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Studies reported in the literature indicate that the
increase in the breast density is one of the strongest
indicators of developing breast cancer. In this paper,
we present an approach to automatically evaluate the
density of a breast by segmenting its internal paren-
chyma in either fatty or dense class. Our approach is
based on a statistical analysis of each pixel neighbour-
hood for modelling both tissue types. Therefore, we
provide connected density clusters taking the spatial
information of the breast into account. With the aim of
showing the robustness of our approach, the experi-
ments are performed using two different databases:
the well-known Mammographic Image Analysis Society
digitised database and a new full-field digital database
of mammograms from which we have annotations
provided by radiologists. Quantitative and qualitative
results show that our approach is able to correctly
detect dense breasts, segmenting the tissue type
accordingly.
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INTRODUCTION

B reast cancer is a major health problem in
Western countries. A study developed by the

American Cancer Society estimates that, in the
USA, between one in 8 and one in 12 women will
develop breast cancer during their lifetime.1 In
addition, a recent study of the Australian Institute
of Health and Welfare shows that, in Australia, one
in 36 woman deaths before the age of 85 are due to
this disease.2

Mammography is still the most commonly used
method for detecting breast cancer at early stages, a
crucial issue for a high survival rate. With the name
of computer-aided tools, there have recently
appeared a set of computerised tools to assist
physicians to detect and diagnose breast cancer.3,4

However, recent studies have shown that the

performance of these systems decreases as the
density of the breast increases, either decreasing the
sensitivity5,6 or increasing the specificity.7 This is a
real drawback, since it is widely known by the
medical community that breast cancer risk increases
as the breast density increases.8 Therefore, the
segmentation of the breast density might be benefi-
cial not only for estimating the quantity of breast
dense tissue but also for establishing independent
strategies in fatty or dense regions where an
automatic procedure may be used to look for
abnormalities.9

During the last years, different algorithms have
been proposed for breast density segmentation. For
instance, Boyd et al.10 and Sivaramakrishna et al.11

used a grey-level thresholding technique to seg-
ment the breast into dense and fatty regions. In
contrast of obtaining just two clusters, Ferrari et
al.12 and Aylward et al.13 used mixtures of
Gaussian for modelling and segmenting the breast
into four and five regions, respectively. However,
these related approaches do not take spatial
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information into account, providing segmentations
with too many disconnected regions. Moreover, an
initial pre-processing step is needed to remove
noisy pixels. Aiming to include this spatial
information into account, Saha et al.14 included a
fuzzy affinity function in their proposal, while
Zwiggelaar and Denton15 and Petroudi and
Brady16 employed textural features to take the
spatial distribution of the pixel and its neighbour-
hood into account.
In this paper, we present a statistical approach,

which also uses spatial information, to perform
breast parenchyma segmentation. The approach is
based on modelling a set of patches of either fatty
or dense parenchyma using statistical analysis. In
particular, we analyse two different strategies to
perform this modelling process: (1) Karhunen–
Loeve-based model [principal component analysis
(PCA)] and (2) linear-discriminant-based model
[linear discriminant analysis (LDA)]. Once the
tissue models have been learned, each pixel of a
new mammogram is classified as being fatty or
dense tissue, taking its corresponding neighbour-
hood into account. Note that we perform pixel-
based segmentation but using spatial information
from the neighbourhood model in the classification
step. The final result of our approach is a
segmented mammogram with two different regions
according to the breast tissue. In order to evaluate
our segmentation proposal, we present quantitative
and qualitative results extracted from two different
databases: the well-known Mammographic Image
Analysis Society (MIAS) database and a new full-
field digital database of mammograms from which
we have expert annotations.
The rest of the paper is structured as follows. The

next section describes the used databases as well as
the segmentation approach. Experimental results
are then presented in “Results”. The analysis of
these results as well as a comparison with other
approaches is presented in “Discussions”. Finally,
the paper ends with “Conclusions”.

MATERIALS AND METHODS

In this section, we describe the proposed
approach for breast density segmentation. Howev-
er, we first present the databases used in the
experimental section.

Databases

We test our approach using two different data-
bases: the MIAS database and the Trueta database.

The MIAS Database

The MIAS database17 contains mammograms
extracted from the UK National Breast Screening
Programme and digitised to 50-×50-μm pixel
resolution with a Joyce–Loebl scanner. The data-
base includes MLO views of both left and right
breasts, expert annotations [including presence and
location of abnormalities (if any)] and a breast
density classification with three categories: fatty,
glandular and dense (in density increasing order).
However, and due to the increasing usage of the
breast imaging reporting and data system (BIR-
ADS) standard, we asked three expert radiologists
to classify the set of mammograms according to the
BIRADS standard (a majority vote between the
three experts was used to provide the used BIRADS
density classification). Table 1 shows the distribu-
tion of this expert classification. As it is shown in
the table, a strong correlation exists between fatty
breasts and low BIRADS classes and also between
dense breasts and high BIRADS classes.
Figure 1 shows four mammogram examples of

this database with increasing internal density (from
BIRADS I to BIRADS IV). In general, the brighter
the pixel, the denser the tissue is. Note that the
pectoral muscle appears in the top-right corner of
the images, and there are also some annotations
outside the breast area. Hence, the initial step of
our proposal should be able to separate the breast
region from the other ones.

The Trueta Database

The second database used is the Trueta Database.
The mammograms of this database are obtained by a

Table 1. Confusion Matrix Between the Classification of MIAS
Mammograms According to its Annotations (Fatty, Glandular and
Dense) or the Consensus of Three Radiologists in BIRADS Terms

B-I B-II B-III B-IV Total

Fatty 83 23 0 0 106
Glandular 4 60 38 2 104
Dense 0 20 57 35 112
Total 87 103 95 37 322
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full-field digital Siemens Mammomat Novation
mammograph, and the images are stored according
to the DICOM protocol. There are two different
image sizes depending on the breast size: 2,560×
3,328 or 3,328×4,096 pixels, being the resolution of
each image 70-×70-μm pixel. In this work, we use a
subset containing 125 CC and 125MLO views of the
same breast of 75 women (there are 50 complete
cases—MLO and CC views of left and right
mammograms of the same patient—and 25 where
the MLO and CC of only one breast is available).
Regarding the annotations, two radiologists classi-
fied the entire database according to the BIRADS
standard, obtaining 96 BIRADS I, 40 BIRADS II, 74
BIRADS III and 40 BIRADS IV mammograms. In
addition, the radiologists provided detailed dense
regions annotations (ground-truth segmentation) for
60 mammographic images, accurately surrounding
the region using a digital pen. In particular, the

radiologists annotated 15 MLO images randomly
selected from the database of each BIRADS class.
Figure 2 shows four mammograms of this

database with increasing internal density (from
BIRADS I to BIRADS IV). Note that the pectoral
muscle still appears in the top-right image corners,
while the text annotations are now removed.

Initial Pre-processing Step

As already explained, the first step of our approach
consists in segmenting the background, annotations
and the pectoral muscle of the images. Note that
background subtraction is needed to correctly focus
the algorithm. Moreover, we need to extract the
pectoral muscle because, in some mammograms, it
has a similar appearance than the dense tissue,
leading to incorrect segmentations. This can be
clearly seen in the last image of Figure 1.

Fig 2. Four mammograms examples from the Trueta database
with increasing density (from left to right and top to bottom).

Fig 1. Four mammogram examples from the MIAS database
with increasing density (from left to right and top to bottom).
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We used the approach developed by Martí et
al.18 to identify the region composed by the breast
and the pectoral muscle. Briefly, the method starts
by computing a scale space representation of the
image in order to perform edge detection using
different scales. Subsequently, an initial seed point
lying in the skin-line contour is automatically
located, and it is used as the starting point of a
contour growing process, which is guided by
attraction and regularisation forces. Afterwards,
we use the proposal of Kwok et al.19 to detect and
remove the pectoral muscle. In this approach, the
pectoral edge is firstly estimated by a straight line
that is validated for correctness of location and
orientation. This estimate is then refined using
iterative cliff detection to delineate the pectoral
margin more accurately. The result of this step is
shown in Figure 3. Note that the background and

the pectoral muscle are successfully removed from
the original images.

Modelling the Tissue

In order to model the different breast density
types (fatty and dense), we manually extract a
subset of M patches of size N×N pixels. Figure 4
illustrates three different examples of fatty and
dense patches. These patches are used as input data
for training a classifier, which later on is used to
segment new mammograms. To perform the train-
ing and the modelling of both fatty and dense tissue,
we select the same number of patches representing
both tissue types. We will provide more details on
this aspect in the experimental section.
As mentioned in “Introduction”, we study two

different statistical strategies for creating our
models: (1) based on the Karhunen–Loeve trans-
form and (2) based on LDA.

Karhunen-Loeve-Based Model (PCA)

This strategy is mainly based on the eigenfaces
solution proposed by Turk and Pentland for the face
recognition problem.20 The Karhunen–Loeve trans-
form is used in order to reduce the dimensionality of
the problem, finding the subset of vectors that best
account for the distribution of the training images
(our M patches) within the entire image space.
The first step of this process consists in repre-

senting each image xi of the training database as a
vector of length N2. Afterwards, μ is computed as
the mean image of all training images:

� ¼ 1

M

XM

k¼1

xk ð1Þ

and the total scatter matrix ST:

ST ¼
XM

k¼1

xk � �ð Þ xk � �ð ÞT ð2Þ

In this framework, a linear transformation
mapping the original image space into a new
feature space is defined as:

yk ¼ WTxk ð3Þ

being W a matrix of size P×N2, where P is the
number of vectors of the new subspace (PGM). In
PCA, the projection is chosen to maximise the

Fig 3. Mammogram examples shown in Figure 1 after the pre-
processing step.
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determinant of the scatter matrix of the projected
samples:

WPCA ¼ arg max
W

WTSTW
�� ��

¼ w1 w2j j� � �jwP½ � ð4Þ

being wi the set of P eigenvectors corresponding to
the P largest eigenvalues (called eigenfaces in the
original work of Turk and Pentland20). Note that
these eigenvectors define the maximum scatter
subspace of the original image space. Afterwards,
each training image can be transformed into this
space by using Eq. 3. In our process of modelling
the tissue patches, the result of this transformation
is a vector of weights (zi) per patch i describing the
contribution of each eigenvector in representing
the corresponding input patch. The set of M weight
vectors, z1... zm, forms our model. Thus, when a
new patch has to be tested, we perform a
classification process assigning the patch to the
most similar class. As in the original algorithm of
Turk and Pentland, the similarity is computed
using the nearest neighbour algorithm.20

Linear-Discriminant-Based Model (LDA)

An important aspect of the PCA approach is that
the scatter maximised is due not only to the
between-class scatter but also to the within-class
scatter. Therefore, we also test in this study the
behaviour of a linear-discriminant-based strategy,21

which is able to tackle this point.

In the LDA framework, the between-class
scatter (the dispersion among each class means)
is defined as:

SB ¼
XC

k¼1

Mk �k � �ð Þ �k � �ð ÞT ð5Þ

where C is the number of classes of the training
database (in our work C=2: fatty or dense), μk is
the mean image of each class Ck and Mk is the
number of images in the training database
belonging to class Ck. The within-class scatter
(the overall sum of the dispersion inside each
class) is defined:

SW ¼
XC

k¼1

X

xi2Ck

xi � �kð Þ xi � �kð ÞT ð6Þ

The aim of LDA is to find the subspace where
the between-class scatter is maximised while the
within-class is minimised. Formally,

WLDA ¼ WPCA WFLD ð7Þ
where WPCA is defined by Eq. 4 and WFLD:

WFLD ¼ arg max
W

WTWT
PCASBWPCAW

�� ��
WTWT

PCASWWPCAW
�� �� ð8Þ

Note that this WFLD definition is necessary in
order to avoid the singularities of the within-class
scatter matrix.
As in the PCA strategy, each training patch can

be transformed into this subspace obtaining a new
vector of weights (zi), which describes the contri-
bution of each vector in representing the patch.
Hence, when classifying a new patch, this is
projected onto that subspace and classified accord-
ing to the most similar class using again the
nearest neighbour algorithm.

Segmenting the Breast

Once a model is built using either the PCA or
LDA strategy, we are ready to classify each pixel
of the mammogram as belonging to fatty or dense
tissue. For such a task, we open a search window
of size N×N centred at each pixel, and we use this
patch as the input for the model. Hence, the patch
is spanned to the corresponding subspace, and the
weights of its components are the input data used

Fig 4. Patch samples. The upper row shows three fatty tissue
patches, while the bottom row shows three dense tissue
patches.
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in the nearest neighbour algorithm to provide the
classification. The result after repeating this simple
procedure for all the breast pixels is the final breast
segmentation in either fatty or dense class.

RESULTS

This experimental section is divided in two
subsections. Firstly, we present a quantitative
analysis of the results on the Trueta database
using PCA and LDA modelling strategies,
analysing also the effect of changing the
parameters: (M) the number of patches and (N)
the patch size. Afterwards, we present an
extensive qualitative validation using both the
Trueta and the MIAS database. Notice that we
could not use the public MIAS database for a
quantitative analysis since the density tissue
ground truth is not available.
It is important to remark that the patches used in

the modelling step are extracted individually from
each database. Observing Figures 1 and 2, one can
clearly notice that the tissue appearance of both
databases is different. This is due to the fact that
the MIAS database was obtained by scanning film
screen mammograms, while the Trueta one is full-
field digital. Therefore, our modelling process is
independently performed for both databases.
The results presented in this paper have been

obtained following a ten-folder cross-validation
methodology. Hence, each database was divided
into ten different groups, containing approximately
the same number of mammograms. From each
group we extracted a set of patches, containing fatty
and dense tissue types. In particular, six fatty and
six dense patches were manually selected for each
group. Afterwards, nine of the groups were merged
and used for doing the training (54 fatty and 54
dense patches for the training), while the mammo-
grams of the remaining group produced the seg-
mentation testing set. This procedure was repeated
until all groups were used for testing. Note that
using this methodology, each mammogram appears
in the test set only once and it is tested using patches
extracted from other mammograms.

Quantitative Results

The data used in this analysis is a subset of 60
MLO mammograms of the Trueta database from

where dense area was accurately segmented by
two radiologists. Hence, we can quantitatively
compare both automatic and manual segmentations
using PCA and LDA strategies.
The three following measures are used to

evaluate the results:

Y Accuracy or percentage of correct classification
(M1). This measure computes the correct
classification of all pixels as being classified as
fatty or dense tissue. In terms of True Positives
(TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN), the M1 measure is
computed as:

M1 ¼ TPþ TN

TPþ TNþ FPþ FN
ð9Þ

Y Area overlap (M2). This measure only takes
dense pixels into account. Being A one segmen-
tation and B the other one, (M2) is defined as
the ratio between the number of pixels in the
intersection of both segmentations and the
number of pixels in the union:

M2 ¼ A \ Bj j
A [ Bj j ¼

TP

TPþ FPþ FN
ð10Þ

Y Dice coefficient (M3).22 This is a common
measure in medical imaging that is close to the
area overlap. This measure gives more weight to
those pixels correctly classified as dense in both
segmentations:

M3 ¼ 2 A \ Bj j
Aj j þ Bj j ¼

2� TP

2� TPþ FPþ FN
ð11Þ

Note that all these measures are equal to 1 when
both segmented areas are identical, equal to 0
when both areas do not intersect, and have values
between 0 and 1 otherwise.
Table 2 shows the obtained results when

modelling the breast using the PCA and the LDA
strategy. Note that the overlap between both
manual and automatic annotations is high, show-

Table 2. Results of the Proposed Strategies in Terms of Accuracy
(M1), Area Overlap (M2) and Dice Coefficient (M3)

PCA strategy LDA strategy

M1 0.916±0.038 0.890±0.031
M2 0.900±0.122 0.842±0.196
M3 0.943±0.077 0.876±0.139
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ing a good performance of our approach in all
three measures. Observe also that the PCA strategy
provides the best results, although the difference is
not statistically significant. This is a surprising
result because we expected the LDA modelling
strategy to have better performance than the PCA
one, since it takes the between and within-class
scatter of the data into account. However, LDA
results in many disconnected dense regions, while
the PCA approach provides a more compact
classification.
One of the advantages of our approach is the

small number of parameters required: M the
number of patches and N the patch size. The re-
sults shown in this paper were obtained using a
total number of 54 patches per training of size 50×
50 pixels. Both parameters were empirically
validated and were those which provided a good
compromise between the performance of the
method and the complexity of the model. Note
that the selected number of patches should be large
enough to provide sufficient data variation per
each tissue class but small enough to avoid
overfitting the classifier. On the other hand, when
using large patch sizes, our approach provided
more homogeneous regions, while when using
small sizes, it provided small unconnected regions.
This is due to the fact that cumuli of ducts are
considered as being part of the dense tissue. It is
important to remark that if the patch size is too
large, the approach may produce oversegmented
results.

Qualitative Results

In order to perform a qualitative analysis, we
use the PCA modelling strategy (which provided
better quantitative results, see Table 2) to obtain
the breast segmentations. The qualitative analysis
is given in terms of boxplots,23 a graphical
statistical summary of the data. The boxplot is
defined by the lower and upper quartiles, while the
line inside the box defines the median. The notch
represents a robust estimate of the uncertainty
about the medians for box-to-box comparison.
Hence, boxes whose notches do not overlap
indicate that the medians of the groups differ at
the 5% significance level. The whiskers are lines
that show the extent of the rest of the data,
extending from each end of the boxes to the most
extreme data value within 1.5*IQR, where IQR is

the interquartile range of the sample. Outliers are
data with values beyond the ends of the whiskers.

MIAS Qualitative Results

A qualitative analysis is performed using the
entire MIAS database (322 images in total). After
segmenting the breast in both fatty and dense
tissues, we computed the percentage of segmented
dense area relative to the overall breast area (fatty
and dense areas). Afterwards, we constructed a
boxplot analysis detailing this percentage accord-
ing to each density class provided in the MIAS
annotations (fatty, glandular and dense). This is
shown in Figure 5. Observe that the percentage of
dense area increases according to the class density.
Note also that mammograms belonging to fatty
class do almost not show any dense area, while
dense mammograms have large percentage disper-
sion. Notice that we obtained several outliers in the
fatty and glandular classes. This is due to the fact
that there is a small set of mammograms brighter
than the rest, and in this cases, the algorithm is not
able to correctly recognise the fatty tissue. In these
cases, a previous grey-level normalisation of the
image should be necessary.24

We repeated the same analysis but using the
annotations provided by the radiologists, who clas-
sified the MIAS database according to the BIR-
ADS standard. The results are shown in Figure 6.
Note that the dense area of mammograms belong-
ing to BIRADS I is again insignificant, while
mammograms belonging to BIRADS II have a

Fig 5. Boxplot of breast dense percentage using the MIAS
database and its own annotations (F, G and D stand for fatty,
glandular and dense class, respectively). The box in the fatty
class is almost all over the x-axis.
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small part of dense tissue. The dispersion in dense
classes is now reduced, and the outliers have also
been reduced. Moreover, according to the notches,
the difference in the median of all classes is clearly
significant.
Figure 7 shows the mammogram samples of

Figure 1 after applying our segmentation approach
using the PCA modelling. The lighter cluster
shows the dense area, while the darker one shows
the fatty tissue. Note that the dense area of the
mammograms is segmented in a single and
homogeneous region, except for the mammogram
belonging to BIRADS II who has a second small
dense cluster. Moreover, observe that the size of
the dense cluster increases as the density of the
breast also increases.

Trueta Qualitative Results

In this section, we repeat the same qualitative
analysis but using the Trueta database and now
analysing 125 MLO and 125 CC views indepen-
dently. The pre-processing step of CC mammo-
grams did not include the pectoral muscle removal
since the muscle was not present in this view.
Figure 8 shows the boxplots of the dense

percentage obtained. The first row analyses the
CC mammograms, while the second one analyses
the MLO ones. Note that, in both cases, the
percentage increases according to the BIRADS
classes. However, we found two outliers using the
CC set and two more when using theMLO one. Note
that the trend is similar when comparing both

datasets, showing that our approach is able to
correctly segment bothMLO and CCmammograms.
Comparing the obtained results using the MIAS

and the ones using the Trueta database, we observe
that the BIRADS I distribution is better defined
when using the former database. This is due to the
different nature of the databases. Remember that
the MIAS is a digitised database, while the Trueta
one is fully digital. In the Trueta database, almost
all fatty mammograms have a small region
segmented due to the fact that the digital database
has more contrast than the digitised one (see for
instance Figures 1 and 2). Hence, some ducts and
linear structures that are brighter than the fatty
breast tissue are incorrectly segmented. In contrast,
the performance for the other classes is similar.

Fig 7. Segmentation results using our approach with PCA
modelling for the four mammograms of Figure 1.

Fig 6. Boxplot of breast dense percentage using the MIAS
database and the annotations provided by the experts (b1, b2,
b3 and b4 stand for BIRADS I, BIRADS II, BIRADS III and BIRADS
IV, respectively). The box in the BIRADS I class is almost all over
the x-axis.
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DISCUSSIONS

In order to show the benefits of our approach,
we compared the obtained results with a thresh-
olding approach. As already said in “Introduction”,
thresholding is one of the most used approaches
for breast density segmentation. In particular, we
apply here two different well-known thresholding
techniques: the first one based on the maxim-
entropy thresholding25 and the second one based
on the Ridler–Calvard algorithm.26

Figure 9 shows the results obtained for the
MIAS database when using both thresholding
approaches for breast density quantification. Note
that the performance of both thresholding
algorithms for class BIRADS I is not the
expected one, obtaining a large dispersion in
the dense percentage ratio. The reason for this
behaviour is that there is a set of mammograms
correctly segmented (without dense cluster or
being small), while there is another set incor-

rectly segmented. In these cases, the thresh-
olding approaches segmented the outer part of
the breast from the inner part due to the fact
that pixels near the skin-line (those with less
breast tissue) are darker than the other ones.
Hence, in homogeneous fatty mammograms,
this tends to produce an incorrect estimation
of the threshold. In contrast, the rest of
BIRADS classes show more compact results,
increasing the median of the class according to
the increasing density. However, comparing
these results with those shown in Figure 6, the
median is higher. This is also a consequence of
bad threshold estimation. However, in this case,
the bias is smaller due to the fact the tissue of
the mammograms is more heterogeneous, and
therefore, the estimated threshold is greater than
the obtained when segmenting mammograms
belonging to BIRADS I.
We also want to briefly discuss the performance

of the initial pre-processing step explained in

Fig 8. Boxplot of the dense percentage using the Trueta
database. First row using the test set of 125 CC mammograms,
while second one using the 125 MLO ones.

Fig 9. Boxplot of breast dense percentage using the MIAS
database and two well-known thresholding approaches. First
row shows the results using the maximum-entropy thresh-
olding,24 while second one using the Ridler–Calvard algorithm.25
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“Initial Pre-processing Step”, which was per-
formed in order to remove background, annota-
tions and pectoral muscle of the images. In
general, the performance of these algorithms is
good enough in most of the cases. However, for
the MIAS database, there is a small set of images
where the breast segmentation algorithm decreases
its accuracy, incorrectly segmenting a small border of
the breast. In contrast, regarding the Trueta database,
the pectoral muscle is incorrectly segmented in few
cases, having the problem of segmenting a small
portion of fatty tissue besides the pectoral muscle.
However, in both cases, the segmentation algorithm
segments correctly the dense tissue due to the fact
that the algorithm does not depend on the fatty tissue.
Note that, for these special situations, as a small area
of the fatty tissue has been suppressed, the ratio of
dense area is slightly biased to higher values.
A different way of showing the robustness of our

approach is to compare the left and right mammo-
grams. From a medical point of view, this is justified
by the fact that both breasts of the same woman have
similar internal tissue.27 Note that we can perform
this analysis because the MIAS database is com-
posed by left and right mammograms of 161 women.
In Figure 10, we show the dense percentage plot

of the right mammograms versus the dense percent-
age of the left mammograms. We also include the
diagonal line to show the ideal case. According to
the figure, most of the mammograms are segmented
in a similar way. However, it is difficult to follow
the ideal case. This is due to the segmentation
algorithm and also to the internal tissue (although
being similar is not identical). In fact, some of the

discrepancies are due to the presence of different
tissue or abnormalities in one of the breast. In this
sense, the first row of Figure 11 shows a pair of left–
right mammograms of the same patient. Observe
that the right mammogram has a large white region
being a big mass. The second row of the figure
shows the result of segmenting each mammogram
using our approach. Note that the presence of the
mass biased the algorithm, which detected the mass
as a cluster of dense tissue. Obviously, the
comparison of left–right mammograms in these
cases does not follow the ideal case.

CONCLUSIONS

A statistical approach to model and segment the
mammograms according to their internal density

Fig 11. Segmentation results of a left and right mammogram
pair. The large mass in the right mammogram is incorrectly
segmented as being dense tissue.

Fig 10. Bilateral analysis: each dot marks the left and right
dense percentage of each mammogram pair.
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has been presented. The algorithm learns the
characteristics and the variability of the different
tissue, being able to correctly segment the breast into
fatty and dense regions. Moreover, two different
breast modelling strategies have also been compared.
The segmentation approach is quantitatively and
qualitatively evaluated using two different databases,
obtaining better results with the PCA strategy.
Furthermore, the obtained results show the feasibility
and robustness of our approach.
The final goal of our research is directed to the

use of fatty and dense information to recover the
3D internal structure of the breast by correlating
both tissue segmentations of CC and MLO views.

ACKNOWLEDGEMENTS

This work was supported by the Ministerio de Educación y
Ciencia of Spain under Grant TIN2007-60553, by the UdG
under Grant IdIBGi-UdG and by CIRIT and CUR of DIUiE of
Generalitat de Catalunya under Grant 2008SALUT00029.

REFERENCES

1. American Cancer Society: Breast Cancer: Facts and
Figures, 2003–04. Atlanta: ACS, 2003

2. Australian Institute of Health and Welfare & National
Breast Cancer Centre: Breast cancer in Australia: an overview.
Cancer series. Canberra: AIHW, 2006, p. 34

3. R2 ImageChecker. http://www.r2tech.com. Accessed 1
January 2007

4. iCAD Second Look. http://www.icadmed.com. Accessed
1 January 2007

5. Ho WT, Lam PWT: Clinical performance of computer-
assisted detection (CAD) system in detecting carcinoma in
breasts of different densities. Clin Radiol 58:133–136, 2003

6. Obenauer S, Sohns C, Werner C, Grabbe E: Impact of
breast density on computer-aided detection in full-field digital
mammography. J Digit Imaging 19(3):258–263, 2006

7. Brem RF, Hoffmeister JW, Rapelyea JA, Zisman G,
Mohtashemi K, Jindal G, DiSimio MP, Rogers SK: Impact of
breast density on computer-aided detection for breast cancer.
Am J Roentgenol 184(2):439–444, 2005

8. Wolfe JN: Risk for breast cancer development determined by
mammographic parenchymal pattern. Cancer 37:2486–2492, 1976

9. Freixenet J, Oliver A, Martí R, Lladó X, Pont J, Pérez E,
Denton ERE, Zwiggelaar R: Eigendetection of masses considering
false positive reduction and breast density information. Med Phys
35(5):1840–1853, 2008

10. Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE,
Miller AB, Lockwood GA, Tritchler DL, Yaffe MJ: Quantita-
tive classification of mammographic densities and breast cancer
risk: results from the Canadian national breast screening study.
J Natl Cancer Inst 87:670–675, 1995
11. Sivaramakrishna R, Obuchowski NA, Chilcote WA,

Powell KA: Automatic segmentation of mammographic densi-
ty. Acad Radiol 8(3):250–256, 2001
12. Ferrari RJ, Rangayyan RM, Borges RA, Frere AF:

Segmentation of the fibro-glandular disc in mammograms via
Gaussian mixture modelling. Med Biol Eng Comput 42:378–
387, 2004
13. Aylward SR, Hemminger BH, Pisano ED: Mixture

modelling for digital mammogram display and analysis. Int
Work Dig Mammography 305–312, 1998
14. Saha PK, Udupa JK, Conant EF, Chakraborty P,

Sullivan D: Breast tissue density quantification via digitized
mammograms. IEEE Trans Med Imag 20(8):792–803, 2001
15. Zwiggelaar R, Denton ERE: Optimal segmentation of

mammographic images. In Int Work Dig Mammography 751–
757, 2004
16. Petroudi S, Brady M: Breast density segmentation using

texture. Lect Not Comp Sc 4046:609–615, 2006
17. Suckling J, Parker J, Dance DR, Astley SM, Hutt I,

Boggis CRM, Ricketts I, Stamatakis E, Cerneaz N, Kok SL,
Taylor P, Betal D, Savage J: The Mammographic Image
Analysis Society digital mammogram database. Int Work Dig
Mammography 211–221, 1994
18. Martí R, Oliver A, Raba D, Freixenet J: Breast skin-line

segmentation using contour growing. In Lect Not Comp Sc
4478:564–571, 2007
19. Kwok SM, Chandrasekhar R, Attikiouzel Y, Rickard

MT: Automatic pectoral muscle segmentation on mediolateral
oblique view mammograms. IEEE Trans Med Imag 23
(9):1129–1140, 2004
20. Turk MA, Pentland AP: Eigenfaces for recognition. J

Cogn Neurosci 3(1):71–86, 1991
21. Belhumeur PN, Hespanha JP, Kriegman DJ: Eigenfaces

vs Fisherfaces: Recognition using class specific linear projec-
tion. IEEE Trans Pattern Anal Mach Intel 19(7):711–720, 1997
22. Dice LR: Measures of the amount of ecologic associa-

tion between species. Ecology 26:297–302, 1945
23. McGill R, Tukey JW, Larsen WA: Variation of boxplots.

Am Stat 32:12–16, 1978
24. Snoeren PR, Karssemeijer N: Gray-scale and geometric

registration of full-field digital and film-screen mammograms.
Med Image Anal 11(2):146–156, 2007
25. Pun T: Entropy thresholding: a new approach. Comput

Vis Graph Image Process 16:210–239, 1981
26. Ridler TW, Calvard S: Picture thresholding using an

iterative selection method. IEEE Trans Syst Man Cybern 8
(8):629–632, 1978
27. Kopans D: Breast Imaging, Philadelphia: Lippincott-

Raven, 1998

A STATISTICAL APPROACH FOR BREAST DENSITY SEGMENTATION 537

http://www.r2tech.com
http://www.icadmed.com

	A Statistical Approach for Breast Density Segmentation
	Abstract
	Introduction
	Materials and Methods
	Databases
	The MIAS Database
	The Trueta Database

	Initial Pre-processing Step
	Modelling the Tissue
	Karhunen-Loeve-Based Model (PCA)
	Linear-Discriminant-Based Model (LDA)

	Segmenting the Breast

	Results
	Quantitative Results
	Qualitative Results
	MIAS Qualitative Results
	Trueta Qualitative Results


	Discussions
	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


