 5h fits the
aligned corresponding image more accurately than
the images obtained using TM (Fig. 5b), ICP
(Fig. 5d), and CSM (Fig. 5f). This may also be
verified by calculating the absolute difference of the
reference image with respect to its registered
counterpart. This case is also illustrated in Figure 5.
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The images shown in Figure 5c, e, g, i were obtained
by calculating the absolute difference between the
intensity of the reference image and the intensity of
the transformed corresponding image, on a pixel-by-
pixel basis. In this case, the darker the resulting
difference is, the better is the registration quality. Yet
again, SOMs (Fig. 5i) perform better than all the other
three methods in comparison, in terms of registration
quality. However, in Figure 5, it can be seen that
although TM (Fig. 5b, c) and CSM (Fig. 5f, g)
perform generally worse than SOMs, they clearly
outperform ICP (Fig. 5d, e) for the particular
example.
In order to quantitatively evaluate the examined

point correspondence techniques on sets VI–VIII,
alternative features of merit had to be defined, as the
actual correspondences are unknown for the partic-
ular data sets. As mentioned, the FOMs in this case
were based on the registration quality of the
registered images which were produced using the
estimated corresponding points from each method.
As a result, the preferred primary FOM for evaluat-
ing dental images subject to unknown transforma-
tions is the mean edge distance between the reference
and the transformed corresponding image:

FOM2 ¼ 1

N

XN
i¼1

Ei � ~Ei



 

 ð9Þ

where Ei(i=1,2,…,N) are all points along the edges
of the reference image IR and ~Ei are their closest
respective points from the edges of the trans-
formed image IGTR. The edges of both images were
extracted through a Canny edge detector.36 General-
ly, a small value of the edge distance metric
corresponds to a close match between the reference
and the transformed corresponding image. This, in
turn, suggests that the smaller is the value of the edge
distance obtained, the higher is the quality of the
intensity-based image registration and thus the more
accurate are the correspondences obtained. In addi-
tion to Eq. 9, a secondary FOMwas used in this case,
defined by the inverse mutual information between
the reference and the registered image. The particular
metric is shown below:

FOM 3 ¼ 1

H IRð Þ þ H IGTRð Þ � H IR; IGTRð Þ ð10Þ

where H(IR) and H(IGTR) are the marginal entro-
pies of the reference and the transformed image,
respectively, while H(IR,IGTR) represents their joint

entropy. In this case, a high mutual information
measurement (and hence a low value in Eq. 10)
represents a successful match between the refer-
ence and the registered corresponding image. The
two particular FOMs were preferred as they are
both able to cope with any contrast differences
between the reference and the corresponding
images caused by the acquisition process of sets
VI–VIII.
Having suitably defined the features of merit to

be used with the semi-controlled geometry data
sets, the four point correspondence techniques
were compared pairwise according to the statistical
evaluation scheme described previously. Thus, in
spite the fact that different FOMs were used for
images subject to known and unknown trans-
formations, all comparisons were performed on a
common platform, namely the statistical relevance
metric.28 The results obtained for sets VI–VIII, in
terms of the average statistical relevance, are
shown in Table 8 for both FOMs. Yet again, a
“+” sign next to a measurement hints that the first
method is systematically better than the second
one; a “−” sign suggests the opposite while the “*”
symbol denotes that the two compared methods do
not exhibit significant statistical difference. By
examining this table, it may be concluded that the
SOMs approach is the preferred method for
allocating correspondences in the particular dental
images. The reason for this is that SOMs present
significant performance difference compared to the
TM, ICP, and CSM for the vast majority of cases
(especially for sets VII and VIII). This is reflected
by the positive values shown in Table 8 con-
cerning SOMs, when compared to any of the three
other methods. On the other hand, the worst-
performing technique for the dental images
obtained through a semi-controlled geometry pro-
tocol seems to be CSM, as both TM and ICP
outperform the particular approach.
The conclusions drawn previously may be

also confirmed by examining the average
mutual information and its standard deviation,
for all dental sets subject to unknown trans-
formations. Those measurements are illustrated

Fig 2. Visual assessment of the four point correspondence
methods, in terms of point accuracy on a retinal image pair (pair
6) from set I. a Reference image with the initial points of interest
superimposed. Corresponding image subject to affine transfor-
mation with both the actual (solid circles) and the estimated
(transparent circles) corresponding points superimposed for b
TM, c ICP, d CSM, and e SOMs.

b
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in Table 9. There, SOMs exhibits a higher
mean mutual information measurement over
TM, ICP, and CSM for sets VII–VIII. In
addition, the much lower standard deviation
measurements obtained for SOMs in most cases
suggest that the technique is quite robust as it
exhibits consistent performance.
The quantitative measurements obtained for sets

VI, VII, and VIII are not directly related to point
correspondence accuracy. Instead, the estimated
correspondences were utilized in order to produce
suitable registered images, through the methodology
described earlier. Consequently, it was the registra-
tion quality of those images assessed rather than the
quality of the corresponding points themselves.
However, the idea is that the quality of the estimated
correspondences will be reflected on the produced

registered corresponding images. The reason for this
is that if a poor set of corresponding points is
obtained, inconsistent transformation parameters will
be calculated, which in turn will produce a poorly
registered corresponding image. Likewise, accurate
corresponding points will result in the computation of
accurate transformation parameters, which will ulti-
mately generate a perfectly registered corresponding
image, exhibiting a low FOM measurement.

Fig 3. Zoomed sections of the images shown in Fig. 2. Proportional zoomed sections of the corresponding image with both the actual
(solid circles) and the estimated (transparent circles) corresponding points superimposed for a TM, b ICP, c CSM, and d SOMs.

Fig 4. Visual assessment of the four point correspondence
methods, in terms of point accuracy for a dental image pair (pair
8) from set III. a Reference image with the initial points of
interest superimposed. Corresponding image with both the
actual (solid dark circles) and the estimated (transparent bright
circles) corresponding points superimposed for b TM, c ICP, d
CSM, and e SOMs.

b
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Noisy Data

The four point correspondence methods stud-
ied in this paper were also evaluated in the
presence of noise. A retinal image pair from set
I (pair 6) was used for the purposes of this test.
One of the two images of the pair (the
corresponding image) was corrupted as follows:
firstly, Gaussian noise has been added with
standard deviations of 0.001, 0.002, 0.005, and
0.01, creating five noisy corresponding images.
Secondly, Gaussian blurring has been added to
the same image with radii equal to 2, 4, 6, and
8 pixels, creating four more distorted images.

The particular types of noise were employed to
simulate two common occasions, occurring dur-
ing the radiographic capture process. Gaussian
noise is used in order to replicate electronic
interference, while Gaussian blurring imitates
focal abnormalities. The level of noise added to
distort the corresponding image may be quanti-
fied through the peak signal to noise ratio
(PSNR).37 The PSNR of all noisy images was
calculated using the following equations:

PSNR ¼ 10� log10 MAX 2
1

MSE

� �
ð11Þ

Table 4. Average Statistical Relevance of the Difference in Performance of the Four Automatic Point Correspondence Methods
(Compared Pairwise) for All Retinal and Dental Data Subject to Known Global and Local Transformations (Sets I–IV), Using FOM1

Method pair Set I (retinal–affine) Set II (retinal–sinusoid) Set III (dental–affine) Set IV (dental–sinusoid)

SOMs/TM 37.183+ 30.140+ 54.710+ 56.840+
SOMs/ICP 58.889+ 51.075+ 60.214+ 55.894+
SOMs/CSM * * 57.900+ 60.789+
TM/ICP * * * *
TM/CSM 23.372− 26.843− * *
ICP/CSM 46.358− 44.588− * 10.283+

Table 5. Performance of the Four Automatic Correspondence Methods in Terms of Point Accuracy Using FOM1 for Images Subject to
Known Transformations (Sets I–IV)

Pairs

Affine Sinusoidal

TM ICP CSM SOMs TM ICP CSM SOMs

Retinal images

1 0.953 6.483 1.903 1.114 0.842 4.165 2.144 3.404
2 5.399 6.551 3.891 2.032 0.971 6.291 2.944 2.552
3 7.648 5.093 1.402 2.002 8.498 13.566 1.913 1.802
4 6.887 4.816 1.697 1.559 7.501 4.791 2.112 2.248
5 5.441 5.417 1.901 1.716 6.910 5.029 2.126 2.992
6 7.774 4.896 1.495 2.062 9.408 4.992 1.786 2.594
7 7.156 5.947 4.313 1.245 10.490 5.355 4.387 2.149
8 11.473 5.544 7.397 5.205 13.798 6.121 7.725 2.718
9 1.014 3.835 2.399 2.340 0.994 4.793 2.936 1.992
10 1.030 4.931 2.916 2.051 6.491 4.603 2.562 3.185
Mean 5.478 5.351 2.931 2.133 6.590 5.971 3.064 2.564
STD 3.511 0.827 1.859 1.147 4.417 2.748 1.806 0.525

Dental images

1 3.912 4.100 4.057 1.243 4.504 4.464 5.693 2.393
2 2.941 4.535 7.276 1.628 3.112 4.471 4.992 1.550
3 5.591 4.905 5.193 1.207 5.881 4.415 5.845 1.989
4 5.489 4.686 4.783 1.476 6.248 4.791 5.731 2.407
5 5.147 4.746 3.002 2.625 6.802 4.995 5.159 1.863
6 4.362 4.458 4.757 1.026 4.709 4.985 4.851 2.104
7 4.714 4.659 4.496 1.750 5.909 4.812 5.550 2.167
8 2.101 4.404 3.901 2.406 2.224 4.472 4.479 1.421
9 4.813 4.200 4.098 3.442 6.298 4.779 4.902 2.267
10 4.891 4.548 5.175 1.049 5.076 4.505 5.208 2.422
Mean 4.396 4.524 4.674 1.785 5.077 4.669 5.241 2.058
STD 1.122 0.246 1.128 0.796 1.477 0.227 0.450 0.354
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MSE ¼ 1

N

XN
i¼1

IR ið Þ � ICN ið Þk k2 ð12Þ

where MAXI is the maximum pixel value of the
image, that is, 255 for grayscale images repre-
sented by 8 bits/pixel. MSE is the mean square
error between the reference image IR and the noisy
corresponding image ICN and N is the number of
pixels. The PSNR, which is measured in decibels,
is inversely proportional to the level of noise
present in the distorted image. This practically
implies that the greater is the value of the PSNR,
the weaker is the noise signal added. For the
purposes of this study, the images distorted with
Gaussian noise exhibited PSNR values spanning
from 30.4 to 20.5 dB, while for the blurred images
they ranged from 37.7 to 30.2 dB.
In order to evaluate TM, ICP, CSM, and SOMs

under the presence of noise, the FOM1 feature of
merit presented in Eq. 7 was employed. As a
result, the estimated corresponding points were
compared against the actual correspondences in
each case. As can be seen in Table 10, all methods
in comparison are generally affected by noise. In
particular, the FOM1 measurements increase with
the level of the noise added to the corresponding
image. This holds for both Gaussian noise and
blurring. Blurring seems to have a milder effect on
the point correspondence efficiency, but the level
of noise exhibited in this case is generally lower
than the one observed in Gaussian noise. This is
reflected by the higher PSNR values calculated for
the blurred images, compared to the measurements
obtained for images distorted with Gaussian noise.
By examining Table 10, it may be concluded that
all methods are equally affected by any type of
noise. However, SOMs seem to have an edge over

TM, ICP, and CSM, as in all cases it achieves
much lower FOM1 measurements for its estimated
corresponding points. For large levels of noise,
nevertheless, all methods are rendered impractical.
This is shown in Table 10, where the thresholds
for the minimum practical PSNR measurements, as
these are evaluated through visual inspection, are
27.4 and 33.1 for Gaussian noise and blurring,
respectively. Table 10 illustrates that SOMs is
more resistant to noise, but adding more noise of
any type will eventually hinder the efficiency of
the algorithm.

DISCUSSION

In this study, four algorithms for estimating
automatic point correspondences were considered:
the TM, the ICP, the CSM, and the SOMs
algorithms. The four algorithms were evaluated
using a large variety of two-dimensional data,
consisting of retinal and dental radiographs
obtained by both controlled and semi-controlled
geometry protocols. After quite an extensive
qualitative and quantitative analysis, it was con-
cluded that the SOMs approach outperformed in

Table 6. Average Statistical Relevance of the Difference in
Performance of the Automatic Point Correspondence Methods
for All Pairs of Methods (Compared Pairwise) for the Retinal

Data Subject to Unknown Transformations (Set V), Using FOM1

Method pair Set V (retinal–unknown transformation)

SOMs/TM 33.105+
SOMs/ICP *
SOMs/CSM 20.022+
TM/ICP 25.754−
TM/CSM 17.843−
ICP/CSM *

Table 7. Performance of the Four Automatic Correspondence
Methods in Terms of Point Accuracy Using FOM1 for Retinal

Images Subject to Unknown Transformations (Set V)

Pairs TM ICP CSM SOMs

1 1.265 2.460 1.181 2.598
2 6.875 5.187 4.744 3.857
3 8.959 2.764 7.303 2.049
4 5.275 5.093 4.161 3.665
5 8.112 9.902 8.819 7.587
6 2.290 2.306 2.349 6.416
7 9.079 7.265 3.221 3.751
8 7.846 3.465 3.692 2.000
9 9.840 7.542 8.519 6.005
10 5.600 1.568 4.725 4.494
11 6.133 2.628 4.728 2.931
12 1.586 1.804 1.460 1.536
13 9.347 2.397 3.590 2.090
14 7.764 5.582 6.522 2.458
15 2.361 3.002 4.549 1.204
16 8.647 5.860 7.331 6.464
17 7.054 1.992 5.488 6.171
18 6.728 2.969 6.450 8.068
19 6.157 4.907 5.052 1.128
20 5.069 4.670 3.861 1.285
Mean 6.299 4.168 4.887 3.788
STD 2.649 2.244 2.122 2.248
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most cases TM, ICP as well as CSM in terms of
the statistical relevance scheme and the features of
merit utilized in this study.
All four methods in comparison depend on

several parameters which control key aspects of
their algorithms. The preferred values for the
parameters used to evaluate all methods are quoted
in Table 2. When possible, the same values were
employed for common properties of the four
methods, throughout the study. Nevertheless, the
values shown in Table 2 were obtained after
several trials using images from all available sets
in order to ensure the best possible performance
out of each method. Furthermore, as can be seen in
Table 2, there are numerous parameters unique to
each method. The effect of varying those values
has to be examined comprehensively to assess the
results obtained by the four methods in compari-
son. For this purpose, the same image pair (pair 6
from set I) was used for all methods in order to
obtain comparable results. In addition, each meth-
od exhibits its own strengths and weaknesses,
which are reviewed in some further detail through-
out this section.
The most important characteristic of the tem-

plate-matching scheme is the size of the template
itself. As mentioned previously, TM searches for
correspondences by comparing selected areas from
the corresponding image to a fixed pattern (the
template) from the reference image. The size of the
pattern is crucial for the performance of the par-
ticular method. In general, using large templates
allows for a wider search space for corresponding
points. Templates of increased size are especially
advantageous over images exhibiting large dis-
placements. On the other hand, large templates
have a negative impact in execution time and
hence are unsuitable for time-critical applications.
Moreover, employing large templates on small
images renders TM highly inefficient as execution
time increases without any noticeable gain over
point correspondence accuracy. In order to dem-
onstrate this, a retinal image from set I (pair 6) was
evaluated using the TM approach with varying
template sizes. In the particular example, the
method was tested using template sizes ranging
from 3×3 to 33×33 pixels. The results are shown
in Figure 6, in terms of FOM1, which is presented
in Eq. 7. As can be seen in Figure 6a, small
template sizes hinder the correspondence accuracy
of the algorithm for the particular image. On the

other hand, large templates cause the execution
time to increase dramatically (Fig. 6b), without
having a proportional positive effect on the
scheme’s accuracy (Fig. 6a). For the particular
example, TM performs as expected with window
sizes equal or greater than 9×9 pixels. However,
as can be seen in Fig. 6a, the method exhibits its
optimal performance, in terms of FOM1, when
21×21 pixels templates are used. This also holds
for the majority of the test images considered.
Hence, 21×21 window sizes were preferred
throughout this study in order to balance between
point correspondence accuracy and efficiency, in
terms of execution time.
The implementation of the iterative closest

points algorithm used throughout this study is a
classic implementation of ICP,16 featuring an
improved elastic transformation function. The
basic idea of ICP is to calculate correspondences
between two or more point clouds.16 In our case,
the first point cloud is considered to be the set of
initial points on the reference image, while the
second one is a set of candidate points on the
corresponding image. Therefore, the particular
approach requires control points to be extracted
from both the reference and the corresponding
image. ICP then tries to match those two sets of
points in an iterative manner as described earlier.
All ICP variants adopt a trial-and-error approach to
allocate correspondences. This implies that the
scheme is repeated for a finite number of iter-
ations. However, there is a certain number of
iterations beyond which minimal accuracy
improvements are recorded. Since an increased
number of trials negatively impacts on the effi-
ciency of ICP, the preferred number of trials is
usually selected such that accuracy and execution
time are balanced. An example is shown in
Figure 7, where an image pair from set I (pair 6)
is considered. ICP was applied to the particular
image pair for a varying number of iterations,
ranging from 50 to 1,000. As can be seen in
Figure 7a, no significant performance gain is
observed after 500 iterations, in terms of FOM1.

Fig 5. Visual assessment of the four point correspondence
methods, in terms of registration quality. a Reference dental
image drawn from set VII. Transformed corresponding image
with the edges of the reference image superimposed for b TM, d
ICP, f CSM, and h SOMs. Absolute difference between the
reference image and the transformed corresponding image with
the edges of the reference image superimposed for c TM, e ICP,
g CSM, and i SOMs.

b
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Since convergence time increases steadily with the
number of iterations (Fig. 7b), the particular value
was considered to be sufficient and therefore was
selected for evaluating ICP throughout the study.
Although the ICP method can be highly efficient

and fast, it is heavily dependent upon the perfor-
mance of the preferred point extraction method.
The reason for this is that the algorithm itself is not
able to calculate the point correspondences but it
merely links points from one set to another.
Therefore, ICP variants are generally not suitable
for allocating point correspondences unless there is a
predefined set of candidate corresponding points on
the corresponding image. Those points may be either
defined automatically8,29–30 or simply manually.
The CSM technique is a method based on the

principles of template matching. As mentioned,
CSM firstly performs minor movements to the
control points on the reference image, thus

producing a tentative corresponding point from a
match map for each such movement. The size of
the match map refers to the area within which
acceptable tentative corresponding points are con-
sidered. The size of the match map, usually
expressed by a square area, is of particular
importance for CSM, as only candidate points
within the match map are estimated. In order to
assess the optimal size of the match map, several
trials were conducted featuring varying sizes
ranging from 3×3 to 33×33 pixels. The perfor-
mance of CSM in each case was evaluated in terms
of the measured FOM1 metric between the
estimated and actual correspondences, using a
retinal image from set I (pair 6). The results shown
in Figure 8a indicate that the optimal match-map
size is 15×15 pixels, which was adopted as the
preferred value throughout the study. As can be
seen in Figure 8a, either excessively small or large
match maps hinder the efficiency of the CSM
algorithm. The reason for this is that small match
maps simply do not provide sufficient space for
candidate correspondences, while large ones may
well confuse the algorithm by producing spurious
candidates, thus scattering the tentative corre-
sponding points over a large area. On the other
hand, the size of the match map does not have an
immense effect in the execution time of the
algorithm. This is illustrated in Figure 8b. Al-
though the execution time for CSM does rise as the
match-map size increases, the effect is minimal
compared to TM, which also features a similar
template scheme.
By examining the distribution of candidate

corresponding points over minor displacements

Table 8. Average Statistical Relevance of the Difference in Performance of the Automatic Point Correspondence Methods (Compared
Pairwise) for All Pairs of Methods For the Dental Image Pairs Subject to Unknown Transformations (Sets VI–VIII)

Method pair Set VI Set VII Set VIII

FOM2 (mean edge distance)

SOMs/TM 12.633+ 15.600+ 8.793+
SOMs/ICP * 14.345+ 9.396+
SOMs/CSM 25.272+ 24.822+ 20.085+
TM/ICP 17.115− * *
TM/CSM 12.912+ 10.588+ 12.153+
ICP/CSM 27.007+ * 10.939+

FOM3 (inverse mutual information)

SOMs/TM 9.340+ 14.269+ 16.776+
SOMs/ICP * 26.067+ 14.189+
SOMs/CSM 24.307+ 28.387+ 41.744+
TM/ICP * 14.257+ *
TM/CSM 15.842+ 16.511+ 30.125+
ICP/CSM 22.423+ * 28.098+

Fig 5. (continued)
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of the control points, CSM ensures that the
estimated corresponding points are as reliable as
possible. In effect, the particular method initial-
ly performs a template-matching scheme for
defining the match maps and then it examines
the reliability of the estimated correspondences
by assessing their sensitivity to the movement
of their respective control point. In that way,
only reliable corresponding points may be
extracted. Therefore, CSM favors robustness
over execution time, as it is generally slower
than TM and ICP. Moreover, although CSM is
an improvement over the original template-
matching scheme, it does not always guarantee
superior performance over its ancestor method.
In fact, there are cases where the efficiency of
CSM degrades due to the characteristics of the
subject image pair. Poor-quality blurred images
are especially unfavorable for CSM.
As with any other iterative method, the self-

organizing map algorithm is greatly affected by
the number of iterations executed. Again, the
more iterations are performed, the better is the
accuracy of the corresponding points, up to a
certain number where no further noticeable
improvement can be accounted. For the partic-
ular image pairs included in this study, it was

observed that SOMs did not improve point
accuracy noticeably for more than 5,000 iter-
ations. In some instances (especially in smaller
images), performance was saturated for even
less iterations, but the value of 5,000 was
universally adopted to suffice all cases. As can
be seen in Figure 9, the SOMs algorithm was
tested on a retinal image pair from set I (pair 6)
using a variable number of iterations (from 500
to 15,000). There, it is quite clear that employ-
ing more than 5,000 iterations does not improve
the accuracy noticeably (Fig. 9a). Moreover, the
fact that the convergence time of the particular
approach raises dramatically as the number of
trials increases (Fig. 9b), employing a larger
number of iterations would hinder the efficiency
of the method, as the execution time of the
method increases without any performance gain.
After evaluating all methods in comparison,

SOMs were considered to be the most effective
method on average. This holds for sets of images
subject to both known and unknown transforma-
tions. Throughout the study, it was illustrated that
when SOMs were compared pairwise to all other
three methods in comparison, the statistical rele-
vance of its performance gain was greater on
average in most cases than any other method.

Table 10. Performance of the Four Automatic Correspondence Methods in Terms of Registration Accuracy Using FOM1 in the Presence
of Noise (on Retinal Pair 6 from Set I)

Noise parameter PSNR (dB) TM ICP CSM SOMs

Gaussian noise (σ)

0 − 7.774 4.896 1.495 2.062
0.001 30.4 8.690 7.829 19.224 4.990
0.002 27.4 13.863 11.351 21.988 9.064
0.005 23.4 33.247 25.726 34.017 19.121
0.01 20.5 38.301 31.113 39.228 23.673

Gaussian blurring (radius)

0 – 7.774 4.896 1.495 2.062
2 37.7 8.585 6.799 7.126 4.089
4 33.1 12.285 10.548 19.541 12.339
6 31.3 24.336 20.017 23.295 19.885
8 30.2 33.379 24.265 26.406 22.390

Table 9. Performance of the Four Automatic Correspondence Methods in Terms of Registration Accuracy Using the Mutual Information
(1/FOM3) for Dental Images Subject to Unknown Transformations (Average Values over Sets VI–VIII)

Data sets TM ICP CSM SOMs

Semi-controlled geometry set VI (24 pairs) 1.257±0.180 1.396±0.270 1.046±0.184 1.382±0.053
Semi-controlled geometry set VII (24 pairs) 1.266±0.264 1.112±0.494 1.053±0.232 1.467±0.143
Semi-controlled geometry set VIII (24 pairs) 1.171±0.238 1.217±0.408 0.824±0.238 1.397±0.140
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Fig 7. Performance of the ICP method for varying the number
of iterations. A retinal image from set I was used (pair 6) and the
method was applied with the number of iterations ranging from
50 to 1,000. The effects on performance were recorded in
terms of a the RMS distance and b the execution time.

Fig 8. Performance of the correspondence by sensitivity to
movement algorithm for varying the size of the match map. The
match map was varied from 3 to 33 pixels wide and the tests
were performed on a retinal image from set I (pair 6). The
performance was assessed in terms of (a) the RMS distance and
(b) the execution time.

Fig 6. Performance of the template-matching technique for
varying the size of the template. The template was varied from
3 to 33 pixels wide and the tests were performed on a retinal
image from set I (pair 6). The performance was assessed in
terms of a the FOM1 and b the execution time.

Fig 9. Performance of the self-organizing maps method for a
varying number of iterations. A retinal image from set I was used
(pair 6) and the method was applied with a varying number of
stopping iterations ranging from 500 to 15,000. The effects on
the performance were recorded in terms of (a) the RMS distance
and (b) the execution time.
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Cumulative results are shown in Table 11, where
the number of cases SOMs which performed
better, equally, or worse than any of the other
three methods is recorded. The measurements
shown in Table 11 are drawn from Tables 4, 6,
and 8, in terms of the average statistical relevance
metric obtained in each case. As can be seen in
Table 11, SOMs outperformed all other methods in
comparison in 12 out of 15 cases for the root mean
square distance feature of merit (FOM1). More-
over, it did better than TM, ICP, and CSM
altogether in eight out of nine cases using either
the mean edge distance (FOM2) or the inverse
mutual information features of merit (FOM3).
Therefore, SOMs outperformed all other three
methods in comparison in totally 28 out of 33
cases over all available FOMs, as can be seen in
Table 11.
The performance of the TM algorithm may be

improved by reducing the size of the sub-images,
but this negatively affects point correspondence
accuracy, especially if large translations are in-
volved in the corresponding image. On the other
hand, the performance of ICP depends on three
key factors. Firstly, the particular method requires
two point clouds to be extracted (from the
reference and subsequent images), which implies
that the accuracy of the algorithm is directly
proportional to the accuracy of the preferred point
extraction method. Secondly, it is possible that the
two extracted point clouds do not match perfectly.
For example, some correspondences may not be
established, as suitable corresponding points sim-
ply do not exist in the candidate corresponding
points cloud. In such a case, ICP will try the next
best possible match, which will most likely
produce a false correspondence. Finally, as men-
tioned, the accuracy of ICP also depends on the
number of iterations performed. As far as CSM is
concerned, the particular approach calculates sev-

eral candidate corresponding points and then
selects the optimal point by running a simple
reliability test. By moving each control point over
a specified area of the reference image, several
scattered candidate points are estimated. In gener-
al, if those points are scattered over a relatively
small area on the corresponding image, the
candidate points are considered to be reliable. On
the contrary, wildly scattered candidate points
indicate an erroneous estimation process or an
unsuitable control point.
The superiority of SOMs is mainly contrib-

uted to the ability of the particular method to
calculate accurate point correspondences by
limiting the amount of spurious corresponding
points that mostly affect the other three meth-
ods in comparison, especially TM and CSM.
This is achieved due to the characteristics of
the algorithm itself. Points in SOMs are
arranged into a neural network and, in order
to calculate each corresponding point, the
method takes into account the entire set of
estimated points, thus minimizing the risk of
considering false correspondences.
Nevertheless, the superiority of SOMs comes

at a cost to convergence time, as it was by far
the slowest method of all four methods exam-
ined. In general, the convergence time depends
directly on the number of control points used.
For example, for the dental images of the study,
where 200 points were extracted, it took about
15 min to calculate point correspondences with
SOMs. For the same images, TM estimated the
correspondences in approximately 9 min, ICP in
about 3 min, and CSM in 10 min. The
particular timings are significantly reduced for
the retinal images, where 13 to 30 bifurcation
points were detected in any case. All tests
featured in this study were performed on a
typical desktop workstation (AMD Opteron 165,
1,800-MHz processor with 2 GB of random
access memory).
This comparative study was conducted spe-

cifically using two-dimensional retinal and
dental medical data. The aim of future research
is twofold: firstly, to extend the current study to
two-dimensional multimodal data sets (CT,
magnetic resonance imaging, PET scans) and
secondly to modify the four automatic point
correspondence algorithms for operating on
three-dimensional data sets.

Table 11. Number of Times that the SOMs Algorithm Performed
Better than, Same as, and Worse than TM, ICP, and CSM

Algorithms, When Compared Pairwise Using All Possible Com-
binations, for All Sets, and All Three FOMs

FOMi Better Neutral Worse

i=1 (RMS distance) 12 3 0
i=2 (mean edge distance) 8 1 0
i=3 (inverse mutual information) 8 1 0
Total 28 5 0
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CONCLUSIONS

This paper presented a comprehensive evalu-
ative study comparing four commonly used
algorithms for obtaining automatic point corre-
spondences in two dimensions. The TM, the
ICP, the CSM, and the SOMs algorithms were
compared pairwise as well as independently.
The methods were assessed both visually and
quantitatively. The four methods were applied
individually on 40 medical image pairs featur-
ing known transformations and 92 more pairs
subject to unknown transformations. In general,
the SOMs approach outperformed in most cases
the other three methods in comparison. SOMs
achieved systematically superior point corre-
spondence accuracy in most cases when com-
pared pairwise to TM, ICP, and CSM, in terms
of the statistical relevance measurement. The
particular approach also outperformed the other
three methods in comparison under the presence
of noise in the corresponding images. On the
other hand, TM and ICP performed evenly
especially for images subject to known trans-
formations, while CSM consistently underper-
formed when applied to dental images obtained
through a semi-controlled geometry protocol.
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