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In this paper, a new neural-fuzzy approach is proposed
for automated region segmentation in transrectal ultra-
sound images of the prostate. The goal of region
segmentation is to identify suspicious regions in the
prostate in order to provide decision support for the
diagnosis of prostate cancer. The new automated region
segmentation system uses expert knowledge as well as
both textural and spatial features in the image to
accomplish the segmentation. The textural information
is extracted by two recurrent random pulsed neural
networks trained by two sets of data (a suspicious
tissues’ data set and a normal tissues’ data set). Spatial
information is captured by the atlas-based reference
approach and is represented as fuzzy membership
functions. The textural and spatial features are synthe-
sized by a fuzzy inference system, which provides a
binary classification of the region to be evaluated.
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INTRODUCTION

P rostate cancer is the second most common
type of cancer in Canadian men, and in 2010,

an estimated 25,500 new cases will be diagnosed.
This type of cancer is ranked third with respect to
mortality, causing 4,300 deaths annually.1

Early detection means possible recovery. How-
ever, there is a huge debate on prostate cancer
treatment which is a controversial subject. A review
on different treatment options is explained by
Heidenreich et al. in.2 A prostate-specific antigen
value analysis and a digital rectal examination are
the methods used to detect signs of cancer during
screening, after which, a prostate biopsy is per-
formed in order to arrive at a conclusive diagnosis
of the disease. However, a prostate biopsy can miss

some cancers, especially in the case of a random
sextant biopsy operation.3,4

Different imaging methods such as Gray-scale,
color, and power Doppler sonography were compared
in.5 It was concluded that Gray-scale and Doppler
methods did not expose prostatic cancer with suffi-
cient accuracy to replace sextant biopsy. It was also
proven that the power Doppler method might be use-
ful for targeted biopsies if the number of biopsy passes
have to be limited.5 In a more recent research, Turgut
et al. assessed the role of spectral Doppler sonographic
parameters of the arteries feeding the prostate gland
for prostate cancer detection, and they recommended
that further research is needed to elucidate the poten-
tial of spectral Doppler indices.6 Moreover, Halpern et
al. evaluated the value of directed biopsy for prostate
cancer detection during contrast-enhanced sonography.
In that research, they concluded that contrast-enhanced
transrectal sonography improves the detection of
malignant tumors in the prostate gland.7
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From the previous discussion, it can be con-
cluded that guiding biopsy operations without
reducing the sensitivity or specificity of the
diagnostic procedure is beneficial and is possible
with transrectal ultrasound (TRUS) image analysis.
Typically, in this procedure, a radiologist manually
identifies, with a moderate degree of confidence,
the suspicious regions of the prostate in the TRUS
image based on the intensity, local texture, and
spatial distribution of the abnormal tissue. How-
ever, the effectiveness of such a manual TRUS
diagnosis is highly dependent on the experience
and knowledge of the radiologist.
The goal of the research described in this paper

was to design an algorithm that incorporates expert
knowledge so that suspicious regions of the
prostate identified in TRUS images can be seg-
mented and diagnostic decisions that mimic those
of expert radiologists can be obtained. Automated
region segmentation thus improves the efficiency
and effectiveness of the process for diagnosing
prostate cancer, and it has the potential of reducing
the number of biopsies required for accurate
diagnosis. To construct an effective automated
region segmentation algorithm, the features that
characterize the regions of interest must be
selected, following which a segmentation approach
must be used in order to separate the regions
according to distinguishing features.
Two classes of features are typically used for

medical image segmentation: pixel-based and
local neighborhood-based. The latter method is
considered more suitable for use in segmentation
discrimination.
An example of the manual tissue segmentation

is depicted in Figure 1. The visual features of the

TRUS images that aid in manual segmentation
include intensity, which is a pixel-based feature;
local texture differences, which are a local neigh-
borhood feature; and the spatial distribution of the
abnormality.
Intensity is one of the discriminators that

radiologists use to determine suspicious regions,
and they usually identify diminished echogenic
regions in the peripheral zone of the prostate as
cancerous.8 However, low specificity is associated
with this method of localizing an abnormality.9

Furthermore, 25% of prostate cancer appears in the
isoechoic regions within the peripheral zone, and
these cases cannot be detected by intensity-based
indicators.9 Therefore, the research shows few
instances of the use of intensity alone for the auto-
mated localization of prostate cancer abnormalities.
Another distinguishing visual feature is the local

texture of the image. The parenchyma of malignant
tissues differ from those of benign tissues so that
the acoustic energy is reflected and scattered
differently.10 Part of this difference is likely to be
manifested in the TRUS images as variations in the
local texture. Previous studies of the application of
a local textural indicator includes work by
Scheipers et al., who calculated first- and second-
order co-occurrence parameters in order to express
the differences in local texture.12 In other research
by Mohamed et al., multiresolution analysis was
applied in order to segment the internal regions of
the prostate, with excellent results that matched the
regions identified by the radiologist.13,14 Spectral
clustering was also used successfully by Mohamed
et al. for prostate gland segmentation.15

Statistically, 68% of prostate cancer originates
in the peripheral zone, and only 24% originates in

Fig. 1. The segmentation problem: original TRUS image of the prostate (left panel) and manual segmentation of a malignant region as
performed by a radiologist (right panel).
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the transition zone.8 The peripheral and transition
zones can be located spatially in TRUS images.
Chen et al. examined the spatial distribution of
prostate cancer.16 However, the investigation of
the use of the statistics of the spatial distribution as
a discriminator is an approach rarely described in
existing papers about the automated localization of
prostate abnormalities. This paper explores the
local texture properties of both suspicious and
normal tissues and how textural differences can
best be captured by an automated algorithm. It also
examines how spatial information can be incorpo-
rated into such an algorithm.
Because local texture is one of the primary

distinguishing features of the regions, the extrac-
tion of textural features to be used as input for a
classifier that yields a binary decision seems a
viable approach. Loch et al.17 have recently
explored the use of a feedforward artificial neural
network (ANN) to differentiate between malignant
and benign regions in TRUS images. However, in
their work, the training and evaluation samples
(18×18 pixel blocks within the image) were
selected randomly from the same set of images.
Therefore, whether this approach can produce
generalized results for image samples which are
not used in the training set is questionable.
Loch et al. used six local texture descriptors as

input for the feedforward ANN, including the
number of edges, the dispersion of the edge intensity,
the average size of the edges, the dispersion of the
edge size, the contrast intensity of the edges, and the
dispersion of the edge contrast. Mohamed et al.
explored a different avenue of feature construction
by using spectral features in which the segmented
regions were scanned to form 1D signals and
different spectral features were constructed from
the signals obtained.20 A comprehensive classical
approach to texture feature construction was demon-
strated by McNitt-Gray et al.:18 59 spatial and
textural features were evaluated in the segmentation
of chest radiographs. However, since these textural
features are mostly equation-based, there can be no
guarantee that they will fully capture the complex
textural properties of ultrasound images. Aboul Ella
Hassanien19 used a blend of fuzzy logic, pulse
coupled neural networks, wavelets and rough sets,
for analyzing prostrate TRUS images for prostate
cancer diagnosis
Gelenbe’s supervised recurrent random pulsed

neural network (RNN) offered a more structurally

sophisticated alternative for capturing the complex
textural information that is based on the recursive
nature of the training of the RNN network
weights.21–26 The RNN is also simple to imple-
ment because it encodes textural information in the
local neighborhood without explicitly extracting
features.
Fuzzy inference can be used to process the results

produced by spatial and textural information analy-
ses and to provide a binary classification. Scheipers
et al. used spectral and textural parameters extracted
from TRUS images of the prostate region as input for
building two fuzzy inference systems (FISs) with the
goal of locating prostate carcinoma.12 Six Gaussian
membership functions were used per input parame-
ter. One FIS was used to distinguish hypoechoic and
hyperechoic tumors from normal tissue. The other
FIS was used to segment isoechoic tumors from
normal tissue. However, evaluating TRUS images
using Scheipers’ approach requires prior knowledge
of the type of tumor (whether hypoechoic/hyper-
echoic or isoechoic). Furthermore, the two FISs they
proposed require either six or seven types of input,
which incurs a high computational expense. Our
work applies only three parameters, each with two
membership functions.
In this paper, “Outline of the SystemArchitecture”

section outlines the proposed algorithm architecture,
and “Fuzzy Inference Stage” section details the
implementation of the RNN. The fuzzy inference
system is explained in “Results” section. The results
produced by the proposed technique when it is
applied to clinical TRUS images are presented in
“Comparison with Other Methods” section. “Dis-
cussion” section summarizes the strengths and weak-
nesses of the proposed method and suggests possible
future improvements. The results and additional
issues are summarized in “Conclusions” section.

OUTLINE OF THE SYSTEM ARCHITECTURE

The goal of the proposed method is to automati-
cally segment suspicious regions in TRUS images
by simulating the manual analysis of an experi-
enced radiologist. The manually segmented ultra-
sound images used in the analysis for this research
were obtained during clinical screening sessions
using an Aloka 2000 ultrasound machine with a
broadband 7 MHz linear transducer and a field of
view of approximately 6 cm. Manual segmentation
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was adopted as the gold standard for evaluating the
degree of interoperator agreement between the
manual approach and the proposed approach.
Before the tissue was segmented using the new
approach, the contour of the prostate was seg-
mented using the deformable model approach.11

The segmented prostate was then used as the input
for training and evaluating the automated tissue
segmentation system.
The new method captures the specific textural

and spatial information in the TRUS images that
has been identified in “Introduction” section as
important for discriminating between normal and
suspicious regions. Our method captures textural
information using the RNN as a supervised classi-
fier. The spatial information is incorporated into an
atlas-based reference approach and is represented as
fuzzy membership functions. These two features are
then synthesized with a fuzzy inference system that
provides a classification of the binary tissue region.
The RNN requires training based on manually

segmented data. After the training is completed,
the overall system is evaluated using a different set
of TRUS images.
The new image segmentation system consists of

the two stages shown in Figure 2. The input into the
first stage includes the scaled pixel intensities of the
5×5 input block and the x–y position of the top–left
pixel of the block. The first stage of the system
consists of two RNN networks as well as the
horizontal and vertical position finders. The RNNs
are trained with data from both the normal and

suspicious regions. The horizontal and vertical
position finders assign relative position labels to the
input image block to be evaluated. The result of this
operation is similar to image registration, in which
image partitions belonging to the same anatomical
regions of different images are aligned. The output of
the first stage, which is used as input to the second
stage, includes the difference between the output
from the RNN networks and the relative position of
the input blockwith respect to the prostate as a whole.
The second stage of the system is composed of the

FIS, in which three membership functions (MFs)
translate the input values from the first stage into
membership values that are used in the subsequent
fuzzy inferencing. MF1 refers to the RNN output
difference input, and MF2 and MF3 refer to the
relative horizontal and vertical position input. Fuzzy
inferencing provides an output value between 0 and
1, which corresponds to the likelihood that a specific
input block belongs to a suspicious region (the
higher the output value, the higher the likelihood of
the input block being abnormal). A threshold
between 0 and 1 can be used in order to derive
binary output. The components of the system are
explained in detail in the following sections.

The RNN Stage of the Algorithm

Gelenbe introduced the RNN in 1989 and used
it in a variety of applications.21–26 In 1996,
Gelenbe et al. applied the RNN in order to
segment the gray and white matter in MRI images

Fig. 2. System architecture.
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of the brain,21 thereby experimentally proving the
ability of an RNN to capture textural differences
between tissues in medical images. Because ultra-
sound images contain speckle, which is absent in
MRI images and which is likely to affect the local
texture in different tissue regions in a TRUS image,
the performance of the RNN for segmenting ultra-
sound images is not as ideal as for MRI results.
If the size of the input pixel block is chosen as

n×n, each of the two RNNs is also constructed as
an n×n grid of neurons, as shown in Figure 3.
Each neuron is mapped to the pixel at the same
location in the n×n grid and interacts directly only
with the other neurons in the four first-order and
four second-order cardinal directions (N, NE, E,
SE, S, SW, W, and NW).
In the training phase, RNN1 is trained with data

from the normal region, and RNN2 is trained with
data from the abnormal region. The input to the
RNNs consists of distinct 5×5 blocks of pixels with
each pixel having scaled intensity values between 0
and 1 (scaled from the original range of 0–255). The
histogram of the input pixels is equalized with a
base histogram in order to avoid large contrast
variations from image to image. The base histogram
is selected from one of the training images that is
judged by the operator to have the maximum visual
separation between the suspicious region and the
normal region. The desired output of each neuron is
set to be the scaled intensity of the associated pixel.
When the image blocks are evaluated, the output

of each RNN is the sum of the squared errors for each
block being evaluated. A sum of the squared error for
one RNN that is lower than that for the other
indicates that the block is more texturally similar to

the region that is being used to train the lower sum
RNN.

Experimental Results of Testing the RNN
Method for Segmenting Natural Textures

The RNN segmentation approach was tested by
using natural texture images to address challenges
such as how the output of the RNN can be appro-
priately post-processed in order to improve the
results of the segmentation and which size of input
block is optimal for capturing textural differences
between regions.
The image in Figure 4 was synthesized from four

sub-images, representing four distinct textures. Four
RNNs were trained using each of these textures.
The segmented blocks that were produced in the

evaluation phase are not connected to other seg-
mented blocks from the same region in any of the
eight first- and second-order cardinal directions and
are likely the result of noise within the original
image. A filter that operates in a manner similar to
morphological dilation was developed and used to
remove all unconnected blocks, as shown in
Figure 5a. This filter was implemented at the block
level, and if the label is discovered to be inconsistent
with the labels of the surrounding blocks, transforms
the label of that particular block.When the new filter
was applied along with a median filter, a more
contiguous segmentation of the four texture regions
was produced, as shown in Figure 5b.
Another variable in determining the training

methodology is the size of the input block. It was
found that a smaller input block results in finer
contours along the edges of the regions. However,
more noise is created in the interior of the regions.
The results from 4×4 and 5×5 input blocks are
contrasted in Figure 6.
The post-processing procedure described in this

section was followed for the evaluation of the
TRUS images. For a more contiguous segmenta-
tion result, a 5×5 input block size was selected for
training the RNNs to evaluate the TRUS images.

FUZZY INFERENCE STAGE

The fuzzy inference stage defines the relation-
ships between the output of the RNN, the spatial
distribution of the cancerous tissues in the prostate,
and the desired result.

Fig. 3. RNN neuron grid, the pixel is mapped to its first and
second degree neighbors (N, NE, E, SE, S, SW, W, and NW).
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Fuzzy Inference System

To construct the fuzzy inference system,27,28 the
fuzzy membership function that is associated with
each of the input variables must be found. An error
output from one RNN that is lower than that from
the other indicates that the input block is more likely
to belong to the region represented by the RNNwith
the lower error output. Therefore, the difference
between the output values of the RNNs can be used
as an indicator for classifying the input block. The
amount by which the RNN output differs from the
training sample ranges from −0.6 to 0.2. The desired
results, with respect to the differences between the
RNN output values, are plotted in Figure 7.
To construct the membership function, these

differences are slotted into 20 uneven-sized bins, as
indicated along the RNN output difference axis in
Figure 7a. The bin size is chosen to be proportional to
the density of the distribution of the RNN output
differences, which expresses the rapid variation in the
degree of membership around the RNN output
difference of zero, where the distribution density is
the highest. The degree ofmembership is obtained by
dividing the number of suspicious samples by the
number of total samples in that bin, as illustrated in
Figure 7b. The rescaled degree of membership
distribution is constructed by converting the x-axis
from the uneven-sized bins back to the original RNN
output difference scale. This distribution is reflected
in Figure 7c, with the x-axis representing the RNN

output differences and the y-axis representing the
proportion of suspicious blocks to total blocks in
each RNN output difference segment. This distribu-
tion is used as the membership function μA1, which
denotes is abnormal, as expressed by the RNN
indicator. Its complement is used as the membership
function μA2, which denotes is normal, as expressed
by the RNN indicator.
The relative horizontal and vertical position finders

translate the absolute pixel positions into relative
positions with respect to the center of mass of the
prostate in both horizontal and vertical directions. The
center of mass calculation is expressed as follows:

CMx ¼ 1

N

XN
i¼1

xi

CMy ¼ 1

M

XM
i¼1

yi

ð1Þ

Fig. 5. Results of the RNN a after filtering out the unconnected
blocks and b after the results from a were subjected to median
filtering.

Fig. 4. Synthetic image consisting of four natural textures.
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where xi and yi represent the x–y coordinates of
the first pixel of image block I, and N and M are
the total number of blocks within the prostate
boundary in the x and y directions, respectively.
The relative positions in the horizontal and vertical

directions are divided into 20 bins. For the horizontal
distribution, bins −10 to 0 represent the relative
positions that extend from the block at the extreme
left of the center of mass, and bins 0 to 10 represent
the relative positions that extend from the center
of mass to the block at the extreme right.
Similarly, for the vertical distribution, bins −10
to 0 represent the relative positions that extend
from the block at the extreme top to the center of
mass, and bins 0 to 10 represent the relative
positions that extend from the center of mass to
the block at the extreme bottom. The spatial
distribution of the malignant tissues (the percentage
of the malignant tissue blocks over the total number

of blocks in each of the relative position bins) in both
directions is shown in Figure 8.
The membership function μB1 signifies is

malignant based on the horizontal distribution,
and its complement μB2 denotes is benign based
on the horizontal distribution. Similarly, the
membership function μC1 represents is malignant
based on the vertical distribution, and its comple-
ment μC2 denotes is benign based on the vertical
distribution. These functions are displayed in
Figure 8.
The output membership functions are defined as

two triangular membership functions. μD1 repre-
sents is benign, and μD2 represents is malignant,
as illustrated in Figure 9.

Fig. 6. Effect of the size of the input block: a results from 4×4
input blocks and b results from 5×5 input blocks.

Fig. 7. Desired output with respect to a the distribution of the
differences in RNN output (on y-axis, 1 signifies suspicious and 0
signifies normal), b the degree to which membership distribution
is slotted into uneven-sized bins, and c the rescaled degree of
membership distribution.
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There are 16 possible fuzzy rules. Two rules
were selected based on heuristic knowledge and
are represented as follows:

R1: IF μA1 (is malignant from RNN output)
and μB1 (is malignant from horizontal distri-
bution) and μC1 (is malignant from vertical
distribution),

THEN μD2 (is malignant).
R2: If μA2 (is benign from RNN output) and
μB2 (is benign from horizontal distribution) and
μC2 (is benign from vertical distribution),

then μD1 (is benign).
ELSE

provide warning to user.

Here, when the else statement is encountered,
the else action causes a warning statement to be
displayed so that the user is aware of potential
unintended erroneous results produced by the
system.
Using the max-product inference leads to the

following output:

D0 ¼ A
0
1 � B

0
1 � C

0
1 � R1

� �
[ A

0
2 � B

0
2 � C

0
2 � R2

� �

ð2Þ

where

A
0
1 � B

0
1 � C

0
1 � R1 ¼ _

v;x;y
�A10 ðvÞ ^ �B10 ðxÞ ^ �C10 ðyÞ½ �

� �A1ðvÞ��B1ðxÞ��C1ðyÞ��D1ðzÞ½ �

and

A
0
2 � B

0
2 � C

0
2 � R2 ¼ _

v;x;y
�A20 ðvÞ ^ �B20 ðxÞ ^ �C20 ðyÞ½ �

� �A2ðvÞ�B2ðxÞ��C2ðyÞ��D2ðzÞ½ �

RESULTS

Six TRUS images that consist of 7,603 5×5
samples were used to train the RNNs. The
segmentation performance of the proposed algo-
rithm was evaluated using five TRUS images that
are distinct from the training images. Based on
these images, a total of 6,423 5×5 samples were
then evaluated and classified.
The receiver operating characteristic curve

(ROC) analysis displayed in Figure 10 demon-
strates the performance of the first-stage RNN with
respect to sensitivity and specificity and of the
second-stage FIS (Fig. 2) for all operating con-
ditions. The ROC curves were obtained by con-
tinuously varying the two separation thresholds.29

The separation threshold of the first-stage RNN
was set as a constant for the distribution plot of the
differences in the RNN output values shown in
Figure 7. The area under the ROC curve (AUC)30

in Figure 10 summarizes the accuracy of the test,
taking into account both sensitivity and specificity

Fig. 8. Degree of membership (malignant) of input blocks in
the a horizontal direction and b vertical direction.

Fig. 9. Output membership functions μD1 and μD2.
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as well as the full range of possible operating
conditions. The classification rate (CR), sensitiv-
ity, and specificity are defined as follows:

CR ¼ tpþ tn

tpþ fnþ fpþ tn
ð3Þ

sensitivity ¼ tp

tpþ fn
ð4Þ

specificity ¼ tn

fpþ tn
ð5Þ

where tp denotes the true positives (the malignant
blocks identified by the radiologist as correctly
detected), fn denotes the false negatives (the
malignant blocks that are undetected), fp denotes
the false positives (the benign blocks that are
wrongly detected as malignant), and tn denotes the
true negatives (the benign blocks that are correctly
classified as malignant). The AUC representing the
first-stage RNN and the second-stage FIS are Az1=

0.78 and Az2=0.87, respectively. The likelihood
ratio, commonly used to measure the performance
of medical diagnostic tests, is proportional to
tangents of the ROC curve.32 The positive like-
lihood ratio (LR+) is defined as follows:

LRþ ¼ sensitivity

1� specificity
ð6Þ

The maximum likelihood ratios represent
another measure of the diagnostic performance of
the three approaches. The AUC and the maximum
positive likelihood ratios are listed in Table 1.
The shapes of the ROC curves indicate that the

first-stage RNN approach favors high sensitivity
output, whereas the FIS approach provides results
with relatively high specificity. As an example, the
results of the first-stage RNN and the second-stage

Fig. 10. ROC analysis of segmentation results.

Table 1. Diagnostic Performance of the First-Stage RNN and the
Second-Stage FIS

AUC Max. LR+

First-stage RNN 0.78 2.33
Second-stage FIS 0.87 7.57
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FIS approaches obtained by setting the RNN output
difference threshold at 0 (Fig. 7c) and the FIS output
threshold at 0.22 (Fig. 9) are displayed in Figure 11.
At the RNN output difference threshold of 0, the

first-stage RNN approach provides a sufficiently
accurate segmentation for some cases (A, D, and

E). For all images evaluated, the first-stage RNN
correctly detected 1,553 of the 1,966 samples
labeled as suspicious by the radiologist, resulting
in a relatively high sensitivity of 79%. However,
the first-stage RNN is also prone to classifying
normal regions as suspicious, correctly classifying

Fig. 11. Segmentation results produced by the proposed algorithm for predefined thresholds.
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only 2,494 of 4,457 (56%) of the samples labeled
as benign by the radiologist.
At the output threshold of 0.22, the second-stage

FIS classification demonstrates a high correlation
with the manual segmentation, correctly identifying
5,203 of 6,423 (81%) of the labels, including 3,744
of 4,457 (84%) samples correctly predicted to be
normal. Cases C and D are exceptions because the
tissue classification in these two images does not
correlate well with the manual segmentation. In
these two images, the spatial distribution of suspi-
cious tissue in the prostate differs significantly from
that in the training set.
Table 2 summarizes the results obtained using

the above thresholds with respect to the classifica-
tion rate, sensitivity, and specificity of the output
from each of the two stages.

COMPARISON WITH OTHER METHODS

The authors compared the results obtained by
the new method to an earlier Gabor-based
method13. The Gabor-based method described

in13,14 was selected for the comparison because it
depends on multiresolution analysis, which is an
excellent method of texture segmentation. The
Gabor-based ROI segmentation algorithm is able
to segment the image according to the frequency
response of the image, and it was chosen for this
application because of its high localization in both
the spatial frequency domain and the spatial
domain. In addition, the ROI identification algo-
rithm selected for this research also observes the
regions selected by the expert radiologist and
integrates their properties into the algorithm, which
is explained in detail in.11

Examples of TRUS images A, B, and C with the
regions marked by the experts are shown in part
(a) of Figure 12. The candidate regions obtained
using the ROI identification algorithm are shown
in part (b) of the same figure. Part (c) of each of
the figure shows the regions selected after the
expert information is incorporated. The figures
demonstrate that the Gabor-based ROI identifica-
tion algorithm’s results matched to a large extent
the results shown in Figure 11, which were
obtained using the proposed algorithm.

DISCUSSION

This research has investigated the use of textural
and spatial information to segment malignant and
benign regions of TRUS images of the prostate.
The results of the tests using the first-stage RNN
indicate that tissue differences are manifested as

Table 2. Classification Results for the First-Stage RNN and
Second-Stage FIS at Thresholds of 0 (RNN Output Difference)

and 0.22 (FIS Output)

Classification
rate (%)

Sensitivity
(%)

Specificity
(%)

First-stage RNN 63 79 56
Second-stage FIS 81 75 84

Fig. 12. Suspicious regions for sample images A, B, and C, identified by the Gabor-based algorithm.
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local texture variations in TRUS images, which
can be captured by the RNN. The results also
demonstrate that the spatial distribution of the
malignancy can be incorporated into the segmen-
tation system by using a fuzzy approach that
improves the specificity and the overall classifica-
tion rate.
In a clinical setting, the separation thresholds

should be chosen according to criteria such as
mortality, discomfort to the patient, and the
expense associated with the treatment or nontreat-
ment of the disease.21 If the cost of missing a
positive case is deemed to be high, the operator
should adjust the thresholds toward the left side of
the ROC, where the sensitivity is high.
The disadvantage of using the malignant tissue

distribution statistics is that the sensitivity of the
second-stage classifications is poor for abnormal
cases, in which the location of the malignancy
differs considerably from the normal distribution.
Therefore, a system that can run two parallel
segmentation algorithms, one configured for high
sensitivity and one for high specificity, may be
more appropriate in clinical diagnostic situations.
The fuzzy inference in the proposed system

applies two simple rules based on heuristic knowl-
edge. If more were known about the causality
between the input features and the likelihood of
malignancy, more rules could be incorporated into
the system in order to improve its performance.
Furthermore, since the overlap between the output
membership functions μD1 and μD2 (Fig. 9) is less
than 50%, it may be beneficial to add a third
triangular membership function μD3, centered
around the output value of 0.5. In cases in which
the input features present conflicting information,
the μD3 function could be used to address this
ambiguity.
Manual localization of malignant tumors in

TRUS images by a trained radiologist has a
relatively moderate level of sensitivity and low
specificity compared to those obtained from a
sextant prostate biopsy. In this work, we have
shown that an automated region segmentation
system can be designed to incorporate expert
knowledge and to provide segmentation results
that closely approximate those obtained by an
experienced radiologist. However, since manual
segmentations are used to train the RNNs and to
construct the spatial malignancy distribution, the
clinical performance of the automated system is

upper bounded by the limited accuracy of the
manual segmentation training sets.
The quality of the results obtained using the

proposed method was highlighted through a
comparison of these results with the ROIs obtained
using the Gabor-based method: the two methods
exhibit a high degree of agreement. Since TRUS
image acquisition is cheaper and less invasive than
sextant prostate biopsies, the proposed system has
the potential to be an important supplementary tool
for obtaining conclusive prostate cancer diagnoses.

CONCLUSIONS

Segmentation of the malignant and benign
regions in TRUS images is difficult due to the
inherent noise in and low resolution of such
images. The neural-fuzzy approach proposed in
this paper uses RNNs to capture local texture
differences between two tissues, a spatial atlas to
incorporate the statistical information about the
malignancy distribution, and fuzzy inference to
synthesize the two input features in order to
localize the malignant tumor.
The results obtained from the proposed auto-

mated malignant tumor localization system com-
pare favorably with those produced by currently
available automated methods. As well, the pro-
posed system provides an additional prediction of
malignancy. The output from the first-stage RNN
gives the most sensitive prediction, which is
enhanced by the more conservative prediction
derived from the output of the second-stage FIS.
The result is an improved overall level of
classification accuracy.
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