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Abstract The objective of this study was to implement and
evaluate the performance of a biplane correlation imaging
(BCI) technique aimed to reduce the effect of anatomic noise
and improve the detection of lung nodules in chest radio-
graphs. Seventy-one low-dose posterior–anterior images were
acquired from an anthropomorphic chest phantom with 0.28°
angular separations over a range of ±10° along the vertical
axis within an 11 s interval. Similar data were acquired from
19 human subjects with institutional review board approval
and informed consent. The data were incorporated into a
computer-aided detection (CAD) algorithm in which suspect
lesions were identified by examining the geometrical corre-
lation of the detected signals that remained relatively constant
against variable anatomic backgrounds. The data were
analyzed to determine the effect of angular separation, and
the overall sensitivity and false-positives for lung nodule

detection. The best performance was achieved for angular
separations of the projection pairs greater than 5°. Within that
range, the technique provided an order of magnitude decrease
in the number of false-positive reports when compared with
CAD analysis of single-view images. Overall, the technique
yielded ~1.1 false-positive per patient with an average
sensitivity of 75%. The results indicated that the incorporation
of angular information can offer a reduction in the number of
false-positives without a notable reduction in sensitivity. The
findings suggest that the BCI technique has the potential for
clinical implementation as a cost-effective technique to
improve the detection of subtle lung nodules with lowered
rate of false-positives.

Keywords Computer-aided detection . Biplane correlation
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Introduction

Lung cancer is a leading cause of death in the United
States, surpassing the mortality rate of colon, breast, and
prostate cancers combined [1]. In its early stages, lung
cancer may manifest itself as a solitary lung nodule.
Unfortunately, many small lung nodules (and hence
cancers) are not detected, even retrospectively, on chest
radiographs [2, 3]. Even experienced radiologists have
difficulty detecting subtle lung nodules [4]. Despite the
many technological advances in chest radiography in the
last five decades, there has been little improvement in the
poor detection rate for small lung nodules [4–8].

There are three main factors limiting the detection of
subtle lung nodules in chest radiographs: nodule signal-to-
noise ratio (SNR), perceptual errors (both visual and
cognitive), and anatomic noise. The accurate identification
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of lung nodules can be hindered by their low SNR. Recent
advancements in radiologic technology, including the
development of high detective quantum efficiency digital
radiographic systems, have enhanced the SNR for lung
lesions. Perceptual errors also notably contribute to the poor
detection rate of lung nodules [9–11]. Computer-assisted
detection (CAD) algorithms can minimize the perceptual
errors encountered in the detection of lung nodules by
enabling a complete search of the image data [12–15]. The
third and perhaps the most significant obstacle to the
accurate detection of lung nodules remains the anatomic
noise caused by the normal thoracic structures that surround
and overlay a lesion, thus masking its appearance [16–19].

Multi-dimensional imaging techniques such as dual-
energy subtraction radiography, tomosynthesis, or computed
tomography (CT) can improve the detection of lung nodules
by reducing the impact of anatomic noise on image
interpretation [17]. As a new multi-dimensional imaging
method, we recently introduced a new multi-projection
imaging paradigm called correlation imaging (CI) that
similarly attempts to reduce the impact of anatomic noise
on the detection of subtle lung nodules [20, 21]. In CI,
two or more digital images of the body part are acquired

within a short time interval from slightly different
projections. The image data are then incorporated into
an enhanced CAD algorithm that detects nodules by
examining the geometrical correlation of the detected
suspect regions in separate views. The technique helps to
reduce the impact of anatomic noise and to minimize the
number of CAD false-positives by eliminating non-
correlated nodule candidates in the images. One partic-
ular implementation of CI, named biplane correlation
imaging (BCI), only uses two views to achieve this
objective [20, 22, 23]. CAD–BCI uses one projection
image as a reference and another one to cancel out non-
related suspicious regions. Both images are further used
during the interpretation process by the radiologist.

In this paper, we report on one implementation of BCI. The
study was primarily based on a set of off-angle projections
acquired from an anthropomorphic chest phantom. The aim of
the study was to assess the relative performance of BCI and
CAD for lung nodule detection using three segmentation
techniques, and to further ascertain an optimum angular
projection for paired projection images such that the number
of false-positives is minimized. The paper further reports the
initial results of the technique on human subjects.

Fig. 1 a The tomosynthesis
machine (left) and anthropo-
morphic chest phantom (right)
are shown during the imaging.
For human data acquisition, the
patient was positioned in the
place of the chest phantom. b
Schematic depiction of the BCI
scheme
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Subjects and Methods

Image Data

Multi-projection thoracic images were acquired on an
imaging system designed for chest tomosynthesis [24]
(Fig. 1). The system used was based on a custom-built
prototype device containing a commercial-grade flat-panel
detector (XQ/i; GE Medical Systems, Milwaukee, WI)
capable of acquiring 14-bit chest images of 2,048×2,048
matrix size and 0.2 mm pixel pitch. An anthropomorphic
chest phantom (RSD, Inc., Long Beach, CA) was positioned
in a standard chest posteroanterior (PA) position. Two Teflon
nodule phantoms of 8 and 10 mm in diameter were placed
on the phantom’s posterior surface to simulate the appear-
ance of subtle tissue-equivalent nodules [25]. The phantom
was then imaged 71 times (120 kVp, 5 mAs), with the X-ray
tube moving 64.2 cm along the vertical axis to acquire
projection images with 0.28o angular separation over an
angular range of ±10o. The precise movement of the X-ray
tube was achieved with a programmable tube mover.

The chest phantom was imaged multiple times with the
positions of the added nodules randomly altered (the phantom
remained fixed) to allow different superimposition of the
nodule with the anatomy. Ten such image sets were acquired
for testing, and one set was acquired to train the algorithm.
However, the main purpose of the project was to develop the
methodology as opposed to conducting an independent
testing of the BCI algorithm. Positions of added nodules were
different among image sets but fixed within each image set.
An additional set of images without nodule phantoms was
also acquired, which was then subtracted from the main
dataset to determine exact nodule locations in the dataset.

BCI was also evaluated on a set of human subject data,
collected from outpatients at Duke University Medical Center
using an institutional review board-approved protocol. All
human subjects were previously diagnosed with lung nodules,
and patients recruited for this study were limited to those who
were coming for a CT follow-up and had nodules 3–21 mm in
diameter. Nineteen consented subjects (tenmales, nine females,
33–73 years; mean, 59 years) participated in the study. Each
subject underwent a standard posterior–anterior radiographic
image acquisition, as well as a multi-projection image
acquisition. The protocol for the first five human subjects
involved 61 angular projections within the ±10o angular range.
The remaining subjects were imaged using the same protocol
as that of the phantom. Each projection image used an X-ray
exposure equivalent to 1/11 of a conventional PA. Thus, the
total X-ray dose for BCI imaging (using two of the collected
projections in the implementation of this study) was about 1/
7th of a conventional PA. During X-ray exposure, subjects
were required to remain still and hold their breath for the 10–
12 s duration of the acquisition. An experienced chest

radiologist marked all nodules on conventional PA images
based on the associated CT dataset establishing ground truth.
Seventy-two nodules (3–21 mm in diameter; mean, 7.8 mm)
were identified in the 19 human subjects.

Computer Analysis

All images were processed through our biplane image
analysis method, summarized in Fig. 2. The sections below
provide a step-by-step summary of the processes. All image
analyses were performed on a Pentium-class workstation
using MATLAB® (The Mathworks, Inc., Natick, MA)
software package.

Image Filtration

Each projection image was first pre-processed and its
intensities scaled to 16 bits pixel intensity. That included
a baseline subtraction of the minimum pixel value within a
140×40 mm2 region of interest in the right lung from each
of the projection images. The projection image data were
then down-sampled to 1,024×1,024 matrix size. This was
found to reduce computational time without negatively
impacting the detection of nodules. The noise within the
images was also reduced using a Wiener filter [26] with a
mask size of 1.2×1.2 mm2.

Since lung nodules generally follow a Gaussian-type
profile [17], a Gaussian-based normalized cross-

Fig. 2 Schematic of the computerized detection of the nodules
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correlation filter was applied [20, 27] to enhance the
nodule-like features of the images. The filter required
three parameters to be specified: template filter size and
the two standard deviations of the constituent Gaussians.
Empirical examinations for sets of kernel sizes and
standard deviations indicated that a template filter size of
409.6×409.6 mm2 and standard deviations of 1.6 and
4.8 mm would optimally enhance the desired features of
the nodules. The output of the filtration was an image with
values ranging between −1 and 1, with the extremes
corresponding to a perfect match or mismatch of the
original image to the likely nodules.

Image Segmentation

Segmentations of the suspect regions followed the filtration
process. Initially, the lung region of each original projection
image was classified based on a histogram distribution of
pixel values in the filtered image. The number of classes in the
segmentation images varied among projection images as a
result of differences in the gray-level distribution of the
filtered image. Label pixels of each class were set so that
each class would differ from its two adjacent classes by
seven pixels. The classification results were used in a
segmentation scheme based on a stochastic model
inspired by Markov random field (MRF). The MRF
process adaptively segmented the images based the
number of the regions. MRF provides a convenient and
consistent way for modeling context-dependent entities
such as image pixels and correlated features by charac-
terizing the mutual influence among such entities [28, 29]
(Hammersley and Clifford, unpublished). In our approach,
an approximate maximum a posteriori estimate of the field
was used to segment the image [30].

To increase image segmentation’s contribution to accurate
nodule detection, we evaluated three segmentation methods
based on MRF: minimum gray-level distance (MGLD),
simulated annealing (SA), and thresholding (THRE), in which
a histogram of the filtered image was equally separated into
different sections and each section assigned to only one gray-
level (class) [31, 32]. All three methods used the second-
order clique potential and the same a priori information. The
MRF model’s β value, a parameter enabling adjustments of
the relative importance of smoothness of the regions in the
segmentation process, was set to an optimum value of 0.2
based on prior works [31, 32].

Feature Extraction

Once suspect regions were identified through the previ-
ous stage, their features were examined. At the outset,
regions were passed through an unsharp masking filter
[33] to enhance their high-frequency components around

edges. Furthermore, radius of nodule candidates that fell
outside of the target range of 3 to 21 mm in diameter was
discarded. Radius was measured as root of total area of
nodule candidate divided by constant number π. From
each of the remaining suspicious candidates, 34 features
were measured. The interdependencies of the features
were then examined and the features found correlated or
unstable removed from further consideration for final
classifier using free-response operating characteristic
(FROC) methodology. From the initial set of 34 features,
12 survived this selection process. Those included six
morphological features and six textural features, as listed
in Table 1.

Those features were used to eliminate false-positives
by evaluating the growth of suspect regions using a
method similar to Giger et al. [12]. Eventually, a 12-
dimensional threshold on the feature classifier outputted a
binary decision on each suspect candidate. The final
outcome of the feature extraction stage was an image

Table 1 The features used to characterize the suspicious regions in
the filtered images

Morphological features

Ratio of the region area to the smallest convex polygon that encloses
the entire region

Ratio of the biggest and smallest eigenvalues of the region

Ratio of the region area to the area of the enclosing bounding box

Fraction of the region coincident with a circle of equivalent area
centered at the region’s centroid

Average of radial length, defined as a normalized distance from the

region’s centroid to each of its boundary points, as mrl ¼ 1
N

PN

i¼1
ri,

where ri is the radial length to the ith boundary point and N is the
number of boundary points.

Entropy of radial distance length as the degree of randomness of radial
length [51]

Textual features

Dissimilarity as the difference between average gray levels of the

exterior and interior regions to their sum, as Dissimilarity ¼ mInt�mExt
mIntþmExt

,

where μInt and μExt are the region’s average interior and exterior

gray levels, respectively. The exterior region was considered to be

the portion of the image not contained within the region but two

times bigger than the radial lengths of the regionwith the same centroid.

Average of gray-level difference between the center pixel of a region

and its boundary pixels, defined as AG ¼ 1
N

PN

i¼1
PCenter � Prið Þ, where

N is the number of boundary points and PCenter and Pr are the gray
levels at a region’s center and the ith boundary point, respectively.

Co-occurrence matrix parameters of the region in terms of contrast,
correlation, energy, and homogeneity [52]. The co-occurrence matrix
was calculated as the interaction between gray values of pixels
separated by the distance of the biggest eigenvalue of the region at
angles of 0o, 45o, 90o, and 135o.
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which mapped the location and extent of suspect regions
(i.e., potential lung nodules) in each of the projection
images.

Biplane Correlation Method

BCI reduced the number of false-positive nodules by
correlating the presence of suspect nodules found in
projection image pairs. A suspect candidate in a projection
image was first mapped to its potential location in the
reference projection; in this study, given the angular
separation between the two views, θ, and maximum
measured thickness of the thorax, d, a correlation rectangle
was defined in the reference image within which the nodule
could be maximally projected [20]. The height of the
rectangle was calculated as dtan(θ). The width of the
rectangle was assumed to be variable and equal to the
effective diameter of the suspect nodule under examination.
If a corresponding suspect lesion was found in the
correlation rectangle in the reference image, the match
was marked as a positive outcome; otherwise, it was
discarded from further consideration.

Image Interpretation

Alternatively, to evaluate the performance of the BCI
technique, all suspect regions in each of the projection
images were compared against their truth files, indicating
the location of actual lesions in the images. The truth
files for the phantom images were generated by subtract-
ing each image from a corresponding image at the same
projection angle but without nodules. The truth files for
the human images were generated based on the associ-
ated CT dataset. A true-positive (TP) was recorded if
there was any overlap between a detected nodule and a
true nodule; otherwise the nodule found was recognized
as a false-positive (FP).

Angular Separation Effect

As an important acquisition parameter, we examined the
effect of angular separation on the BCI performance. To
do so, PA projections were paired with individual oblique
projection images across 6±1°, 5±1°, 4±1°, 3±1°, 2±1°,
1±1°, and 0±1° degree off-axis angular ranges, and

Fig. 3 Sample phantom and
human images acquired at –10o

(a, c) and +10o (b, d) projec-
tions. The phantom images
(a, b) include two added nod-
ules, 8 and 10 mm in diameter.
The human images (c, d) are
from a middle-aged woman with
a history of breast cancer and
a right partial mastectomy. An
8-mm nodule can be seen in the
left lung of the subject

J Digit Imaging (2012) 25:137–147 141



Fig. 4 A sample projection im-
age (a) and its resultant image
filtration output (b). Nodules are
marked on both images. The
following images show the out-
put of the image segmentation of
the filtered image (c), and the
fifth class of the segmented
image (d), with region locations
identified on the original projec-
tion image (e). Feature extraction
outcome of the image (f) is
matched against that from the PA
image (g) to render the final BCI
outcome (h) indicating two true-
positives (upper marks) and one
false-positive (the lower mark)
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results for the images across those ranges averaged. The
performance was then characterized by FROC analysis
[34] in terms of the number of TPs and FPs for each of the
projection pairs within those ranges.

Results

Figure 3 illustrates representative phantom and patient images
obtained in our study. The examples are at the extremes of the
angular range, exhibiting the maximum vertical displacement
of the projected nodules. Figure 4 shows workflow results of
CAD–BCI on phantom images. CAD is applied to all
projection images while BCI finalizes the results by paring
the projection images with PA projection image.

Figure 5 illustrates the outcome of the computer analyses
of the images, when applied (a) to single images and (b) to
image pairs according to the BCI scheme, where each
angular projection is paired with that of the PA view. In
either case, the number of true-positives remains relatively
stable regardless of the angular projection, indicating almost
perfect sensitivity (i.e., both of the two nodules in this case
are detected in almost each single projection images
regardless of the angle). However, the number of false-
positives varies significantly. For the case of single-view
analysis, it averages to about 18 per image and is higher for
positive projection angles. For BCI analysis (Fig. 5b), the
number of false-positive is highly dependent on the
projection angle of the image being paired with the PA
view. For the smallest angle (i.e., 0.28°), that amounts to 14
(i.e., the false-positive peak in Fig. 5b). However, larger
angles cause a notable reduction in that number, enabling
almost perfect specificity at the largest angles (i.e., zero or
one false-positive at the left and right extremes of Fig. 5b).

Trends similar to that of the phantom data can be
appreciated for human subjects as well, as illustrated in
Fig. 6. The only differences are in the false-positive trend for
single-view analysis as a function of projection angle, and
the number of false-positives being generally higher for the
BCI technique, primarily due the presence of more anatomic

noise in the human subject data. Nonetheless, a notable
reduction of false-positives is observed at larger angular
projections. As a typical example, in Fig. 6a, the single-view
analysis of image 49 (+6o projection angle) yielded one true-
positive and 18 false-positives. The BCI analysis of that
image paired with the PA view reduced the number of false-
positives to two, with no impact on true-positives (i.e.,
unchanged true-positive line across angles in Fig. 6b). The
phantom and human dataset results demonstrate very
effective removal of false-positives by the BCI scheme, with
no or little impact on the number of true-positives and on
sensitivity. Similar results were obtained when reference
image was one of the oblique projections as opposed to PA.

The choice of segmentation technique showed a small
effect on the results proving robustness of BCI in
removing false candidates. Figure 7 illustrates representa-
tive results. Overall, the MGLD technique yielded a slightly
more favorable number of false-positives without affecting
sensitivity. Computational times for the three techniques
examined, THRE, SA, and MGLD, were approximately 0.4,
5, and 1 min, respectively. In spite of a less favorable
computational time, MGLD was selected for image segmen-
tation due to its slightly superior performance compared with
the other methods.

Figure 8 shows the impact of angular separation on the
BCI performance for phantom images, expressed in terms
of FROC curves. The performance was plotted for both (a)
negative angular projections from –10o to–1o and (b)
positive angular projections from +1o to +10o. The results
indicate that, for any angular separation, more sensitivity
will “cost” more in terms of the number of false-positives.
However, that trade-off is more favorable at larger angular
separations. At an operational zone of the FROC, Fig. 9
illustrates the number true-positives and false-positives as
a function of angular separation. The results indicate
optimum performance in terms o false-positive reduction
when the angular separation of the projection pair is
greater than 5°. Operating in this range, one may achieve
an average of about 1.1 FPs per image pair at a sensitivity
level of 75%.

Fig. 5 a Shows our single-view
CAD results in terms of the
number of false-positives and
true-positives obtained from 71
projection images of the chest
phantom containing two lung
nodules. Projections 1 to 71
correspond to the angular range
of −10o and +10o. b Illustrates
the BCI results when each im-
age was correlated with the PA
projection. The algorithms used
MGLD segmentation
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Discussion

Several promising methods have been developed to reduce
the influence of anatomic noise in thoracic radiography. Two
such techniques that aim to improve lung nodule detection by
minimizing the appearance of ribs and other overlaying
thoracic structures are dual-energy subtraction imaging [35,
36] and digital tomosynthesis [37, 38]. Both techniques have
systems commercially available, and their clinical utilization
is evolving. CT is probably the optimal modality for
minimizing anatomic noise in chest imaging as it eliminates
the overlays of most anatomic structures associated with
projection imaging. While the use of low-dose CT for lung
cancer screening is under investigation [39–43] at present,
utilization of CT as a widespread screening method for the
detection of subtle lung nodules is controversial because of
associated economic (cost and technology availability),
patient care (e.g., over-diagnosis), and patient dose concerns.

The underlying hypothesis of correlation imaging is that
the anatomic noise associated with normal anatomic features
in the thorax is the main factor limiting the detection of subtle
lung nodules. With CI, angular information is used to
minimize this limiting influence by identifying and positively

reinforcing the nodule signals, which remain relatively
constant against a variation in the background structure.

Incorporating a robust CAD with BCI technique can
notably lower the number of false nodule candidates. This
approach does not promise to eliminate anatomic noise (as CT
does), but it does aim to cost-effectively reduce its influence
without an increase in patient dose. This paper reports on a
particular implementation of the technique with the use of
only two images, i.e., BCI. The implementation of BCI
technique is feasible and inexpensive. The device that has
been used in this study at Duke UniversityMedical Center is a
home-build modification of standard conventional PA X-ray
machine. A precise step motor was added to X-ray tube to
control projection beams. The study yielded highly encour-
aging results, demonstrating that it is possible to substantially
reduce the number of false-positives in the projection data due
to anatomic noise without a notable reduction in the number
of true-positive marks. The findings suggest that the BCI
technique has the potential for a CAD clinical implementation
as a cost-effective technique for improving the detection of
lung cancer.

This work parallels two prior works in the literature. Samei
et al. reported on a multi-projection implementation of CI for

Fig. 6 a Shows our single-view
CAD results in terms of the
number of false-positives and
true-positives obtained from 61
projection images of a human
subject containing one lung
nodule. Projections 1 to 61
correspond to the angular range
of −10o and +10o. b Illustrates
the BCI results when each im-
age was correlated with the PA
projection. The algorithms used
MGLD segmentation

Fig. 7 a Shows our single-view CAD results in terms of the number
of false-positives and true-positives obtained from 71 projection
images of the chest phantom containing two lung nodules. Projections
1 to 71 correspond to the angular range of −10o and +10o. b Illustrates

the BCI results when each image was correlated with the PA
projection. The curves reflect the performance obtained with our three
segmentation techniques: thresholding (THRE), minimum gray-level
distance (MGLD), and simulated annealing (SA)
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lung nodule detection [21]. Both studies indicate that the
use of more than two projections enables an effective
reduction of the influence of anatomic noise on CAD
system performance. Reiser et al. used a somewhat
different multi-projection approach, oriented particularly
to breast projection images [44]. They aimed to explicitly
develop a three-dimensional CAD approach using more
than two projection images with dose levels associated
with each projection lower than what might be used in
BCI. For either study, the enhanced reduction of anatomic
noise enabled with the use of additional projections needs
to be placed in perspective with the additional dose that
the approach might entail.

An essential element of BCI is the CAD algorithm used to
process the projection images. We developed a CAD
algorithm taking advantage of both the morphological and
textual features of chest images to identify lung nodules. Our
technique is similar to some prior implementations of CAD
for chest radiography [45–50]. However, our approach differs
from prior implementations in two significant ways. First,
image segmentation was achieved through characterizing the
mutual influence among MRF probabilities. This segmenta-
tion technique is less sensitive to the noise as it relies on
neighborhood pixels. Segmentations were further done
individually for each projected image. Secondly, the feature

selections went through a comprehensive search analysis to
ensure their optimum utilization for CAD.

In spite of positive findings, our study had four
limitations. One had primarily to do with the BCI technique
itself for nodules located near periphery of the lungs. In
angulated projections, these lesions can be shifted to areas
outside of “foot-print” of the lungs, thus decreasing the
detection accuracy of the technique. Extending CAD
processing to areas outside of the lung regions of the
projection images may solve this problem. Secondly, the
BCI performance is dependent on the width of the
correlation rectangle. A small width decreases the chance
for small, overlapping suspect regions appearing in the pair
of images, while a large width increases that probability,
yielding a higher number of false-positives. In this study,
we used the smallest boundary width enclosing suspect
regions to ensure that optimum performance may be
obtained for pairs of projection images. However, this
parameter can perhaps be more rigorously optimized in
future implementations. Thirdly, it is possible that BCI
performance might be somewhat dependent on the acqui-
sition parameters. We have not explicitly studied such
effects but expect them to be small, as the main limitation
of nodule detection seems to be anatomical noise, a factor
relatively invariable to acquisition parameters. Nonetheless,

Fig. 8 FROC analysis results of
the average BCI performance,
for negative angular projections
(a) and positive angular projec-
tions (b), when each image was
correlated with the PA image.
The X-axis provides the number
of false-positives per pair of
images used for BCI processing

Fig. 9 BCI results reflective of
the operational ranges of
performance as a function of
angular separation, for negative
angular projections (a) and
positive angular projections (b),
averaged across all cases
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such potential dependencies may need to be investigated.
Finally, while the findings of this study suggest that CAD–
BCI can be used as a possible effective method to reduce
the number of false-positives for lung nodule detection in
chest radiography, the focus of the study was primarily the
establishment of the methodology and its feasibility based
on phantom images and limited human subject cases. More
cases will be needed to more rigorously evaluate the
performance of CAD–BCI in clinical settings.
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