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Abstract We propose the use of a context-sensitive support
vector machine (csSVM) to enhance the performance of a
conventional support vector machine (SVM) for identifying
diffuse interstitial lung disease (DILD) in high-resolution
computerized tomography (HRCT) images. Nine hundred
rectangular regions of interest (ROIs), each 20×20 pixels in
size and consisting of 150 ROIs representing six regional
disease patterns (normal, ground-glass opacity, reticular
opacity, honeycombing, emphysema, and consolidation),
were marked by two experienced radiologists using
consensusHRCT images of various DILD. Twenty-one textual
and shape features were evaluated to characterize the ROIs.
The csSVM classified an ROI by simultaneously using the
decision value of each class and information from the
neighboring ROIs, such as neighboring region feature dis-
tances and class differences. Sequential forward-selection was
used to select the relevant features. To validate our results, we
used 900 ROIs with fivefold cross-validation and 84 whole
lung images categorized by a radiologist. The accuracy of the
proposed method for ROI and whole lung classification (89.88
±0.02%, and 60.30±13.95%, respectively) was significantly

higher than that provided by the conventional SVM classifier
(87.39±0.02%, and 57.69±13.31%, respectively; paired t test,
p<0.01, and p<0.01, respectively). We conclude that our
csSVM provides better overall quantification of DILD.

Keywords Computed tomography . Computer-aided
diagnosis . Image processing . Lung diseases

Introduction

The use of automated classification systems for the
detection of diseased or abnormal tissues is becoming an
important aspect of computer-aided diagnosis. Several
automatic classification systems have been proposed for
classifying lung disease images. Uppaluri et al. developed
systems for classifying emphysema and diffuse interstitial
lung disease (DILD) using 2-D textural analysis [1, 2]. Xu
et al. developed a system that used 3-D textural analysis to
solve the same problem [3, 4]. Prasad et al. proposed a
multi-level classification method for emphysema classifica-
tion [5], and Chabat et al. proposed a textural system for
identifying obstructive lung disease [6]. Support vector
machines (SVMs) are often used for image classification
and have been shown to outperform other classifiers, such
as Bayesian classifiers, artificial neural networks (ANNs),
and generalized linear models [7–9]. SVM classifiers have
been used to identify emphysema [10–12] and classify five
regional disease patterns and normal tissues in DILD
patients [13, 14].

In clinical practice, application of SVMs in selected
region of interest (ROI)-based data with unambiguously
classified regions is needed to extend this approach to
whole lung data. Whole lung quantification allows for the
evaluation and quantification of disease patterns over the
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entire lung, thereby allowing assessment of pathogenesis
and response to therapy. Previous research has attempted to
classify whole lung tissue, but these systems have been
limited because they could not identify small areas of initial
disease pattern due to the relatively large size of the
classification pixels (i.e., 15×15) [3, 4] or because they had
poor accuracy [14].

Furthermore, most traditional classifiers assume that
regions in the image data may be independently classified
into several classes. Thus, these classifiers label an ROI
based on its feature properties and do not consider spatial
correlations between neighboring ROIs. In the specific case
of high-resolution computerized tomography (HRCT) of
the lung, neighboring ROIs are highly correlated because
regional disease patterns typically contain more than one
ROI. Traditional classifiers do not consider the rich
information that can be gleaned by considering the regions
neighboring each ROI.

In the context of remote sensing image classification,
researchers have proposed the use of context-sensitive
classifiers that consider neighboring information in the
appropriate classification of ROIs [15]. In general, context-
sensitive classification methods yield excellent classification
results for high-resolution images because high-resolution
images contain more ROIs. For this reason, incorporation of
spatial correlations and relationships provides contextual
knowledge to the classifier and improves classification
accuracy.

Previous image analysis approaches have addressed this
issue. Remote sensing problems, such as land cover
classification at the rural–urban fringe, have been analyzed
by assuming a probabilistic relaxation of spatial informa-
tion [16–19]. More recent research has incorporated context
information by using a Markov random field (MRF), which
models the spatial correlations between neighboring ROIs
by modeling the joint probability of observation and the
corresponding class for processing of remote sensing
images [20, 21]. In the MRF framework, however, efforts
have been devoted to modeling the joint probability,
which incorporates modeling of intrinsic classes. The
conditional random field (CRF), another random field
approach, was developed to model the distribution P(Y|X)
directly, where Y is the joint label and X is the observation
[22]. This model is less computationally demanding than
the MRF [23].

Several CRF framework methods, such as the discrimina-
tive random field and the support vector random field, have
been applied to the segmentation of man-made structures [24]
and brain tumors [8]. Although these approaches performed
better than the MRF, they were developed for binary image
segmentation and could not be applied if more than two
classes were present. In the present study, we hypothesized
that, in the case of diffuse lung disease, neighboring ROIs

will be correlated, and hence that consideration of local
contextual information for a ROI under consideration will
improve the classification accuracy. To test this hypothesis,
we developed a context-sensitive support vector machine
(csSVM) and compared the accuracy of the csSVM with that
of an existing multiclass SVM [25] by incorporating local
context information into the classification of normal and
regional disease patterns across whole lung images. In
addition, we improved previous random field approaches
using the heuristic modification to extend the binary
classification problem to multiclass problems.

Materials and Methods

Automatic Quantification System

HRCT images of the whole chest were selected from a
collection of images from 106 patients in the department of
radiology, Asan Medical Center (Seoul, South Korea).
All images were acquired with 220 mA and 140 kVp,
with the patients at full inspiration. Images were
reconstructed (1 mm slice thickness, 10 mm slice
intervals) using an enhancing (B70f) reconstruction
kernel with a 16-detector row CT (Sensation 16, Siemens
Medical Solutions, Forchheim, Germany).

For the training set, a thoracic radiologist with 10 years
of clinical experience assessed a total of 900 ROIs (20×20
pixels) and marked them as normal (n=150), ground-glass
opacity (n=150), reticular opacity (n=150), honeycombing
(n=150), emphysema (n=150), or consolidation (n=150;
Fig. 1). The size of each ROI (20×20) was assessed
according to previous methods [13] and expert knowledge
for considering subtleties associated with the size of diffuse
lung disease patterns. Only one ROI was selected in each
image to minimize clustering effects. If several ROIs were
selected in one patient, the ROIs were chosen from different
lobes.

A total of 13 textural and 8 shape features were
computed to characterize each ROI. The textural features
were histogram features (mean, SD, skewness, and
kurtosis), gradient features (mean and SD), run-length
matrices (short- and long primitive emphasis), and gray-
scale level co-occurrence (contrast, correlation, energy,
and homogeneity) [6]. The bin size (Q) of the run-length
encoding and co-occurrence were optimized to 196 and
32, respectively [26]. The shape features were from three
types of white top-hat transforms (mean and SD), black
top-hat transforms (mean and SD), and cluster analysis
(number of clusters, cluster area mean and SD, circularity
mean and SD, and aspect ratio mean and SD). Thus, each
ROI was represented as a 21-dimensional feature vector
with the values given in Table 1.

1134 J Digit Imaging (2011) 24:1133–1140



The validity of these descriptors for characterizing the
textural and shape information during classification of lung
parenchyma has been demonstrated previously [7, 10–12,
14]. Applying all 21 features listed in Table 1, we
conducted sequential forward feature selection (SFS),

which showed superior performance in previous studies
[6, 10, 12], to remove irrelevant features that might have
led to misclassification.

A near-optimal feature set of 900 ROIs, calculated from
SFS, was employed to build the classifier. Subsequently, 84
whole lung images were quantified by the previously
trained classifier. In addition, a radiologist was asked to
draw an area map of 84 whole lung images, using dedicated
in-house software, to validate the accuracy of the classifi-
cation by the ROI comparison. The basic diagram for the
automatic quantification system is shown in Fig. 2.

Proposed Method

Overview

Our method employs a multiclass SVM [25]. The two
components, observation potential and local context poten-
tial, capture the relationship between observation and
labeling using multiclass SVM, and between a classified
ROI and its neighboring ROIs.

Let the observed data from an input image be given as
X={xi} i∈S and the corresponding labels as Y={yi} i∈S,
where xi is the data from ith ROI, and S is the total set of
ROIs. In this work, yi can have n classes, i.e., yi ∈ {1, 2,…,
n}. Thus, the joint distribution over the labels yi, given the
observation Xi, can be written as:

PðyijxiÞ ¼ OðyijxiÞ þ

P
j2Ni

Lðyijyj; xi; xjÞ

CðNiÞ ; ð1Þ

Fig. 1 HRCT scans of the chest
(window level, −850 HU; width,
400 HU). On each image, note
the three different sizes of
circular (16-, 32-, and 64-pixel
diameters) highlighted regions
of interest (ROI) typical of any
particular condition. a Normal,
b ground-glass opacity,
c reticular opacity,
d honeycombing, e emphysema,
f consolidation

Table 1 Summary of 13 textural features and 8 shape features that
represent each ROI

Category Descriptor Dimension

Textual feature Histogram Mean

S.D.

Skewness

Kurtosis

Gradient Mean

S.D.

Run-length matrix Short primitive emphasis

Long primitive emphasis

Co-occurrence matrix Angular second moment

Contrast

Correlation

Inverse difference moment

Entropy

Shape feature Top-hat transform White top-hat mean

White top-hat S.D.

Black top-hat mean

Black top-hat S.D.

Cluster LAA Area

Number of cluster

Mean

S.D.
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where O(.) and L(.) are the observation and local context
potential, respectively, and Ni is a neighboring ROI, the
ith ROI, and C(Ni) is the number of ith neighborhoods.
A schematic diagram of this process is illustrated in
Fig. 3.

Observation Potential

The observation potential measures the likelihood that the ith
ROI will have the label yi ∈ {1, 2,…, n} in a given image xi,
ignoring information about other ROIs. In this paper, we

Fig. 2 Automatic quantification
system procedure diagram used
for the detection of diffuse
interstitial lung disease

Fig. 3 Schematic diagram of
the csSVM, consisting of the
observation potential and the
local context potential, for
classifying a current ROI using
the current ROI’s features along
with the neighborhood ROIs’
features and labels
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used a multiclass SVM to calculate the observation potential.
Multiclass probability outputs were required to calculate the
observation potential. We used the method of Wu et al. [27],
who introduced methods that transfer the support vector into
multiclass probability estimates, to obtain multiclass proba-
bility estimates for the observation potential.

Local Context Potential

The local context potential measures how neighboring ROIs i
and j are affected by each other and compensates for the
error derived from the observation potential. In the MRF
framework, the Ising model is a commonly used local
context potential [28]. This method penalizes discontinuities
in the labeling of neighboring ROIs i and j by a cost β [29].
However, it captures the dissimilarities only in the labels of
adjacent ROIs and does not consider neighborhood-to-
neighborhood discontinuities in the feature vectors. In
the present study, we treated label and feature vector
dissimilarities, to model the local context potential. Thus,
the local context potential is modeled as:

Lðyijyj; xi; xjÞ ¼ Iðyi; yjÞΦijðX Þ
dij

; ð2Þ

where the function I(yi, yj) is the interaction vector, dij is
the Euclidean distance between the ith and jth ROI, Фij(X)
is a function of the computed feature vector distance
between the ith and jth ROI based on observation X. The
function I(yi, yj) is a 1×k vector that contains 1 in the yjth
column, −1 in the yith column, and 0 in the other columns
when yi=yj; if yi≠yj, I(yi, yj) contains 0 on all columns.
Thus, it may be represented as:

I yi; yj
� �

0; . . . ; 0; 1; 0; ::::; 0;�1; 0; . . . 0ð Þ; yi 6¼ yj

yjth yith

0; . . . ; 0ð Þyi ¼ yj

8>><
>>:

; ð3Þ

Since the yi have categorical values, {1, 2, …., n}, the
interaction vector adjusts the observation potential’s posterior
probability by the amount Фij(X)/dijC(Ni). The function
Фij(X) can be modeled as:

ΦijðX Þ ¼ max zðX Þð Þ � z iðX Þ � z jðX Þ
�� ��

max zðX Þð Þ ; ð4Þ

where the function ζk maps the kth ROI into a feature
vector. This function yields larger values because neigh-
boring elements are more similar. Thus, a neighboring
ROI that has a feature vector similar to that of the
currently classified ROI has more of an influence on
classification of the current ROI than an ROI with a
dissimilar feature vector.

Experimental Setting

Previous kernel function tests for the SVM indicated that a
radial basis function performed better than other kernel
functions [12]. Thus, we applied a kernel function of the
radial basis function against a polynomial, and the
associated parameters (e.g., cost C and gamma value) were
optimized by a grid search. The purpose of inference is to
identify an optimal joint label, given an image X. Inference
was performed iteratively unless the improvement in the
probability of a joint label dropped below the predeter-
mined threshold. The conventional SVM and observation
potential in our proposed method employed a classifier that
used the LIBSVM [30]. Computation time and accuracy
were measured by running the MATLAB (The MathWorks,
Natick, MA, USA) routine on a PC with an i5 Core,
2.67 GHz, and 2 GB RAM.

Statistical Analysis

The conventional SVM and our csSVM were initially
tested on 900 ROIs using 20 applications of fivefold
cross-validation. The fivefold cross-validation was per-
formed as follows: the 900 ROIs of each class were
divided uniformly and randomly into five exclusive
stratified subsets. Each fold was in turn held aside as a
test set, and the other exclusive four subsets were used to
train the classifiers. The average of the fivefold cross-
validation results yielded the overall result. Eighty-four
whole lung images were tested by the conventional SVM
and our csSVM to evaluate image classification accuracy
and computational time. Computational times were
compared by measuring the testing time (the time
required to classify each whole lung image) as calculated
by the conventional SVM or our csSVM. All testing
results were compared with a t test, and an α-value of
0.01 was considered statistically significant.

Classifier Accuracy (%) Time (s)

Whole lung (p<0.01) ROI (p<0.01) Whole lung (p<0.01)

Conventional SVM 57.69±13.31 87.39±0.02 2.25±0.41

Proposed method 60.30±13.95 89.88±0.02 3.05±0.91

Table 2 Overall accuracy and
computational time for whole
lung images and ROI-based data
for the conventional SVM
method and the proposed
method
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Experiment Results

Table 2 shows the accuracy of our proposed method and the
conventional multiclass SVM for whole lung images and
ROI-based data (paired t test, p<0.01). We also measured

computational times required for whole lung quantification
using either classifier. In this task, we used features that had
been extracted prior to conducting the actual quantification.
Thus, the times in Table 2 indicate the time elapsed during
quantification by each classifier. Figure 4 illustrates an

Fig. 4 Whole lung quantification results for comparing the conven-
tional SVM to the proposed method. Each pixel was coded by the
classification result, indicated by a semi-transparent color (normal,
green; ground-glass opacity, yellow; reticular opacity, cyan; honey-
combing, blue; emphysema, red; and consolidation, pink). a Original
HRCT image (case 1), b drawing by an expert (case 1), c
quantification results from the conventional SVM (case 1), d
quantification results from the csSVM (case 1), e original HRCT

image (case 2), f drawing by an expert (case 2), g quantification
results from the conventional SVM (case 2), h quantification results
from the csSVM (case 2), i original HRCT image (case 3), j drawing
by an expert (case 3), k quantification results from the conventional
SVM (case 3), l quantification results from the csSVM (case 3), m
original HRCT image (case 4), n drawing by an expert (case 4), o
quantification results from the conventional SVM (case 4), p
quantification results from the csSVM (case 4)
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example of regional lung disease pattern classification by
conventional SVM and by our proposed csSVM.

Discussion and Conclusion

In this study, we developed a csSVM that incorporates
neighborhood information, including neighboring ROI
features and labels. Our method can be applied to multi-
class classification problems that cannot be addressed by
previously proposed methods employing conditional ran-
dom fields [9, 24]. Although the overall computational time
of our csSVM was 35% greater than that of the conven-
tional SVM, the overall accuracy of our csSVM was
significantly better, by 2.61% for the whole lung and by
2.49% for ROI-based data.

In medical imaging analysis, our multiclass csSVM may
be applied to classification-based image quantification to
estimate texture-based emphysema indices in patients with
chronic obstructive pulmonary disease and to assess the
pathogenesis of DILD. Furthermore, our proposed csSVM
may be applicable to other areas, such as remote sensing
and computer vision, in which spatial relationships are
important. Other classifiers, such as ANNs and Bayesian
classifiers, could be extended to context-sensitive classifiers
to obtain more accurate results.

The present study has several limitations. First, applica-
tion of the proposed method to the whole lung yielded
lower accuracy classification results (60.30±13.95%) than
did the ROI-based classification system (89.88±0.02%).
ROIs in the ROI-based data were selected in regions that
were representative of the disease, whereas the ROIs
classified throughout an entire lung would include transi-
tional regions, which could contribute to disagreements in
disease pattern. This problem may be overcome by using
adaptive ROIs on borderlines. Another possible explanation
is that different quantification methods were used by the
expert radiologist and the classifier. The expert radiologist
divided the whole lung into six classes using in-house
software (a line-based drawing program), whereas the
classifier quantified the whole lung using a pixel-based
method. This discrepancy in quantification should be
further studied in experiments in which experts classify
whole images using a pixel-based rather than a line-based
program.

Second, our proposed method was applied to 2D images,
which prevented us from removing systematic errors, such
as those introduced by an airway or vessel [3]. Use of 3D
images would provide better results for whole lung
quantification, although the computational cost would be
significantly greater. Finally, csSVM was only applied to
the quantification of DILD patient lungs. To examine the
general effectiveness of the model, further evaluations

should be performed using datasets from different organs
or tissues.

In our proposed csSVM method, the accuracy of DILD
quantification was greater than that provided by traditional
SVM, with only a slight increase in computational load. We
propose that csSVM be considered for the quantification of
DILD.
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