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Abstract The use and benefits of a multimodality approach
in the context of breast cancer imaging are discussed.
Fusion techniques that allow multiple images to be viewed
simultaneously are discussed. Many of these fusion
techniques rely on the use of color tables. A genetic
algorithm that generates color tables that have desired
properties such as satisfying the order principle, the rows,
and columns principle, have perceivable uniformity and
have maximum contrast is introduced. The generated 2D
color tables can be used for displaying fused datasets. The
advantage the proposed method has over other techniques
is the ability to consider a much larger set of possible color
tables, ensuring that the best one is found. We asked
radiologists to perform a set of tasks reading fused PET/
MRI breast images obtained using eight different fusion
techniques. This preliminary study clearly demonstrates the
need and benefit of a joint display by estimating the
inaccuracies incurred when using a side-by-side display.
The study suggests that the color tables generated by the
genetic algorithm are good choices for fusing MR and PET
images. It is interesting to note that popular techniques such
as the Fire/Gray and techniques based on the HSV color

space, which are prevalent in the literature and clinical
practice, appear to give poorer performance.
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Introduction

Application of a multimodality approach is advantageous
for detection, diagnosis, and management of many
ailments. Obtaining the spatial relationships between
images using different modalities and conveying them
to the reader maximizes the benefit that can be achieved.
The process of obtaining the spatial relationships and
manipulating the images so that corresponding pixels in
them represent the same physical location is called image
registration. Combining the registered images into a
single image is called image fusion.

The advantage of a fused image lies in our inability to
accurately visually judge spatial relationships between
images when they are viewed side by side. Depending on
background texture, mottle, shades, and colors, identical
shapes and lines may appear to be different sizes [1]. This
can be demonstrated by well-known simple optical illu-
sions. The most obvious application is to combine a
functional image that identifies a region of interest but
lacks structural information necessary for localization, with
an anatomical image providing this information.

In this paper, we examine the benefits of a multimodality
approach in the context of breast cancer imaging. We then
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briefly discuss registration techniques before launching into
possible fusion options. An overview of fusion techniques
widely accepted in literature as well as a novel genetic
algorithm-based one are briefly presented. The remainder of
the text is devoted to a study in which radiologists were
asked to perform a set of tasks reading fused positron
emission tomography (PET)/magnetic resonance imaging
(MRI) breast images obtained using several different fusion
techniques.

In this context, F-18-FDG PET [2–5] and high-
resolution and dynamic contrast-enhanced MRI [6–11]
have steadily gained acceptance in addition to X-ray
mammography and ultrasonography. Initial experience with
combined PET (functional imaging) and MRI (anatomical
localization) has yielded positive results, providing benefits
compared to either modality alone [12–15]. While no
clinical scanners currently exist capable of acquiring
images from both modalities, prototypes have been devel-
oped [16, 17], and commercial devices are in the not too
distant future.

Background

Registration

Since the breast is entirely composed of soft tissue, it
easily deforms and requires non-rigid registration. Sig-
nificant effort has been devoted to developing registra-
tion procedures suitable for medical images in general
and more recently PET/MRI breast images [12, 18–20].
The registration procedure was selected for this work
based on its efficiency, consistency, operator indepen-
dence, and suitability for use in a clinical environment
[18–20].

This finite element method registration procedure relies on
corresponding features visible in both modalities (provided by
fiducial skin markers (FSMs) taped to predetermined loca-
tions on the skin of the breast) and controlled deformations
(by similar patient-prone positioning) to produce a dense
displacement field describing the deformation between the
two modalities. The displacement field can then be used to
transform (warp) the MRI image bringing it into spatial
alignment with the PET image.

Fusion for Visualization

Even when viewing the registered images side-by-side,
spatial relationships may be difficult to ascertain. A
combined MRI/PET image has the benefits of directly
showing the spatial relationships between the two
modalities, increasing the sensitivity, specificity, and
accuracy of diagnosis. Most research has been dedicated

to obtaining the spatial alignment between images, while
comparatively little research has been devoted to finding
the optimum fusion technique for presenting the images
after registration. This is in part due to the secondary
nature of this problem and in part due to the relative
rarity of multimodal datasets until the recent clinical
availability of PET/CT scanners.

Several factors need to be considered when choosing a
visualization technique. These include information content,
observer interaction, ease of use, observer understanding,
and reader confidence. Undoubtedly, it is desirable to
maximize the amount of information present in the fused
image. Ideally, the registered images would be viewed as a
single image that contains all of the information contained
in both the MRI image and the PET image. Limitations in
the dynamic range and colors visible on current display
devices, as well as limitations in the human visual system
make this nearly impossible.

This loss of information can be partially compensated by
making the fused display interactive. Some sort of control
over the fusion technique can be provided which allows the
observer to change the information that is visible in the
fused display.

The design of this control is an important part of the
fusion process. How simple is it to use the control? How
much training is required? Do the display options offered
by the control aid the observer or just complicate the
observation process? How responsive is the control?

The last and perhaps the most important factor relates to
the observer’s understanding of the fused volume. For
example, radiologists understand what they are looking at
when they examine a grayscale MRI image, or PET image,
i.e., variations in intensity and texture have a meaning. In
the ideal case, the knowledge and experience the observer
has in examining the individual modalities would be
directly applicable to the fused images.

Some previous research has been devoted to discover
new and optimum ways to take two images and display
them as a single one. These techniques, primarily devel-
oped and used in other fields, include color overlay, color
mixing, techniques based directly on color spaces, and
spatial and temporal interlacing. For a review of these
techniques, see Baum et al [21].

One very important fact that needs to be kept in mind
when selecting the optimum fusion technique is that the
choice will be both application and observer dependent.

It is well known that various vision deficiencies, such as
deuteranomaly, influence how individuals perceive color.
This means that in general, there will not be a fusion
technique that is ideal for everyone. Even among those
without any documented vision deficiencies, the optimal
choice will vary with factors such as experience and
training.
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It is also necessary to consider environmental factors that
affect how observers will perceive the displayed colors. The
viewing conditions also play a role in selecting the most
appropriate color table. This includes conditions such as the
lighting in the room, the color of the background, and the
gamma and black offset of the display device.

Throughout this paper, it is assumed that gamma
correction, as well as other corrections for the viewing
conditions are applied prior to deployment. The focus is on
finding the optimum fusion technique for a general
radiological audience, and as such, the techniques are not
tuned towards any one individual. This needs to be the case
for deployment in a clinical setting.

It is a necessity, however, to consider the task that the
images produced by the application of the color table are
going to be used for. There have been demonstrations of
how a properly designed fusion technique can aid a task
while an improperly designed one can complicate matters
[1]. Because of this, the discussion is constrained to joint
display of MRI/PET images.

An interesting fact is that a 2D color lookup table (LUT)
can be used to implement all of the previous mentioned fusion
techniques with the exception of interlacing. Even when using
interactive techniques, the fusion procedure being used at a
given instance in time can generally be described using 2D
color tables. This work takes advantage of this fact when
presenting the fusion techniques studied to the reader.

Two-Dimensional Color Table Basics

Color tables, also known as color maps, are simple yet
powerful tools. The grayscale values of the two source
images for a given pixel serve as indices in the color map.
Looking up the indices in the color map gives the color that
the same pixel in the fused image should have.

An example of a 3×3 color table is shown in Figure 1a.
The vertical numbering represents intensity values in the
first source image, while the horizontal numbers represent
intensity values in the second source image. If the first
source image is given by Figure 1b and the second source
by Figure 1c, then using this color table to fuse the two
images will result in Figure 1d.

Materials and Methods

Fusion Software

Fusion was performed using the Fusion Viewer1 software
package [22, 23]. Fusion Viewer was developed in-house
and available for free. It has been designed and imple-
mented in C# with a modular object oriented design for
increased extensibility and compatibility, along with sim-
plified distribution.

Fusion Viewer provides both traditional and novel options
for displaying and fusing 3D datasets. A simple plug-in
interface allows rapid development of novel fusion techni-
ques. In addition to fusion capabilities, several options are
provided for mapping 16-bit datasets onto an 8-bit display,
and both traditional maximum intensity projections (MIP) and
MIPs of fused volumes are supported.

Genetic Algorithm Automated Generation of Multivariate
Color Tables

A genetic algorithm for automatic generation of color tables
that have desired properties is presented here. The advantage
the proposed method has over other color table generation
techniques is its ability to consider a much larger set of
possible color tables, ensuring that the best one is found.

The algorithm searches for 2D color tables satisfying
predetermined criteria. First, the underlying definition for
the color tables will be discussed and then the criteria,
which determine the genetic algorithm’s fitness function,
will be presented.

Color Mixing Color Table Definition

Colormixing is a technique that can be used to take any number
of one-channel images (N) and create a fused RGB image [21]
It is performed using Eq. 1. Here, R, G, B represent the red,
green, and blue channels in the displayed image, respectively,
Si represents the intensity in the ith source image, Ri, Gi, Bi

are the weighting factors for the red channel, green channel,
and blue channel, respectively. They determine the contribu-
tion of source i to each of the output channels.
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� �
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R2 G2 B2
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Fig. 1 An example of using a 3×3 color table (a) to fuse images
represented by (b) and (c), and the result of the operation (d) 1 www.kgbtechnologies.com/fusionviewer/
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Let the source intensities be normalized from zero to
one. Applying Eq. 1 is then equivalent to taking the
intensity axis of source i and lying it along the line segment
formed by connecting (0,0,0) to (Ri, Gi, Bi) in the RGB
color space. The output image is then formed by summing
the projections of each of these onto the red, green, and
blue axes.

The technique can be extended by allowing the vectors
(Ri, Gi, Bi) to point in any direction. For example, as the
source intensity increases, the red in the fused image
decreases. The technique can also be extended by using an
offset so that the vectors (Ri, Gi, Bi) do not need to be
located at the origin. After making these extensions, the
color mixing technique can be represented by Eq. 2. Where
OXi represents the offset from the origin along the X axis for
the contribution from source i.

R;G;Bð Þ ¼
XN
i¼1

SiRi þ ORi;
XN
i¼1

SiGi þ OGi;
XN
i¼1

SiBi þ OBi

 !

ð2Þ

Color Difference

Before an algorithm which generates color tables can be
created, there needs to be a way to quantitatively define
guidelines or requirements to be used when generating the
color tables. The result of evaluating a color table with
these guidelines will be the fitness factor used to determine
the reproduction of the color tables within the genetic
algorithm.

To aid in defining these guidelines, a way to determine
the difference between two colors is first introduced.
Traditionally, this difference is defined as the Euclidean
distance, ΔE, between the two colors in the CIE L*a*b*
space and is given by:

$E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$L»� �2 þ $a»

� �2 þ $b»
� �2q

ð3Þ

Where L* is related to intensity values (lightness), and
a* and b* correspond to chromaticity values; a* and b*
represent color-opponent dimensions with a* running
roughly from red to green and b* running from yellow to
blue. The validity of Eq. 3 comes from the assumption that
the color space is perceptually uniform and orthogonal. In
order for the color space to be perceptually uniform, the
Euclidean distance between two colors within the space
needs to be directly related to the perceived closeness of the
colors. It has been shown that this assumption is not quite
true for the CIE L*a*b* color space [24], since unaccept-
able errors arise for certain regions of the color gamut [25].
For this reason and for explicit definition in the RGB color
space, which is required for display on current hardware,

we choose to use the more recently developed computa-
tionally efficient measurement used by CompuPhase in
their PaletteMaker application [25, 26].

r ¼ C1;R � C2;R

2
$R ¼ C1;R � C2;R

$G ¼ C1;G � C2;G

$B ¼ C1;B � C2;B

$C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ r

256

� �
� $Rð Þ2 þ 4 � $Gð Þ2 þ 2þ 255� r

256

� �
� $Bð Þ2

s

ð4Þ

Here, ΔC is the perceived difference between the two
colors defined in nonlinear RGB space (sRGB) as (C1,R,C1,

G,C1,B) and (C2,R,C2,G,C2,B), where CX,Y is the value for the
Yth channel for the Xth color, and has values from 0 to 255.
The color difference assumes display on a standard
computer monitor (CRT, LCD) with a gamma of approx-
imately 2.5 in a typical office viewing environment.

This definition of color difference is aided in defining
the requirements for the color tables which follow.

Color Table Requirements

RGB Color Space It was decided that the color tables
produced need to be defined in the 8-bit per channel RGB
color space supported by most applications. This is a
nonlinear gamma corrected RGB color space, so that colors
will appear properly on a typical CRT or LCD display. This
is required in order to facilitate easy use and guaranteed
compatibility of the color tables produced. This was taken
into consideration when selecting the formula for color
differences.

Order Principle Trumbo defines several desirable proper-
ties of color tables [27]. One of these is the order principle.
Basically, if a color table satisfies the order principle, then
the colors chosen to represent the data values should be
perceived as ordered in the same order as the data values.
Spectral color tables where large variations of hue occur do
not satisfy this principle. This is important because the
pixel values in the original medical data represent physical
quantities, such as the standardized uptake values (SUV) in
the PET images. This is the information radiologists need to
have, if one pixel is shown as blue and another red, the
readers will be unable to determine which pixel has a
higher SUV without referring to the color table. While the
color table will not be a secret from the radiologist
evaluating the fused data, the less they need to refer to
the color table, the more efficiently and confidently they
can read the images.
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Further, a side effect of a color table not satisfying the
order principle is that the color table often creates false
segmentation when applied to the image. The color
contours created in the image emphasize particular pixel
values.

To guarantee that the order principle is satisfied, a
representation of the color table based on the color mixing
technique is used by the algorithm.

Rows and Columns Principle The rows and columns
principle is also defined by Trumbo [27]. It states that the
colors in the color table should be chosen so that two
source images do not obscure one another.

This is particularly important in this situation. Each of
the input images and their gray levels mean something to
the radiologist. This meaning needs to be preserved in the
fused images. The reader needs be able to tell the intensity
of each of the source images by examining the fused image.

This is ensured by making the color’s 1D color tables
corresponding to each source as different as possible from
each other. In other words, the first row of the color table
should consist of colors as different as possible from the
first column. This can quantitatively be measured by
maximizing ΔC, in Eq. 4, for the average color in the first
row of the table and the average color for the first column
in the table. This color difference will be referred to as
ΔCsources. Due to the linear model of the color mixing
technique, this property will then be distributed throughout
the rest of the color table.

Perceivably Uniform The ideal color table should be
perceivably uniform. In other words, the ΔC between
neighboring entries in the color table should be a constant
throughout the table. This can be measured by finding ΔC
for all neighbors and then examining its variance. The
smaller the variance, the better. We will refer to this
variance as var(ΔCtable).

This is an important factor because it minimizes the
reliance on the color table, due to the fact that the
radiologist’s intuition about the location of the color in
the color table is more likely to be correct.

Maximized Contrast The contribution from each source
should have as much contrast as possible. As contrast
increases for a source, it gets easier to see the variations
in the fused image due to that source. Due to using the
color mixing model, we need only to examine the
endpoints of the first row and column of the color table
to know the range of colors available for each of the
sources to use.

Maximizing ΔC between the first entry in the first
column and the last entry in the first column of the color
table will maximize the contrast for the first source.

Similarly, maximizing ΔC between the first entry in the
first row and the last entry in the first row of the color table
will maximize the contrast for the second source.

In addition, to ensure good contrast throughout the color
table, it is desirable to have the contrast along the diagonal
of the color table maximized. This is done by maximizing
ΔC for the first entry in the first row and column of the
color table and the last entry in the last row and column of
the color table. Contrast throughout the remainder of the
color table is also evaluated by maximizing the mean ΔC
for all neighboring pixels in the color table.

In summary, we will evaluate contrast using four factors:
the contrast for the first source (ΔCs1), the contrast for the
second source (ΔCs2), the contrast along the diagonal
(ΔCdiag), and the mean contrast between neighboring pixels
mean (ΔCtable).

Desirable Properties Not Considered It should be noted
that in the current implementation, the algorithm does not
consider all of the desired properties of a color table. For
example, no preference is given to any particular color.
Humans may find some colors easier to look at and
examine for long periods of time than others.

Well-known simultaneous contrast and chromatic con-
trast effects are not considered [28]. These effects describe
how the appearance of a particular color may change based
on the surrounding colors in the image.

Another effect that the human visual system has on
images that is usually ignored is that the color of an object
influences its perceived size [29, 30]. For example, if a
lesion is colored red-purple, it would appear larger than if it
had been colored green.

Algorithm Execution

A relatively simple and standard genetic algorithm is used
for the generation of the color tables. Each color table is
defined by 12 real numbers that have a range from −1 to 1.
These numbers represent the following variables from
Eq. 2: R1, OR1, G1, OG1, B1, OB1, R2, OR2, G2, OR2, B2,
OB2. These coefficients when used with the color mixing
equation completely define a color table.

To start, an initial population of color tables is randomly
generated. An iterative loop is then entered. Each member
of the population is then evaluated and ranked based on the
requirements of the desired color table. A new population is
then generated, where the contribution from each member
of the previous generation to the new generation is based
upon its ranking. This process is repeated for a large
number of iterations.

Evaluation of a population of color tables involves
testing them for each requirement as previously described.
The numeric results of the evaluation of a given color table
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can then be weighted and summed to give the fitness score
for that member of the population. This process is shown as
Eq. 5. Each of the three desirable properties included in the
fitness factor are given equal weight. Prior to creating the
fitness factors, each term is normalized by the mean value
of that term for the entire population and threshold to a
maximum absolute value of 2. This prevents any single
term from dominating and insures improvements in any
term can influence the fitness factor.

fitness factor ¼ $Csources � var $Ctableð Þ

þ mean $Ctableð Þ
4

þ $Cs1

4
þ $Cs2

4

þ $Cdiag

4
ð5Þ

The members of the current generation with the highest
fitness scores are automatically included in the next
generation. The rest of the members in the next generation
are created by splicing or mutating the members in the
current population.

When creating a population member by mutation, a
member of the previous generation is chosen randomly with
a probability proportional to its fitness score. The new
population member is then created from the old one by
making one or two random changes to its defining
coefficients.

When creating a population member by splicing, two
members of the previous generation are chosen at random
with a probability proportional to their fitness scores. The
new population member is generated by taking the first X
coefficients of it from the first chosen member and
remaining 12-X coefficients from the second member. The
point of splicing, X, which determines the amount of each
of the chosen color tables that gets transferred to the new
color table, is chosen at random.

For the stopping criteria, the algorithm can be halted
when the member with the highest fitness score does not
change for a number of generations. There is no fear of
running the algorithm for too many generations due to the
nature of the problem.

After the algorithm has finished executing, the member
of the final population with the highest fitness score
represents the “best” color table that the algorithm could
come up with. The algorithm can either be run several times
or the top members of the final population can be
considered, providing a set of color tables that can then
be evaluated by human observers.

Algorithm Advantages

The genetic algorithm proposed here provides several
advantages currently not available elsewhere. It searches

the entire color gamut for linear mapping models that
maximize properties that are believed to allow accurate
interpretation of the images being fused. Maximized
contrast allows larger differences and consequently easier
differentiation between colors. Adherence to the order
principle and uniformity allows interpretation of the colors
in a natural intuitive manner. Adherence to the rows and
columns principle allows a more accurate differentiation of
the information from the images fused.

As will be shown in the following section, numerous
fusion techniques already exist and are commonly used.
Existing methods have been selected mainly because they
may produce esthetically pleasing images or because they
are believed to adhere to one of these desired properties.
The color tables produced using this genetic algorithm are
the first ones to be quantitatively evaluated for their ability
to meet all of these properties simultaneously.

Fusion Techniques Investigated

In addition to two color tables produced by the genetic
algorithm, six other promising fusion for visualization
techniques were selected by the authors to be investigated
further. Each of these techniques is shown in Figure 2 and
discussed below:

Fire/Gray

This technique was created using color overlay. The fire
color table from ImageJ [31] was applied to the PET image
and a grayscale color table to the MRI image. Color was
used for PET and variations in intensity for MRI, since MRI
is a higher resolution modality, and the human visual
system is more sensitive to small changes in intensity than
to small changes in color [32–34]. The technique was
selected for study due to its use in other research
applications.

Red/Blue

This technique is based on the CIE L*a*b* color space. It
is performed by assigning shades of blue to the PET image
and shades of red to the MRI image. These colors are
selected based on opponent color theory [35]. The basic
assertion of opponent color theory is that red and blue are
perceived separately and changes to one will not affect the
perceived amount of the other. This assertion does not hold
for most other color pairs.

Red/Green

This is another color overlay technique. A red color table
is applied to the PET image and a green color table to
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the MRI image. It was selected for inclusion in the study
because of its use in the Mayo Clinic’s Analyze [36]
software package.

Gray/Red Interlace

This fusion technique is based on spatial interlacing.
Fused images were created by taking alternating columns
from each of the source images. For example, the odd
columns in the fused image are taken from odd columns
in the PET image while the even columns are taken from
even columns in the MRI image. The PET image was
first pseudo-colored using a red color table. This
technique was selected for the study because of its
popularity in the research literature [1, 37, 38].

Hue, Saturation, Value

The hue, saturation, value (HSV) color space is a model
designed to describe how humans perceive color. Hue is the
color, saturation is the amount of the color, and value is the
intensity of the color. For this technique, hue was used to
present the PET image, and value was used to present the
MRI image. The saturation was kept constant. Like the
Fire/Gray technique, the MRI was used for the intensity
because of the human visual system’s higher sensitivity to
changes in intensity over changes in color. This color table
was selected because of its popularity throughout the
literature.

HSV, Constrained Hue

This technique is similar to the previously discussed hue,
saturation, value technique except that it uses a constrained hue
angle. Instead of the color varying over the entire spectrum, it
was only varied within the cyan to green to yellow region [33].
Constraining the hue angle helps prevent false segmentation
due to changes in color and provides colors that appear to
have a natural ordering to a human observer.

The Study

To test the validity of fusion-based visualization, the eight
techniques previously discussed and shown in Figure 2
were used to conduct a study with four radiologists from
the Department of Radiology at SUNY Upstate Medical
University. The study was designed to answer the following
questions.

1. Are the spatial relationships between images better
conveyed when viewed side-by-side or as a fused image?

2. Which fusion techniques do the radiologists prefer?
3. Which fusion techniques do the radiologists think they

can use the best?
4. Which fusion techniques are easiest for the radiologists

to use?
5. Which fusion techniques most accurately allow the

original MRI and PET information to be recovered by
the radiologist?

Fig. 2 Color tables for the different fusion techniques investigated in the study. The vertical direction corresponds to the MRI intensity and the
horizontal to the PET intensity. The origin is located in the upper left
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Nine different images with no malignant lesions were
presented using each of the eight techniques to four
experienced nuclear medicine physicians. Each time, the
nine images were presented in a random order. For each
physician, the techniques were also presented in a random
order. The nuclear medicine physicians were asked to
perform the following tasks using the interface shown in
Figure 3.

1. On a PET monochrome image, click on the region of
maximum metabolic activity (glandular tissue).

2. On a grayscale LUT, select the gray level that
corresponds to the gray level value of the region of
maximum metabolic activity in the PET image.

3. On an MRI image, click on the morphological region
that corresponds to the region of maximum metabolic
activity (the same location clicked on the PET image).

4. On a grayscale LUT, select the gray level that
corresponds to the gray level value of the region of
maximum activity in the MRI.

5. Trace the region of maximum metabolic activity on
both the PET and MRIs.

6. On a fused image, click on the region of maximum
metabolic activity.

7. Click on the corresponding color on the LUT to
identify the associated PET and MRI values.

8. Trace the region of maximum metabolic activity on
the fused image.

9. Evaluate degree of difficulty while performing the
task.

10. Evaluate understanding of the fusion technique used.
11. Indicate preference for the fusion technique.

Images used for the study were acquired using a
dedicated PET/CT scanner (GE Discovery ST with BGO
detector and 4-slice CT) and a 1.5T MRI System (Philips
Intera). PET images were obtained with patient prone and
breasts freely suspended, immediately after intravenous
administration of 10 mCi of F-18-FDG with nine FSMs

Fig. 3 Interface used by radiologists to evaluate fusion techniques

1038 J Digit Imaging (2011) 24:1031–1043



taped on the skin of each breast. They were reconstructed in
a 128×128×47 matrix, with 4.25 mm voxel size. To assure
that the stress conditions in the imaged breast are similar in
different modalities, a replica of the MRI breast coil made
of plastic with very low absorption for 511 keV photons
was used in PET scans.

In MRI scans, the patient was prone with both breasts
suspended into a single-well housing a standard Philips
clinical breast RF receiver coil. A high-resolution 3D fast
field echo technique with TR/TE = 14/3 was applied to
obtain MRI breast images. An image matrix of 512×512×
120 was used in reconstruction with 0.7×0.7×1.4 mm3

voxel size. The field of view (360×360 mm) was centered
over the breasts.

The registration was performed using the previously
mentioned procedure. After registration, slices through
regions of interest were selected from each dataset for use
in the study. The slices were extracted and fused using the
Fusion Viewer application and correspond to the standard
views, coronal, sagittal, and axial. The regions of interest
were selected to be regions containing above average
metabolic activity. Figure 4 contains examples of images
used during the study.

Results and Discussions

The results presented in Figures 5, 6, 7, 8, 9, and 10 answer
the five questions the study was set out to address. Figure 5
shows a plot of the average distance, in pixels, over all
participants, between the location of the area of maximum
metabolic activity selected on the MRI and the PET
grayscale images when viewed side-by-side. One pixel
corresponds to area of 0.7×0.7 mm. All error bars shown
here represent the standard error. It can be seen that the
average distance, over all nine images, is approximately
10.7 pixels; in other words, there is up to approximately a
1-cm difference between the two regions selected when
viewing PET and MRI images side by side. This discrep-
ancy might increase the risk of performing a biopsy in the
wrong location, misdiagnosis, and justifies the need for a
fused display.

Figure 6, on the other hand, shows the average distance,
over all observers and images for each technique, in pixels
between the location of the area of maximum metabolic
activity selected on the fused image and the corresponding
location selected on the grayscale PET image. It can be
seen that the average distance is reduced particularly with

Fig. 4 Fused images created using each technique. The PET and MRI source images used are shown in the top row

J Digit Imaging (2011) 24:1031–1043 1039



techniques 5 (Genetic Algorithm I) and 6 (Genetic
Algorithm II), the two color tables generated by the genetic
algorithm. Performance is worst with technique 8 (Con-
strained Hue), possibly because as the range of colors gets
smaller they become increasingly difficult to differentiate.
An analysis of variance (ANOVA) test was performed to
statistically quantify the differences between the techniques.
Technique 5 (Genetic Algorithm I) shows a significant
improvement over techniques 1 (Fire/Gray) and 8 (Con-
strained Hue; t<0.05, i.e. difference in the two means is
significant), and technique 6 (Genetic Algorithm II) shows
a significant improvement over techniques 1 (Fire/Gray), 3
(Red/Green), and 8 (Constrained Hue; t<0.05).

Note that popular techniques such as the Fire/Gray
(technique 1) and techniques based on the HSV color space
(techniques 7 and 8), which are prevalent in the literature
and clinical practice, appear to give poorer performance.
One common misconception is that a larger range of colors
will allow smaller variations to be seen, when in reality,
sharp changes in color might attract the focus making
variations within the individual colors difficult to discern.
Also, radiologists do not necessarily have the same skills at
interpreting colors and identifying specific characteristics

(e.g., hue and intensity) as artists or color specialists might
have.

Figure 7 shows results of the difficulty rating assigned
by the observer when performing the tasks with each
technique, where 5 represents easiest and 1 represents
hardest. An ANOVA test was performed to statistically
quantify the differences between the techniques. It can be
seen that techniques 5 (Genetic Algorithm I) and 6 (Genetic
Algorithm II) are ranked significantly easier to use than
techniques 1 (Fire/Gray), 2 (Red/Blue), 4 (Red/Gray), 7
(HSV), and 8 (Constrained Hue; t<0.05). Techniques 1
(Fire/Gray) and 3 (Red/Green) also have high rankings,
which may reflect past experience using those techniques.

Figure 8 shows the level of ability each observer
believes he or she has for using each of the techniques,
where 1 means they do not think they are capable of using
it and 5 means they believe they are experts at using the
technique. The rankings are fairly even with techniques 3
(Red/Green) and 4 (Red/Gray) having the highest and
techniques 7 (HSV) and 8 (Constrained Hue) the lowest. It

Fig. 6 Distance in pixels between corresponding locations chosen on
PET and fused images

Fig. 5 Distance in pixels between corresponding locations chosen on
PET and MRI images when viewed side by side

Fig. 7 Difficulty ratings assigned when performing tasks for each
technique. 1 corresponds to “hardest” and 5 to “easiest”

Fig. 8 Ability level assigned by observers for each technique. 1
means they do not think they are capable of using it, and 5 means they
believe they are an expert at using the technique
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is not surprising that techniques 7 and 8 rank the lowest, as
it is unlikely that radiologists have significant experience
describing colors using HSV color space.

Figure 9 shows the preferences assigned to each
technique by the observers. No technique is given signif-
icantly higher preference than any other. The higher
preferences are assigned to techniques 1 (Fire/Gray), 3
(Red/Green), 4 (Red/Gray), and 6 (Genetic Algorithm II). It
is interesting to note that the techniques the observers
claimed to prefer and understand the best were not
necessarily the ones with which they were best able to
complete the tasks. This suggests that thorough testing
should be performed before selecting a fusion technique
rather than choosing the technique most radiologists seem
to prefer.

Figure 10 shows the distance on the color tables between
the color at a point selected in the fused images and that
color as identified on the color table by the observer. This
distance represents the observer’s ability to decode the
coloring used for the fusion. It represents the ability of the

observer to recover the original MRI and PET value at a
given point in the image. Observers achieved the smallest
distances with techniques 1 (Fire/Gray), 3 (Red/Green), and
5 (Genetic Algorithm I). Technique 4 (Red/Gray) could not
be evaluated with this metric since colors could appear at
more than one location in the color table.

This study consisted of multiple tasks and a large
amount of collected data. A subset of the results, those
that most directly answer the proposed study questions, has
been presented here. Further details on the study, including
public access to the tools used, data used, and data collected
(both raw and analyzed) can be found in an electronic
archive of the study.[39] This includes the results not
presented here such as those from tracing the region of
higher metabolic activity.

Conclusions

This initial limited study clearly demonstrates the need and
benefit of a joint display because of the inaccuracy when
using a side-by-side display. In many cases, the differences
between the techniques are qualitatively and quantitatively
significant. The study suggests that the color tables
generated by the genetic algorithm, particularly technique
5, are good choices for fusing MRI and PET images. This is
best illustrated in Figure 6, which demonstrates the spatial
accuracy of the technique. This property is hardest to obtain
through other tools, as compared, for example, to the MRI
and PET values for a point in the image, which are usually
accessible to the observer through other means.

The genetic algorithm shows promising results, although
it needs to be refined to consider additional desired
properties. The test for the compliance of the rows and
columns principle should consider the implications of
opponent color theory. Further, the algorithm should be
expanded to consider the set of all 2D color tables and not
just those that can be represented using the extended color
mixing model. The most complex part of this expansion
will be the redefinition of the tests for the desired
properties. The current results can be made interactive by
simple scaling of the source axes, but attempts to generate
fully interactive fusion operators may provide interesting
results and useful insights.

The fusion techniques used during this study were
applied to 2D datasets (actually a single cross-section of
3D datasets). Since the operators are applied locally at the
voxel level, they can be applied to full 3D datasets without
any modification. The fused images can then be viewed as
a series of slices (or orthogonal reconstructions) as is most
commonly done in practice today.

The results presented here are not translatable if the
desire is the fused 3D datasets that have been rendered

Fig. 10 Distance in pixels on the color table between the color
observers thought they chose from the fused image and color they
actually chose. Maximum distance is approximately 362 pixels

Fig. 9 Preference level assigned by observers for each technique. 1
corresponds to no preference and 5 corresponds to a preferred
technique
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using projection based or surface-based techniques. In these
cases, fusion is no longer occurring at the voxel level, and
other fusion methods will be more appropriate for handling
the information provided in the renderings.

It is clear that a larger study including a greater number
of readers should be performed to confirm and support the
results of this study. Observer performance studies ought to
be performed, and interactive versions of the fusion
techniques need to be investigated due to their ability to
present significantly more information from the underlying
images, as compared to static techniques. The most
appropriate technique will most likely depend on the
specific tasks, and future studies should focus on evaluation
while the radiologist is performing specific clinical duties.

The study does make clear the need for fused displays
and encourages fusion capabilities to be introduced into
PACS and RIS systems. It stresses the need for manufac-
turers of multimodal systems, such as PET/CT, to investi-
gate ways to improve the presentation of the acquired data.
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