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Diagnostic radiology requires accurate interpretation of
complex signals in medical images. Content-based
image retrieval (CBIR) techniques could be valuable to
radiologists in assessing medical images by identifying
similar images in large archives that could assist with
decision support. Many advances have occurred in
CBIR, and a variety of systems have appeared in
nonmedical domains; however, permeation of these
methods into radiology has been limited. Our goal in
this review is to survey CBIR methods and systems from
the perspective of application to radiology and to
identify approaches developed in nonmedical applica-
tions that could be translated to radiology. Radiology
images pose specific challenges compared with images
in the consumer domain; they contain varied, rich, and
often subtle features that need to be recognized in
assessing image similarity. Radiology images also pro-
vide rich opportunities for CBIR: rich metadata about
image semantics are provided by radiologists, and this
information is not yet being used to its fullest advantage
in CBIR systems. By integrating pixel-based and meta-
data-based image feature analysis, substantial advances
of CBIR in medicine could ensue, with CBIR systems
becoming an important tool in radiology practice.
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INTRODUCTION

D iagnostic radiologists are struggling to main-
tain high interpretation accuracy while max-

imizing efficiency in the face of increasing exam
volumes and numbers of images per study.1 A
promising approach to manage this image “explo-
sion” is to integrate computer-based assistance into
the image interpretation process. While substantial
progress has been made in computer-aided diag-
nosis/detection (CAD) for lesions such as breast
masses, lung nodules, and colonic polyps; current

CAD methods target very specific image features,
limiting their broader application to many other
scenarios where assistance with image interpreta-
tion could be beneficial.
Medical image interpretation consists of three

key tasks: (1) perception of image findings, (2)
interpretation of those findings to render a diag-
nosis or differential diagnosis, and (3) recommen-
dations for clinical management (biopsy, follow
up, etc.) or further imaging if a firm diagnosis has
not been established. The potential for assisted
interpretation and decision making is motivated
not only by time constraints on readers, but also by
the recognition of variations between readers based
on perceptual errors, lack of training, or fatigue.
Significant inter-observer variation has been docu-
mented in numerous studies.2 For example, in
mammographic interpretation, there is variation in
sensitivity, specificity, and area under the receiver
operating characteristic curve among radiologists.3

This variation results partly from the complexity of
processing the vast amounts of knowledge needed
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to interpret imaging findings. Much of radiological
practice is currently not based on quantitative
image analysis, but on “heuristics” to guide
physicians through rules-of-thumb.4 Such heuris-
tics can fail in a variety of circumstances where
combinations of features related to diagnosis do
not fit expected patterns and practitioners do not
recognize the impact of such circumstances. In
addition, the heuristics and their use are subject to
inter- and intra-reader variability.
While CAD systems are primarily designed to

enhance the perceptual component of image
interpretation and have been developed for several
domains of radiology,5 decision support systems
are much broader; they do not focus on detection,
but rather on the reasoning process that radiolog-
ists go through after detecting an abnormality,
often called a “finding.” Decision support integra-
tes the imaging finding(s) with a formal model (or
knowledge base) representing disease processes,
ideally aiding arrival at an accurate diagnosis.6,7

Radiologists always utilize broader patient-specific
or demographic knowledge, such as clinical
history or results of other tests, in their decision-
making processes; as such, it is expected that
decision support systems would incorporate these
data as well.
Another emerging technique that may assist

radiology interpretation is content-based image
retrieval (CBIR). In its broadest sense, CBIR helps
users find similar image content in a variety of
image and multimedia applications. CBIR appli-
cations in multimedia can save the user’s time
considerably in contrast to tedious, unstructured
browsing. The role for CBIR in medical applica-
tions is potentially very powerful: in addition to
enabling similarity-based indexing, this framework
could provide computer-aided diagnostic support
based on image content as well as on other
metadata associated with medical images. How-
ever, despite its success outside medicine, CBIR
has had little impact on radiology to date. Current
work in image processing, medical informatics,
and information retrieval domains provides build-
ing blocks that can markedly increase the rele-
vance of CBIR to radiology practice in the future.
At present there is a substantial gap between

CBIR, and its focus on raw image information, and
decision support systems, which typically enter the
workflow beyond the point of image analysis
itself. This gap represents what we believe is a

major opportunity to develop decision support
systems that integrate image features exploited in
CBIR systems. With such integration, CBIR may
be a starting point for finding similar images based
on pixel analysis, but the process would be
augmented by inclusion of image and nonimage
metadata as well as knowledge models, broadening
the system from “image based search” to “patient”
or “case-based” reasoning.8

This article reviews the status of CBIR in
radiology and highlights some challenges and
opportunities to be addressed to achieve significant
scientific and clinical impact in the years to come.
In “Current CBIR Technology” section, we pro-
vide an overview of the CBIR technology along
with a general description of its key components.
In “State-of-the-Art Medical CBIR Systems” sec-
tion, we present an analysis of existing medical
CBIR systems. The analysis has been carried out
along several axes such as the way visual features
are employed for content description, the methods
to measure/quantify similarity between medical
images, the use of statistical classifiers in a user-
interactive context, and medical image segmenta-
tion. In “Challenges and Opportunities for CBIR in
Radiology” section, we first point out the chal-
lenges faced by the generic CBIR technology in
the radiology domain, and then we describe some
of the opportunities to advance CBIR in context.
In “Strategies for Moving Forward in the Next
Decade” section, we propose a strategic vision to
make CBIR operationally useful in radiology in
the near future. “Conclusions” section presents our
conclusions.

CURRENT CBIR TECHNOLOGY

Content-based image retrieval has been a vigo-
rous area of research for at least the last two
decades. The abundance of publications within this
period reflects diversity among the proposed
solutions and the application domains (see the
extensive surveys in 9–11). CBIR has been most
successful in nonmedical domains, e.g., the QBIC
system employed in the Russian Hermitage
Museum (http://www.hermitagemuseum.org/fcgi-
bin/db2www/qbicSearch.mac/qbic?selLang=English),
the ALIPR (http://alipr.com/) system enabling auto-
matic photo tagging and visual search on the web, and
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the RIYA (http://www.riya.com/; http://www.like.
com/) system for visual shopping.
A generic CBIR system has two main compo-

nents. The first component represents the visual
information contained in image pixels in the form
of image features/descriptors and aims at bridging
the gap between the visual content and its
numerical representation. These representations
are designed to encode color and texture properties
of the image, the spatial layout of objects, and
various geometric shape characteristics of percep-
tually coherent structures within the image. The
second component provides for assessment of
similarities between image features based on
mathematical analyses, which compare descriptors
across different images. Ideally, the computed
similarity measures should at least partly parallel
the similarity between images when judged by the
human visual system alone. In a typical CBIR
system, database images are returned and dis-
played in decreasing order of their computed
similarity to a query image provided by the user.
Thus basically whatever the application domain is,
a CBIR system must provide a means for (a)
describing and recording the image content based on
pixel/voxel information (image features/descriptors)
and (b) assessing the similarity between the query
image and the images in the database.

Image Features/Descriptors

Image features/descriptors are derived from
visual cues contained in an image. They are
represented as alpha-numeric data in different
formats such as vectors or graphs, which stand as
compact surrogates for the visual content. One can
distinguish two types of visual features. Photo-
metric features exploit color and texture cues and
they are derived directly from raw pixel intensities.
Geometric features, on the other hand, make use of
shape-based cues. In the following, we describe
these cues in detail. Table 1 provides a summary of
visual features used in the medical domain.

Color The use of color cues in image description
dates back to one of the earliest CBIR proposals.12

A global characterization of the image can be
obtained by binning pixel color components (in an
appropriate color space, e.g., hue–saturation–
illumination) into a histogram 13–16 or by dividing
the image into subblocks, each of which is then

attributed with the average color component vector
in that block.17–19 While color is one of the visual
cues often used for content description,10,11 most
medical images are grayscale. True color-based
characterization is applicable only where color
photographs are used for diagnosis, such as in
ophthalmology, pathology, and dermatology, or
when color is used to scale flow velocities or
intensity scales such as in nuclear cardiology. Thus
for the majority of medical images, color features
will not be useful in image retrieval.

Texture Texture features encode spatial organization
of pixel values of an image region. The common
practice to obtain texture-based descriptors is to
invoke standard transform domain analysis tools
such as Fourier transform, wavelets, Gabor, or
Stockwell filters on local image blocks.14,15,20–22 In
addition, one can also derive the so-called Haralick’s
texture features such as energy, entropy, coarseness,
homogeneity, contrast, etc., from a local image
neighborhood16,20,21,23,24 or utilize linear system
approaches such as simultaneous autoregressive
models.25 In the medical domain, texture-based
descriptors become particularly important as they
can potentially reflect the fine details contained within
an image structure. For example, cysts and solid
nodules generally have uniform internal density and
signal intensity characteristics, while more complex
lesions and infiltrative disorders have heterogeneous
characteristics. Some texture features may be below
the threshold for humans to appreciate, and computers
may be able to extract important texture and pattern
information that is not readily visible.

Shape We use the term shape to refer to the
information that can be deduced directly from
images and that cannot be represented by color or
texture; as such, shape defines a complementary
space to color and texture. A powerful way of
representing shape is through perceptually grouped
geometric cues such as edges, contours, joints,
polylines, and polygonal regions extracted from an
image. Such a grouping can serve as a spatial layout
or as a rough sketch by additional postprocessing. It
has been successfully used in nonmedical domain by
the CIRES (http://amazon.ece.utexas.edu/∼qasim/)
system,26 which is based upon a combination of
higher-level and lower-level computer vision
principles. While the term lower-level refers to
basic image features (color and/or texture, see
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above), higher-level analysis benefits from percep-
tual organization, inference and grouping principles
to extract information describing the structural
content of an image. In cases when the image
contains object(s) that can be clearly separated from
the background or surroundings, these geometric
cues can be used to extract powerful complete
shape descriptors. This approach has empirically
proven to be very successful in applications such as
visual shopping http://www.riya.com/; http://www.
like.com/, logo and trademark retrieval,27 hand-
written digit recognition,27 and retrieval of three-
dimensional computer models.28 Single object-based
shape description has also been successfully
employed in several medical CAD applications
such as in CT colonography29,30 and lung nodule
detection.31

A shape-based representation of the image content
in the form of point sets, contours, curves, regions, or
surfaces should be available for the computation of
shape-based features. Such representations are not
usually available in the data directly. Accordingly, as
a first step of geometric feature computation, a
suitable shape representation should be extracted
from the pixel intensity information by region-of-

interest detection, segmentation, and grouping. In the
medical context, the shape information is one of the
strongest factors in detecting a certain disease/lesion
or in understanding its evolution. Thus shape-based
descriptors are likely to be useful to fulfill the fine
detail requirement of medical image retrieval. How-
ever, most of the current medical CBIR systems do
not exploit the full potential of the shape information
as they either use indirect correlates of the shape cue
such as texture measurements or employ very global
and simple shape description schemes which are
incapable of capturing the required classification
granularity. The segmentation problem can be seen
as the main obstacle toward the use of more elaborate
methods for shape analysis. Objects of interests such
as anatomical structures or lesions are embedded in
complex and arbitrary backgrounds, in which case
robust and automatic segmentation presents a great
challenge.
In addition to the preceding quantitative visual

features of the image content, there are semantic
image features that can be derived from a human
expert’s observations—the radiologist viewing
images. Radiologists describe a variety of infor-
mation in images through annotations that provide

Table 1. A Summary of Image Features/Descriptors Used in the Medical Domain

Category Representations/cues Examples

Photometric Grayscale and color Histograms13–16

Moments21,24

Block-based17–19

Texture Texture co-occurrence16,20,21,23,24

Fourier power spectrum21

Gabor features15,20

Wavelet-based14

Haralick’s statistical features32

Tamura features18

Multiresolution autoregressive model13

Geometric Point sets Shape spaces33

Contours/curves Polygon approximation34

Edge histograms16,24,32

Fourier-based13,16,34

Curvature scale space35

Surfaces Level sets/distance transforms20,36

Gaussian random fields37

Regions and parts Statistical anatomical parts model38

Wavelet-based region descriptors39

Spatial distributions of ROIs40

Other Global shape (size, eccentricity, concavity, etc.)16,17,32,41,42

Morphological20,42,43

Location and spatial relationships17,20,41,42
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essential semantics describing image content. In
addition to these, images can be associated with
related information about the individual from
which the image was obtained, such as laboratory
reports, clinical diagnosis, demographic informa-
tion, etc. These image and nonimage data,
acquired automatically or through manual annota-
tions, are very informative to radiologists in
providing their interpretations and thus could
provide useful information for CBIR systems as
well.

Similarity Measures

Image similarity measures generally assess a
distance between (sets of) image features. Intui-
tively, shorter distances correspond to higher
similarity. The choice of metric depends on the
type of image features/descriptors as well as on
their representation.
The simplest feature representation is a high-

dimensional vector space. Metrics defined on
vector spaces (e.g., the Euclidean distance) are
common similarity measures. Many CBIR systems
employ such vector distances due to their compu-
tational simplicity. Despite their popularity, dis-
tance definitions require the features to be
continuous within a range for the computed
distances to correspond to perceptually coherent
similarities. This requirement is equivalent to
assuming that a linear combination of two feature
vectors is a valid feature vector corresponding to a
valid shape (and/or a semantically similar image),
which cannot be generalized. Instead, the metric
used should define a convex space of semantically
similar images. This calls for the concept of
manifolds and manifold-learning techniques.44–46

Furthermore, in cases where there are possible
mismatches between corresponding dimensions of
the above-mentioned feature vectors, the standard
vector space metrics yield erroneous results. One
such case is when the image content is described
by multidimensional feature histograms, which are
obtained by accumulating the count of feature
vectors falling into a fixed number of bins of
predefined size, this representation can be rendered
more expressive by allowing the bins to vary in
number and size. When comparing two such
histograms, however, usual vector distances cannot
capture true similarity since the bins are of differ-
ent sizes and they are not aligned. The Earth

Mover’s Distance (EMD)47 has been proposed as a
solution. EMD takes the variable sizes of the bins
into account and remedying the correspondence
problem by computing the optimal alignment
between the two multidimensional histograms.
Alternative to vector-based description, the

graph-based representation of image features is a
powerful technique that is capable of representing
not only local color/texture/shape features, but also
their interrelations such as their relative spatial
distribution within the region-of-interest. They
require a generic class of special computational
approaches for similarity assessment, collectively
referred to as graph matching.48

In some medical applications, subtle geometrical
differences between imaged structures may be of
diagnostic importance to experts. In such cases, a
promising approach is to define similarity through
the notion of elastic deformations required to
transform one shape into another.49,50 The energy
required to transform one shape into another is
assumed to be inversely proportional to similarity.
Similarity can also be measured through the use

of statistical classifiers that categorize new in-
stances using high-level information extracted
from a training set of instances with known labels.
This constitutes a promising attempt to close the
so-called semantic gap between the visual descrip-
tion of an image and its meaning.11 The semantics
of an image, defined here as its possible interpre-
tations, is task-dependent. It varies based on what
is sought. Consequently, different classifiers need
to be trained for different tasks, even on the same
dataset. Assuming that the images in the database
are categorized, one can employ this measure of
attachment as a pseudo-similarity measure between
the test image and all those in the database. The
limitation is that a fixed set of labels is required.
Relevance feedback techniques that have been
widely investigated in nonmedical domains51–54

address this limitation by more flexible user-
centric labeling schemes. In relevance feedback,
during the search session, the user labels a few
database items that he/she thinks relevant or
irrelevant to his/her query. These labeled items,
when employed with multiple-instance learning-
based approaches, can serve as high-level infor-
mation about what the user has in mind in that
particular search session. More specifically, the
query model can be iteratively updated so that the
similarity measure can be refined implicitly as in
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the Accio! system52 or the retrieval machine can
directly optimize the parameters of the similarity
model via statistical learning as in.51,54 Either way,
the requirement of a fixed set of labels is removed
since the labels are user-specific and session-
dependent. While tested only in a few medical
retrieval systems (see “Relevance Feedback” sec-
tion), relevance feedback can potentially offer
several advantages in the medical domain.

STATE-OF-THE-ART MEDICAL CBIR SYSTEMS

Table 2 presents a summary of a large set of
current systems. The table is organized in five
columns addressing the most important four
components of a medical CBIR system and the
imaging modality the system is designed for. The
modality defines the type of information that can
be extracted from medical images. This limits
usable image representations and features. Con-
sequently, the modality targeted by a medical
CBIR system is important. Few medical CBIR
systems support multimodality.15,55,56 We have
included some selected medical image classifica-
tion systems as their components are relevant to
CBIR, which can alternatively be viewed as a
classification task with respect to the query image.

Image Descriptors

We grouped image descriptors into three opera-
tional categories: general, mixed, and specialized
descriptors.
General descriptors, such as color, texture,

pixel/gradient histograms, etc., are commonly used
in all CBIR systems, irrespective of the application
domain. They form generic and rather robust
feature sets. Since no a priori domain-specific
knowledge is exploited in their computation, they
are primarily used with vector distance-based
similarity analyses14,40,55,57 in high-dimensional
feature vector spaces or with statistical classi-
fiers.21,24,32,40,55,57,58 However, in a few cases,
these general descriptors have been used with
elastic deformation-based59 and graph matching-
based55 similarity analyses. In the former case, a
descriptor is continuously deformed into another
so that the deformation energy serves as a
similarity measure between the two descriptors.
In the latter case, general descriptors describe

segmented image regions that are represented as
attributed nodes of a graph.
Mixed descriptors not only use the general

descriptors but also the annotations.15,17,56,60 Man-
ual or automatic, the type of annotations may vary
from textual descriptions of image to diagnoses.
Annotations are very powerful descriptors in fill-
ing the semantic gap in CBIR systems. For
instance in 56, the system (http://www.dim.hcuge.
ch/medgift/) aims at bringing the standard infor-
mation technology tools and infrastructures within
the reach of medical practitioners. The strategy
adopted in its retrieval implementation relies on
the GNU GIFT tool (http://www.gnu.org/software/
gift/), which itself borrows ideas from the text
retrieval domain. Accordingly, an image is con-
sidered as a document containing several visual
words. Visual features derived from local and
global color/texture cues are mapped to these
keywords in order to describe the image in terms
of a set of words. As such, the system relies on an
annotation tool. With such a text-based descrip-
tion, the image retrieval problem turns into one of
standard text-based information retrieval. In 15, the
system adopts a content description approach
similar to the one considered above. The descrip-
tion scheme relies upon a statistical learning
framework, which extracts vocabularies of mean-
ingful medical terms (VisMed terms) associated
with the visual appearance of image samples.
These terms are segmentation-free image regions
described by color and texture features that are
meaningful to medical practitioners and that can be
learned statistically using a training set of man-
ually cropped image regions. The learned VisMed
terms are used to span a new indexing space. A
medical image is indexed in terms of a compact
spatial distribution (histogram), where each histo-
gram bin corresponds to a VisMed term from the
learned vocabulary, and thus has a semantic
interpretation.
Specialized descriptors exploit the interrelations

between feature sets based on domain-specific
knowledge. The information that can be repre-
sented through the use of these interrelations is
complementary to the other descriptors.16,36,43,61

For example in 16, the system (http://cobweb.ecn.
purdue.edu/∼cbirdev/WEB_ASSERT/assert.html)
addresses the retrieval of pathology bearing
regions (PBRs) in lung CT images by a human-
in-the-loop approach. Starting from the well-
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Table 2. Main Characteristics of the Medical CBIRa Systems

Ref. Descriptors Similarity measures Segmentation
Relevance
feedback Notes on modalities and datasets

24 General Classifier-based – Yes ● 5,000 images from daily routine (a subset of imageCLEFmed)
● 20 categories (different organs, modalities, views)

21a General Classifier-based Manual No ● 147 ROIs extracted from CT liver images
● 76 control vs. 71 pathological

32 General Classifier-based Manual No ● 57 ROIs extracted from mammograms
● 37 benign vs. 20 malignant

16 Specialized Classifier-based Interactive No ● 302 lung CT images
● 8 lung disease categories

15 Mixed Classifier-based – No ● 8,725 images (CasImageb database)
● Medical retrieval task in imageCLEF 2004
● 26 query topics

34 Specialized Procrustes Manual No ● NHANES II spine X-ray images
● 250 vertebra boundary profiles
● 10 categories of cervical and lumbar vertebra shapes

17a Mixed Classifier-based Manual No ● 150 endoscopy images
● Several classes from endoscopic findings/diagnoses

36a Specialized Classifier-based – No ● Brain MR images
● Hippocampus in schizophrenia (15 control vs. 15 patients)
● Corpus callosum in affective disorder (20 controls vs. 18 patients)

33 Specialized Procrustes Manual No ● NHANES II spine X-ray images
● 2,812 vertebra boundary profiles
● No classification analysis

58 General Classifier-based Manual Yes ● 76 Mammograms containing clustered microcalcifications
● Ground truth similarity obtained from human observer studies

59a General Elastic deformation – No ● 90 cardiac ultrasound images
● View classification

61 Specialized Elastic deformation Interactive No ● 100 intravascular ultrasound images containing calcium plaque structures
● Similarity-based retrieval used for improving registration

14 General Vector distance – No ● Abdominal ultrasound images
57 General Vector distance Interactive No ● 70 brain MR images

Classifier-based ● Hippocampus localization and identification
● 10 epileptic patients

66 General Classifier Automated No ● Image categorization and retrieval on 1500 radiological images
(IRMA project X-ray library).

● 17 radiological X-ray classes
40a General Vector distance Manual No ● fMRI activation contrast maps used as correlates of Alzheimer’s

disease
Classifier-based ● 9 controls vs. 9 patients

60 Mixed Vector distance Automatic No ● 300 VOIs extracted from 13 dynamic PET brain scans
Textual ● 2 tumor cases, 3 normal, 8 other neurological cases

43 Specialized Graph matching Manual No ● 124 MR images
● No classification analysis
● Target application: indexing and fast search

55 General Vector distance Automatic Yes ● 1,617 radiographs from daily routine

Graph matching
● Classification based on image modality, body orientation, anatomic

region, biological system
Classifier-based

56 Mixed Vector distance – No ● ImageCLEF 2005 medical retrieval tasks
Textual

67 General Classifier – No ● Categorization: database of 12,000 radiographs (ImageClef 2007);
11,000 training, 1,000 testing; 116 different categories

● Retrieval: database of 66,000 images, 30 query topics
(ImageClef 2008). Return ranked set of 1,000 images.

aThe citations are classification systems with components relevant to CBIR. An exhaustive list of medical image classification is beyond
the scope of this survey
bwww.casimage.com
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founded assumption that the extraction of PBRs by
automatic image segmentation techniques is diffi-
cult, if not impossible, the system lets the user
delineate PBRs in lung images. The manually
extracted regions are then characterized by their
grayscale, texture, and shape attributes, which are
organized based on their spatial location with
respect to certain anatomical landmarks. The
system proposed in43 describes the images by the
so-called attributed relational graphs (ARGs). In an
ARG, the image regions are segregated by graph
nodes and their spatial relationships are repre-
sented by edges between these nodes. As in 16, the
regions of interest are extracted manually but they
are not necessarily pathology bearing. Both nodes
and edges are labeled by attributes corresponding to
the properties of these regions and their relationships,
respectively. The attributes can be derived from any
type of the visual cues described above, e.g., texture
properties, global geometric features of regions (e.g.,
size, roundness), or features specified in some
transform domain (e.g., Fourier coefficients of the
extracted region boundary). Typical attributes for the
spatial relationships (the edges) can be the distance
between two connected regions, their relative ori-
entation, etc. Specialized descriptors are primarily
employed with statistical classifiers, however in few
cases these descriptors are also used with elastic
deformation61 and graph matching-based43 similar-
ity analyses.

Similarity Measures

One of the biggest challenges in any CBIR
system is how to define an appropriate measure
assessing the similarity to be used for database
indexing and/or similarity-based ranking of the
retrieved images with respect to the query. A
common and rather straightforward method is to
employ vector distances in a high-dimensional
normed vector space, commonly a Euclidean
space, in which each image is represented with a
point corresponding to its image descriptor/feature
vector.14,40,55–57,60,62

Procrustes methods are used when descriptors
consist of landmark points, which usually delineate
a shape boundary.33,34 The shape of object is
considered as a member of an equivalence class
formed by removing the effects of translation,
rotation, and isotropic scaling, collectively
denominated as similarity transformations. Thus,

the similarity between two shapes is defined up to
a rigid body transformation (translation + rotation)
and an isotropic scaling. It is possible to extend
this notion of similarity to allow nonrigid defor-
mations of the shapes such as via elastic matching
methods as in 59,61. In fact, approaches based on
continuous (and even diffeomorphic) mappings are
becoming increasingly popular in the medical
domain.49,63 Yet, elastic matching methods are
more suitable for cases of abnormalities of overall
size and/or shape of an organ, which limits their
applicability to some extent.
Graph matching, as pointed out earlier, refers to

a special class of similarity measurement that is
only applicable when the image content is repre-
sented by a graph.43,55 A graph is a natural way of
representing features and their interrelations. For
instance in 55, the description (indexing) step uses
the selected local features following the Blobworld
approach,64 which outputs a graph-based descrip-
tor of the image. Each node of the graph represents
an image region and the corresponding local
features of that region are used as the attributes
of the node. The similarity between the query and
database images is computed by an attributed
graph-matching scheme.48 Basically, a cost func-
tion is first evaluated between the graph nodes in
terms of the distance between the attributes of the
node. The minimum total cost over possible
matchings, defined as the sum of the costs between
matched nodes, serves as a similarity measure.
Combinatorial algorithms and/or continuous relax-
ation schemes can then be used to find a pairwise
matching of the nodes by (approximately) mini-
mizing the total cost.
In contrast to the above methods that directly

measure the similarity in terms of image informa-
tion alone, classifier-based similarity measures use
the classification of a query image with respect to a
fixed set of predetermined labels to assess sim-
ilarity.15–17,21,24,32,36,40,55,57,58 Statistical classifiers
need to be pretrained. The membership of the
query image to each class is usually used as a
feature set representing the image content. How-
ever, classifiers can also be used as a preprocess-
ing step to narrow the search space in CBIR
systems. For example, in 55, the classifier serves as
an automatic medical image annotation tool on its
own. It can thus be used to retrieve similar images
on a coarse level, e.g., a lung CT would retrieve
other lung CT images in the database.
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Textual similarity measures refer to the common
text-based query/retrieval scheme. They can be
applied to CBIR through the use of manual/
automatic annotations represented as words.56,60

The burden of manual annotations may be an
obstacle in their wide-spread use. Accordingly,
automatically obtaining medical annotations would
thus be of significant importance. In fact, the
medical image annotation track in ImageCLEFmed
(http://www.imageclef.org/; http://ir.ohsu.edu/
image/), organized as part of the Cross Language
Evaluation Forum (CLEF; http://www.clef-campaign.
org/) since 2004, serves as a benchmarking
platform to streamline the research on medical
image annotation.

Segmentation

Segmentation is a key preprocessing step in
CBIR systems that describe the image content
through regions of interest. The goal is to identify
the semantically meaningful regions/objects within
an image. Several methods have employed manual
segmentation to rule out retrieval errors due to
wrong segmentation.17,21,32–34,40,43,58,65 However,
despite its advantages, manual segmentation is a
tedious task limiting the usability of CBIR sys-
tems. This has lead to the development of semi-
automatic16,57,61 and automatic55,60 segmentation
algorithms to extract the regions of interest. In
semiautomatic methods, an initial segmentation
usually in the form of boundary delineation is
provided by the user. The segmentation is iter-
atively refined and the user can intervene between
iterations by correcting the boundaries if they tend
to move away from the desired solution. Yet, some
systems preferred to design segmentation-free
image descriptors to avoid the complications due
to imperfect segmentation.14,15,24,36,38,56,59

Relevance Feedback

A promising technique to fill the semantic gap
in the medical CBIR systems is to adopt an expert-
in-the-loop approach. This refers to integrating the
physician’s high-level expert knowledge into the
retrieval process by acquiring his/her relevance
judgments regarding a set of initial retrieval
results.24,55,58 A relevance judgment is task-
dependent. For instance, an image can be relevant
to a certain query in terms of its modality, or the

anatomical region that it belongs to, or the disease
that it depicts, etc. These judgments, provided in
the form of discrete labels or ordinal/continuous
ratings, are used in a statistical learning algorithm
to obtain an iteratively refined similarity measure,
which is expected, at the end of the search, to
become more suitable for a particular search task,
e.g., finding all images of a particular organ or
retrieving all cases related to a certain disease.

Performance

A comparative assessment of the performances
of the reviewed medical CBIR systems is not
possible as not only their application domains
(imaging modalities that the systems are built for)
differ, but also there is a lack of common database
to evaluate different systems. The ImageCLEFmed,
as mentioned earlier, is one of the few (if not the
single) platform to evaluate and compare different
systems. The IRMA,55 the medGIFT,56 and the
VisMed15 projects are participants of Image-
CLEFmed. The evaluation protocols are largely
influenced by the tasks addressed by the IRMA
system that mainly targets modality and body part
similarity-based retrieval (http://www.imageclef.
org/; http://ir.ohsu.edu/image/; http://www.clef-
campaign.org/). Objective evaluation is even more
challenging for the retrieval systems based on
patient/case similarity as there is currently no
consensus on how to rate the case similarity even
manually. Consequently, task specific evaluation
platforms are required rather than a generic
approach.

CHALLENGES AND OPPORTUNITIES FOR CBIR
IN RADIOLOGY

In a typical CBIR system (e.g., in multimedia),
subtle differences between images are considered
as irrelevant for matching, as such, they are often
ignored. On the contrary, in medical images such
subtle differences can be highly relevant for diag-
nosis. Thus one of the challenges differentiating
radiology CBIR from general purpose multimedia
applications is the granularity of classification; this
granularity is closely related to the level of invari-
ance that the CBIR system should guarantee.
Consequently, CBIR systems in radiology should,
at minimum, capture fine details of the image
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content, particularly because they are related to
diagnostic features used by humans in unassisted
diagnosis. In addition, computer-derived features
that may not be easily discerned by humans may
also be useful.68 The sheer breadth of imaging
findings is a major challenge, as “diseases” are
depicted differently by different modalities, they
affect a number of organs and tissues, and the
findings themselves are highly varied. For example,
some tumors are discrete masses while some are
poorly defined and infiltrative. Entire organs may be
abnormal due to diffuse disease, such as in cirrhosis
or leukemia; and some clinically important features
only manifest as abnormalities of overall size or
shape of an organ or organ part (e.g., the hippo-
campus in epilepsy), without changing aspects of
the image. For human image interpretation,
several image features stand out as likely to be
the most relevant, though the relative importance
of features will vary across modality and disease
targets. Some of the key features include lesion
shape, boundaries, density or intensity, presence
or absence of enhancement with intravenous
contrast material, texture, and whether a lesion
is solitary or multiple.
The rich and varied information content in

medical images and their implicit knowledge about
anatomic structures is not leveraged in image-only
approaches to CBIR. Many image search methods
in fields other than medicine use index terms
(metadata) associated with the images, rather than
the image data alone.69,70 The latter type of image
search is based on semantics (i.e., meaning) as
described by annotations. The class of metadata
used in retrieval can be extended to include non-
image data such as laboratory reports, physiological
measurements, etc., which are used routinely by
radiologists in providing their interpretations, but are
widely ignored in current CBIR systems. This
domain-specific metadata largely depends on the
radiologists’ observations. The current approach to
representing these observations/interpretations is
unstructured free text reports. Searches based on
these reports are limited because there is no enforce-
ment of controlled terminology, and the linkages
between image content and report text are loose or
nonexistent. Consequently, efficient and effective
annotation tools are needed to generate such image
metadata. Nonimage clinical data are stored in
electronic medical record (EMR) systems. Such data,
when linked to images, can be used to associate

PACS data with corresponding EMR, hence the full
potential of compound image and metadata
approaches could be exploited. In fact, given the
complexity of medical images themselves and the
richness of the associated metadata, a combined
approach is likely to be advantageous. Including both
semantic and pixel content would help identify not
only similar images, structures, or lesions, but also
find these within similar patients and clinical
situations.
Several attempts have been made to establish

the connection between the visual content and
domain-specific semantic content in medical
images. One notable example is the Essence
framework,71 serving as a knowledge repository
and exchange platform for medical image databases.
In Essence, visual abnormalities and pathologies
are extracted and mapped to physician-defined
semantic terms using a shared ontology based on
the common knowledge from expert radiologists
and information from medical references. The
system is also capable of refining the shared
ontology by adapting the assignment of semantic
terms to image features based on individuals’
preferences. Closely related examples include the
retrieval strategy adopted in the medGIFT proj-
ect,56 employing purely text-based schemes for
image retrieval, and the VisMed approach,15

which extracts vocabularies of meaningful medical
terms associated with visual appearance from
image samples (see “Challenges and Opportunities
for CBIR in Radiology” section), thus providing a
mapping from visual feature space to semantic
terms. Controlled terminologies such as RadLex72

have recently been developed, and work is under-
way to create tools to enable semantic annotation
of images using ontologies.73 The emergence of
these technologies provides an opportunity to
enhance CBIR systems with richer descriptions
of images. A system that attempts at combining
nonimage clinical data and image data in a real
patient-analysis scenario is the Advanced Ana-
lytics for Information Management (AALIM)
system.74 AALIM is a novel multimodal decision
support system that seamlessly extracts, analyzes,
and correlates information from patient’s EMRs
for purposes of decision support. Since health
records today have become multimodal, including
images, video, text, and charts, AALIM analyzes
multiple modalities to identify similar patient
records. Current work in AALIM has focused on
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the domain of cardiology. Sophisticated feature
extraction and search techniques have been devel-
oped to extract structured data from a database
(demographics, diagnosis codes, vitals, medications),
as well as information from free text (cardiology
reports), graphical data (EKG waveforms), and
imaging studies (ultrasound videos).74–77 Similar
patients are then found based on fusion of information
across the multimodal sources. Cohorts of patients
with the same condition are extracted from large
patient archives, matched on demographics and
comorbidities.
We believe that a combination of image-based

and metadata-based retrieval will perform much
better than either independently, and eventually
can help overcome many of the obstacles prevent-
ing CBIR from being clinically useful. This is
much easier said than done. The image content
itself has been extensively studied and ultimately
contains a fixed amount of information. Basic
metadata is easily linked to the images from
clinical information or the DICOM header, such
as imaging technique, patient age, weight, and
gender. Moving further, there is an enormous
amount of (potentially) relevant metadata that can
be used to augment the image content itself. This
may include structured image descriptors provided
by radiologists, laboratory data, pathology, genetic
profile, detailed clinical history, family history,
and physical exam findings. Such a multidimen-
sional database extends the concept of “image”
retrieval to a much broader “case” retrieval, wherein
each patient along with their images and associated
metadata represents a building block of the database.
If each image-based and metadata approaches

are challenging enough in isolation, an integrated
system may seem intractable, even grandiose.
Content representation becomes complex in deal-
ing with image data itself, mathematical represen-
tations of the data, and semantic bridges to visual
cues. Nonimage metadata may be text based,
alpha-numeric (e.g., lab data), or more complex
and multidimensional itself (e.g., pathology results,
genetic profiles). Inevitably, the (content) represen-
tation in this vast case space has to be heterogeneous,
yet represented faithfully in a database.
Beyond data collection and storage, a case-

based system increases markedly the complexity of
making similarity measurements between cases.
Here, the major challenge is to combine different
types of information in a single and continuous

case similarity metric. A useful metric should (a) be
continuous as no two cases are the same, thus the
similarity measurement cannot be viewed as a
classification task, (b) be able to handle the signifi-
cant differences between types of information, such
as scale differences between alpha-numeric features
and continuous vs. discrete (e.g. class labels)
features, (c) be able to deal with missing data which
is expected to be a frequently seen problem due to the
high dimensionality of the case space, and (d) should
define a convex case space (i.e., case space should be
defined as a manifold within the multidimensional
feature space).

STRATEGIES FOR MOVING FORWARD
IN THE NEXT DECADE

CBIR in general has advanced considerably on
the heels of the dramatic proliferation of digital
media, search technology, and the Internet. Much
of what has been learned for nonmedical applica-
tions can be ported to the medical domain. Medical
images contain varied, rich, and often subtle
features that are important clinically and that
separate this domain from multimedia applications.
We believe that with coordinated efforts and a
long-range view, current and future technology
will fully enable a system integrating pixel- and
metadata-based retrieval of similar images which
can then be leveraged for diagnostic decision
support. With the appropriate selection of clini-
cally relevant disorders and engagement of front
line radiologist users, significant advances in
medicine and health can be achieved in the next
decades. Progress towards clinically useful CBIR
in radiology will require a broad-based and multi-
disciplinary approach. We propose the following
guiding principles as a framework for future work:

■ Focus on clinical importance. The disorders
targeted should be those with a significant impact
on human health, such as oncology, wherein
improvements in imaging diagnosis and monitor-
ing would be expected to improve treatment
outcomes. In that sense, early detection of a
disease is a real priority. Furthermore, disorders
should be common enough that centers can collect
large amounts of data in a reasonable time frame.
■ Focus on areas where current imaging
methods are imperfect. While imaging technol-
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ogy itself will continue to improve, areas in
which imaging results are inaccurate or ambig-
uous, such as early detection of hepatocellular
carcinoma, should be of high priority.
■ Create tools for data collection. Fortunately,
computer hardware and storage are no longer
barriers to creation of large repositories of data.
However, data must be entered systematically and
efficiently to achieve collections with millions of
images. Automation of segmentation (if needed)
or interactive tools requiring minimal user input
will be critical. Taking advantage of clinical
PACS as the starting point of data collection will
also be critical for scaling. Simple text entry or
voice-activated tools that map to structured lex-
icons such as RadLex will be enabling.
■ Facilitate data sharing. The creation of large
databases will be a key for this effort. Hosting
institutions or Federal agencies such as NCI
may serve as data centers, assuming all personal
health identifiers are scrubbed from case mate-
rial. Grid or cloud architecture would allow data
centers to interconnect. Expertise with network-
ing and database engineering will be necessary.
■ Leverage image processing expertise. The
vast amounts of knowledge in existence should
be leveraged to optimize pixel level analysis and
constructions of mathematical representations of
the data. Not only single images, but volumetric
data and temporal data should be represented.
■ Leverage bioinformatics developments. The
variety of data types and complex database
structures will require specific focus on how to
efficiently and effectively search for similarities.
This must not just address clinically suspected
correlations within the data, but enable discov-
ery of unexpected relationships that may prove
to be clinically useful. This expertise is currently
being developed in the bioinformatics commun-
ities and consists of supervised and unsuper-
vised learning techniques for understanding
complex multidimensional data.
■ Use composite image features and metadata
together whenever possible. As we emphasized
in “Challenges and Opportunities for CBIR in
Radiology” section, the joint use of visual
information in the form of image descriptors
and all nonvisual metadata to construct medical
cases, which are composite entities by them-
selves, is one of the essential directions to
follow for CBIR to be truly beneficial in

medical decision support systems. This inte-
grated data use policy also applies to the choice
of image descriptors to employ in a medical
CBIR system. One type of image descriptor is
extremely unlikely to resolve all the semantic
ambiguities inherent to the medical domain. As
such, a rich set of image descriptors and
metadata should be integrated to augment each
other whenever possible.

CONCLUSIONS

This survey has focused on the CBIR applica-
tions in medical domain, with a review of state-of-
the-art approaches, discussion of challenges and
opportunities in the medical domain, and spec-
ulations for future research.
From a technical perspective, we have put

forward the diversity of the proposed solutions
for image description and similarity assessment
techniques that are considered as the two funda-
mental components of a CBIR system. The
majority of the medical CBIR systems have
emerged as adaptations of the multimedia CBIR
systems, basic technologies of which are discussed
in “Current CBIR Technology” section. The
medical CBIR approaches reviewed in “State-of-
the-Art Medical CBIR Systems” section reflect the
continued efforts of researchers working at the
crossroads of visual content analysis and medical
imaging in order to adapt existing CBIR tech-
niques and to develop dedicated approaches that
take into account the special aspects of the radiology
domain. However, due to the diversity of medical
image content in terms of modalities, human
anatomy and diseases as well as the challenges
specific to medical domain as compared to the
multimedia applications, this diversity is expected
to increase even further to meet the requirements of
different subdomains within medicine.
Our analysis of state-of-the-art medical CBIR

systems has shown that despite the progress in
image description and similarity analysis, medical
image segmentation remains as a formidable
challenge as in other visual domains. Most of the
approaches resort to semiautomatic or manual
methods. This not only limits the development of
more effective solutions for automated and objec-
tive analyses of anatomical structures and/or
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abnormalities but also adversely affects the scal-
ability of the proposed systems. Another challenge
is the lack of large verified datasets for reliable
benchmarking, especially for systems having diag-
nostic purposes. Performance evaluations are usu-
ally carried out using a handful of examples, which
further delays the adoption of medical CBIR
systems in clinical routines.
In “Challenges and Opportunities for CBIR in

Radiology” section, we have focused on other
challenges that concern the inherent variability in
imaging findings. While computer-driven image
descriptors and similarity analyses can help reduce
the variability, it can be conjectured that image-
only approaches have limited resolving power
especially for diagnostic purposes. Medical diagno-
sis is a complex process that should also take into
account the rich and varied metadata, patient history,
and other relevant (not necessarily visual) informa-
tion. Accordingly, a medical retrieval system should
extend its scope in the type of information it uses and
be able to seamlessly incorporate such information.
We have conceptualized this data integration prob-
lem as finding mixed descriptors and similarity
measures on a conceptual case space rather than an
image-only space. Should appropriate information
processing technologies be developed, the informa-
tion diversity in medicine is not necessarily a curse
but may be an opportunity.
Finally, in “Strategies for Moving Forward in

the Next Decade” section, we have drawn attention
on operational issues in medical CBIR and proposed
strategies to tackle them. We believe and hope these
guiding principles would help researchers, in this fast
growing field, build more useful and reliable medical
search/retrieval systems.
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