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Abstract In this paper, we describe and evaluate a system
that extracts clinical findings and body locations from
radiology reports and correlates them. The system uses
Medical Language Extraction and Encoding System
(MedLEE) to map the reports’ free text to structured
semantic representations of their content. A lightweight
reasoning engine extracts the clinical findings and body
locations from MedLEE’s semantic representation and
correlates them. Our study is illustrative for research in
which existing natural language processing software
is embedded in a larger system. We manually created
a standard reference based on a corpus of neuro and
breast radiology reports. The standard reference was
used to evaluate the precision and recall of the
proposed system and its modules. Our results indicate
that the precision of our system is considerably better
than its recall (82.32–91.37% vs. 35.67–45.91%).
We conducted an error analysis and discuss here the
practical usability of the system given its recall and precision
performance.
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Background

It is generally believed that databases of structured medical
data will help improve the diagnostic workflow, the
educational and teaching process, management of care,
and clinical research: see for instance the recent series of
radiology reporting publications [1–3]. Despite continuing
efforts to help clinicians enter data in a structured manner
[4–6], a significant portion of the medical data (the vast
majority of radiology and pathology reports) is still
recorded in free text as it is convenient to use and allows
for the expression of subtle nuances. It remains a challenge
to automatically convert free text to structured database
entries of the desired type.

Natural language processing (NLP) tools are available
that structure free text. OpenNLP1 and GATE2 are general-
purpose tools; Medical Language Extraction and Encoding
System (MedLEE) [7, 8], cTAKES [9], and medKAT
specialize in the medical domain. To embed these NLP
tools in a system, we typically have to develop one or more
post-processing modules that mine the NLP output.
Depending on the nature of the overall system, the
complexity of the post-processing modules ranges from
simple parser modules to advanced reasoning engines.

In this paper, we describe a reasoning engine that infers
the body location of findings that are extracted from free
text radiology reports, as envisioned in [3]. We have
divided this task into three subtasks: extracting finding
and location phrases in narrative text; determining the
syntactic relations between the phrases extracted; and
connecting findings and locations by reasoning about the
syntactic relations on a symbolic level. The three afore-
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mentioned medical NLP tools support the first subtask. In
addition, as will be explained in “MedLEE section,”
MedLEE’s output structure is excellently geared to solving
the second subtask.

For this reason, and the fact that MedLEE [7, 8] is the
state of the art in the field of medical NLP, we selected it as
the preferred NLP engine for our study. In its simplest form,
our reasoning engine merely filters MedLEE’s output
structure, and assigns body locations to findings that were
found by MedLEE to be related on syntactic grounds. Since
MedLEE was not optimized for the task of correlating body
locations and problem, we cannot expect superior results
from the base system. Therefore, we extended this base
system in two ways that reason about MedLEE’s output on
a symbolic level.

MedLEE has been applied to a variety of natural
language processing tasks, such as automated trend discov-
ery in chest radiology reports [10], detection of adverse
events [11], acquisition of disease drug knowledge [12],
and classification of patient smoking status [13]. MedLEE
can be licensed from NLP International.3

The reasoning engine can be used in a variety of
applications. To support the diagnostic workflow, for
instance, we can connect it to a retrieval system of previous
cases to select all cases with, say, a neoplasm in the
cerebellopontine angle [14]. If we have access to sufficient
numbers of reports, we can use it for research purposes, e.g., to
test the hypothesis that neoplasms in the lower inner breast
quadrant are more likely to be malignant than neoplasms in
the upper outer quadrant [10]. The reasoning engine can also
be used to visualize the information in the reports by
mapping the findings to a graphical representation of the
imaged organ [15, 16].

The contributions of our study are twofold. First, we
describe the finding–location correlation system in terms of
the base system sketched above and its extensions. Second,
we give an information–theoretic evaluation of the perfor-
mance of the base system and its extensions on corpora of
neuro and breast reports.

Methods

The reasoning engine we describe in this paper is built on
MedLEE and encompasses two sub-engines. The first
correlates clinical findings and body locations that are
extracted from the MedLEE output. The second normalizes
and completes breast locations and does not apply to non-
breast reports.

MedLEE splits the report into sentences and maps them
to a normalized structure, reflecting the semantic compo-

nents of the sentence (i.e., its phrases) and their interrela-
tions. The resulting structure encompasses a labeling of the
phrases such as clinical finding and body location.
MedLEE’s output is transferred to the correlation engine,
which assigns body locations to clinical findings. The
frame filler completes partially specified breast locations
based on a dedicated breast imaging vocabulary; it only
considers the locations in breast reports. See Fig. 1 for an
overview of the overall system.

MedLEE

MedLEE comprises a frame-based parser that detects the
grammatical structure of sentences, maps the structure
found to a frame, and fills the slots in the frame with
phrases. The filled frames are subjected to several normal-
ization steps so that all phrases reside in a controlled
vocabulary. In one of its settings, MedLEE returns its
output in extensible markup language (XML).

Several aspects of MedLEE’s output will be of particular
interest for our purposes. First, MedLEE labels the terms with
their respective categories such as problem, finding, bodyloc,
region, and procedure. This will allow us to extract findings
and body locations from the text. Second, we can assume that
the phrases that are inserted in the slots in a frame have a
particular semantic relation defined by that frame.

As an example, consider the sentence This lesion is
suspicious for a neoplasm such as a brainstem glioma or
astrocytoma. MedLEE’s XML output comes in two parts:

3 www.nlpapplications.com. Fig. 1 Overview of the overall system
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tagged text and structured text. In the tagged text, the sentence
is split at phrase level (see Fig. 2). In the structured part, the
frames are coded using XML’s nested structure (see Fig. 3).
The names of the XML elements (e.g., problem and
bodyloc) correspond to MedLEE’s categories. From the
structured text part, using the nested structure, we can derive
that the glioma and the astrocytoma are positioned in the
brainstem. Note that the brainstem bodyloc is correctly
applied to both the glioma and the astrocytoma based on the
conjunction “or.”

The structured text of the sentence Ultrasound evalua-
tion demonstrates probable fibroadenoma in the left lower
inner quadrant is shown in Fig. 4. The body location left
lower inner quadrant is represented by a nesting of two
region elements and no bodyloc element.

Finally, consider the tagged text of the sentence There
has been interval development of a 1 cm density in the far
posterior medial, inferior right breast in Fig. 5. MedLEE
failed to index the phrase inferior right breast. Consequent-
ly, there is no means of referring to it in the structured text
(Fig. 6), and therefore, the density problem does not
mention it as its body location.

Of lesser interest for the purpose of our paper are the
code and certainty attributes. The first map terms to
elements in the Unified Medical Language System.4 The
certainty elements represent the status of the term in the
report (e.g., present, possibly present, absent).

Correlation Engine

We extracted the problem and finding elements from the
MedLEE output, e.g., neoplasm, glioma, and astrocytoma
from Fig. 3. Similarly, we extracted the bodyloc elements
and region elements. If any of them contained nested region
elements, we collected them as adjectives accompanying
the root element. Thus, we extracted brainstem from Fig. 3,
left lower inner quadrant from Fig. 4, and posterior medial
from Fig. 6.

Our correlation engine assigns at most one body location
to each problem (i.e., problem or finding element), to which
end it applies two rules of inference. The first rule, the in-
XML rule filters the MedLEE output: a problem is assigned
the body location or region that is among its children, if it
has one. If it has multiple body locations and/or regions, the
first body location is selected. We chose to manage multiple

body locations in this way because it was not clear to us
what the semantic relation is between body location/region
siblings. For instance, for some problems A with body
location B and region C, the concatenation of B and C was
the most accurate descriptor of A’s body location, whereas
in other instances B and C refer to distinct areas.

Since MedLEE was not optimized for the task of
correlating body locations and problems, no superior results
can be expected from the in-XML rule. We therefore define
a second rule, called the in-sentence rule.

For problems that have not yet been assigned a body
location by the previous rule, the in-sentence rule assigns
the body location in the sentence in which the problem
appears, provided that sentence contains precisely one
unique body location. If neither of the two rules is
applicable, the problem is assigned no body location.

For instance, the in-XML rule applies to the third and
fourth problem in Fig. 3. It assigns brainstem to glioma and
astrocytoma. The in-sentence rule assigns brainstem to both
lesion and neoplasm since this is the only body location
appearing in the sentence in which the problems appear.
The in-XML rule assigns left lower inner quadrant to
fibroadenoma (Fig. 4) and posterior medial to density
(Fig. 6).

BI-RADS Frame Filler

We observed that the breast reports often require
contextual information to determine the exact breast
positions to which their body locations refer. Consider
for instance the following sentences: There are several
scattered smaller cysts within the left breast. A 1.8×2.1 cm
simple cyst is present at the 12 o'clock position. The
phrase 12 o’clock position is ambiguous between the 12
o’clock position in the left and right breast. We need the
first sentence to resolve this ambiguity. Similarly, the
phrase left lower inner quadrant is incomplete in the
sentence Ultrasound evaluation demonstrates probable
fibroadenoma in the left lower inner quadrant. It requires
domain knowledge to infer that this refers to the lower
inner quadrant of the left breast, and not, for instance, of
the left axillary region.

We developed an engine that completes partial breast
region locations. The engine uses a representation of breast
regions that is based on Breast Imaging-Reporting and Data
System (BI-RADS). This system [4] provides a standard-
ized vocabulary for breast radiology that comprises a4 www.nlm.nih.gov/research/umls.

Fig. 2 Tagged text of This
lesion is suspicious for a
neoplasm such as a brainstem
glioma or astrocytoma
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comprehensive terminology for describing breast regions
(see Table 1).

A lexical matcher maps each body location to a BI-
RADS object, accounting for morphological variations. BI-
RADS objects have four attributes that can take the values
as specified in Table 1. For instance, axillae are mapped to
the following BI-RADS object:

laterality=both
depth=?
region=axilla
breast location=?

The lexical matcher yields a series of BI-RADS objects.
A BI-RADS object is partial if either its laterality or its
region is unknown. The frame filler completes the partial
BI-RADS objects on the basis of the preceding BI-RADS
objects. As for completing laterality values of BI-RADS
objects, we distinguish the root XML element of the body
location on which it is based. BI-RADS objects with an
unknown laterality value that belong to a procedure element

are assigned the value “both” since procedures (e.g.,
ultrasound examinations) are typically performed bilaterally
unless specified otherwise. A BI-RADS object that does not
belong to a procedure element simply inherits the laterality
of its preceding BI-RADS object.

As for completing region values, the frame filler uses a
crude rule: it sets unknown region attributes to the default
value “breast.” The pseudocode in Fig. 7 implements the
above rules for completing partial breast locations. Note
that the BI-RADS frame filler also completes body
locations that were missed by MedLEE. It assigns “breast”
to the region of the BI-RADS object corresponding to the
phrase posterior medial from Figs. 5 and 6.

Evaluation

For the development and evaluation of the system, we used
two corpora of deidentified radiology reports in the English
language. The first corpus consists of 860 neuroradiology
reports obtained from a US-based radiology institute. The

Fig. 3 Structured text of
sentence from Fig. 2. We have
removed some attributes and
elements that are not
pertinent to our discussion. We
have abbreviated some
elements <t…></t>without
inner text to <t…/>, as usual

Fig. 4 Structured text of Ultra-
sound evaluation demonstrates
probable fibroadenoma in the
left lower inner quadrant
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second consists of more than 500 breast cancer reports
obtained from a US-based university hospital. Six hundred
sixty neuro reports and 119 breast reports were randomly
selected from these respective corpora for evaluation. The
remaining 200 neuro reports were used in the development
phase of the correlation engine; no breast reports were
used in this phase. A fraction of the remaining breast
reports were used in the development phase of the BI-
RADS frame filler.

We evaluated the extent to which the proposed engine
accurately extracts the problem–body location pairs from
the corpus in terms of its recall and precision. In our
evaluation, we regarded the reasoning engine as a module
that accepts a corpus of reports and returns a list of tuples
(A, B)j extracted from the corpus, where A and B are
strings representing a problem and body location, respec-
tively, and j is an index pointing at the coordinates of A in
a report from the corpus. We call j a “report coordinate.” If
the problem A at report coordinate j does not have a body
location, we designated this by writing the empty string
for B.

We defined the following parameters:

& True positive (tp): number of pairs (A, B)j extracted in
which A at report coordinate j is a problem with body
location B.

& False positive (fp): number of pairs (A, B)j extracted
in which A at report coordinate j is not a problem, or B
is not a body location, or A does not have body
location B.

& False negative (fn): number of problems A with report
coordinate j and body location B for which (A, B)j is
not extracted.

Recall (or sensitivity) is the fraction of problem–location
pairs that are accurately extracted: tp/(tp+fn). Precision (or

positive predictive value) is the fraction of extracted pairs
(A, B)j that are accurate: tp/(tp+fp).

The reference standard was created by the first author
whose academic background is in computer science. He has
over 4 years of NLP experience in the neuro domain and
over 2 years in the breast domain. The reference standard
consisted of two components, one for evaluating the
system’s recall and the other for evaluating its precision.

The first component was based on all occurrences of
ischemia and meningioma in the evaluation part of the
neuro reports and all occurrences of carcinoma, lesion,
mass, and (micro)calcification in the evaluation part of the
breast reports, allowing for minor morphological variations.
These terms were selected for two reasons. First, we
considered them typical for the respective corpora; in the
neuro corpus, the two selected terms account for 9.7% of all
problems extracted from the neuro reports, while the breast
terms account for 34.9% of all problems extracted from the
breast reports. Second, this set is a mixture of diagnoses
(meningioma and carcinoma) and observations (ischemia,
lesion, mass, and microcalcification). We selected four
terms for the breast corpus as it was smaller in size. The
number of occurrences of each term is given in Table 6; in
total, the neuro set contains 812 occurrences and the breast
set 194.

For each occurrence A of these terms at report
coordinate j, the first author determined A’s body location
B (the empty string if there is none) and whether (A, B)j
was extracted. If (A, B)j was not extracted, the term A was
labeled as a negative instance; otherwise, it was labeled as a
positive instance. We accepted significant morphological
and lexical variations between the problem and body
location in the report and the strings representing them in
(A, B)j.

Fig. 5 Tagged text of There has
been interval development of a
1 cm density in the far posterior
medial, inferior right breast

Fig. 6 Structured text of sentence from Fig. 5

Table 1 BI-RADS-based location descriptors

Laterality Depth Region Breast location

Left Anterior Breast Superior

Right Middle Subareolar region Medial

Both Posterior Central region of breast Inferior

Axilla region Upper outer quadrant

Axillary tail region Upper inner quadrant

Lower outer quadrant

Lower inner quadrant

1–12 o’clock position
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The second component of the reference standard was
based on a random selection of 1,000 pairs of (A, B)j
extracted from the patient history, impressions, and conclu-
sion sections of the neuro reports and 500 extracted from
the same sections of the breast reports, accounting for 8.5%
and 37.1% of all pairs extracted from the respective
corpora. For each pair in which B is not the empty string,
an assessment was made of whether A is mentioned at
report coordinate j and whether B is a sufficient description
of A’s body location. The pair was labeled negative if A was
not mentioned at report coordinate j or if B was an
insufficient description of A’s body location. B was
regarded as insufficient if B was not a body location (e.g.,
in The patient left in a stable condition the word left does
not refer to the left breast), if B was incorrect (e.g., left
axilla vs. left breast), or if B was significantly incomplete
(e.g., posterior medial breast is significantly incomplete
with respect to posterior medial, inferior right breast (see
Fig. 5), but posterior medial, inferior breast is significantly
complete). The pair was labeled positive if it was not
labeled negative.

A second annotator was invited to create a benchmark
annotation for the breast reports. We decided to let him
annotate all breast instances and none of the neuro instances
as he indicated that he was more familiar with the breast
domain than the neuro domain. The second annotator was a
staff member of the first and second authors’ department,
with an academic background in biomedical engineering.
The second annotator had not been exposed to the reports
or any aspect of this research; in fact, he was hired after the
first version of this paper was submitted for review.

Like the first annotator, the second annotator labeled
instances positive and negative. The “inter-rater matrix” in
Table 2 compares the two annotations. The inter-rater
agreement between the standard reference and the bench-
mark annotation is quantified by means of Cohen’s κ [17].
The purpose of this metric is to factor out the probability
that the raters agree on the label of an instance by mere

chance: S=(p1/t)×(p2/t)+(n1/t)×(n2/t). Using the notation of
Table 2, κ is defined as (P − S)/(1 − S), where P=(a+d)/t.

Results

In this section, we quantify the pairs (A, B)j extracted by
the system and specify the inter-rater agreements between
the standard reference and the benchmark annotation. Then,
we use the standard reference to measure the system’s recall
and precision. We shall also specify the recall and precision
of the in-XML rule and the correlation engine.

Problems and Location Pairs Extracted by System

Table 3 gives a quantitative summary of the problems, body
locations, and connections between problems and body
locations found by the system.

Roughly 57% (neuro) and 40% (breast) of the problems
were assigned a body location. In both cases, the in-XML
rule derived the majority of the body locations: 79.24%
(neuro) and 65.37% (breast). The breast corpus contains
relatively fewer unique body locations (12.68%) than the
neuro corpus (21.68%). This might be due to the BI-
RADS frame filler which maps body location phrases to
standardized body location objects. 38.37% (236/615) of
the breast locations were completed by the BI-RADS
frame filler.

Fig. 7 Pseudocode for complet-
ing partial BI-RADS object

Table 2 Inter-rater matrix between standard reference and benchmark
annotation

Benchmark annotation

Positive Negative

Standard reference Positive a b p1=a+b

Negative c d n1=b+d

p2=a+c n2=b+d t=a+b+c+d
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Inter-rater Agreement

The distribution of positively and negatively labeled
instances of the recall annotations is given in Table 4. For
this distribution, S=0.50, P=0.85, and κ=0.70. Similarly,
Table 5 shows the distribution for the precision annotations.
For this distribution, S=0.85, P=0.98, and κ=0.86.

Recall

MedLEE failed to extract keywords only rarely: two
ischemia and three meningioma occurrences. These data
points are ignored in the results listed in Table 6. The vast
majority of the problems considered have a body location
mentioned in the report (94.58% (242+526/279+533) for
neuro; 81.12% for breast). In Table 6, we see that, for
instance, 242 ischemia occurrences have a body location
mentioned in the report. Of these 242 ischemia body
location instances, 16.94% were retrieved by the in-XML
rule and 12.40% by the in-sentence rule.

In Tables 6 and 7, we see that the system retrieved
35.67% of the body locations in the neuro domain and
45.91% in the breast domain. In both domains, in roughly
two thirds of the cases in which problems were assigned a
body location, this was done by the in-XML rule.

Approximately one third (16.35% of 45.91%) of all
breast body locations that were assigned to a problem were
completed by the BI-RADS frame filler.

Of the problems that had a body location in the report,
the in-XML rule had 22.91% recall in the neuro reports. In
the breast reports, assuming all body locations that were
completed by the BI-RADS frame filler were significantly

incomplete, and therefore incorrect, the in-XML rule had
20.13% recall.

The bottom rows in Tables 6 and 7 give the recall for the
occurrences that do not have a body location in the report.
For instance, in There is no evidence of meningioma, no
body location is specified for the meningioma problem. We
see that the reasoning engine correctly assigns no body
location to such instances in all but one of the cases.

Precision

All 1,500 problems appeared in the sentence from which
they were extracted. Therefore, the results in Tables 8 and 9
focus on the precision of the assigned body locations. The
overall precision of the assigned body locations ranges
from 82.32% (neuro) to 91.37% (breast). In both domains,
the precision of the in-XML rule is higher than that of the
in-sentence rule.

To evaluate the influence of the BI-RADS frame filler
on the precision of the overall system, we separated the
problems in the breast reports with body locations that
were completed by the frame filler from the problems
with body locations that were not (see Table 9). The
precision of the overall system is more than 16% (98.26
minus 81.71) lower for problems with partial breast
locations that were completed than for breast locations
that were not.

The system that only applies the in-XML rule had higher
precision than the system as a whole: it had 83.66%
precision in the neuro domain and 92.86% in the breast
domain. If we were to discard all partial body locations
instead of completing them, precision would increase to

Table 3 Quantitative summary

Neuro Breast

No. of problems 16,482 1,520

No. of unique problems 518 143

No. of problems with location 9,473 615

% Derived by in-XML rule 79.24 65.37

% Derived by in-sentence rule 20.76 34.63

No. of unique locations 2,048 78

No. of locations completed N/A 236

Table 4 Inter-rater matrix of recall annotation

Benchmark annotation

Positive Negative

Standard reference Positive 87 21 108

Negative 8 78 86

95 99 194

Table 5 Inter-rater matrix of precision annotation

Benchmark annotation

Positive Negative

Standard reference Positive 179 3 182

Negative 1 14 15

180 17 197

Table 6 Recall results for neuro terms

Ischemia Meningioma Total

No. of occurrences 279 533 812

No. of occurrences with location 242 526 768

% Retrieved 29.34 38.6 35.67

% Retrieved by in-XML rule 16.94 25.67 22.91

% Retrieved by in-sentence rule 12.40 12.93 12.76

No. of occurrences without location 37 7 44

% Retrieved 100 85.71 97.73
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98.26. The subsystem that only applies the in-XML rule
had 100% precision.

Discussion

We conclude that there was substantial inter-rater agree-
ment (κ=0.70 and κ=0.85) between the standard refer-
ence and the benchmark annotation created by the second
annotator for the breast reports. We believe that the
agreement is sufficiently high to draw conclusions on the
performance of the modules on the basis of the standard
references. This is quite beneficial for our work as it
means that there is no need to create further annotations of
the data and that we do not need to decide how to
aggregate conflicting annotations.

Table 10 summarizes the recall and precision results of
the in-XML rule, which is merely a filter on MedLEE’s
output, the correlation engine, which applies the in-XML
rule and the in-sentence rule, and the entire reasoning
engine, which encompasses the correlation engine and the
BI-RADS frame filler. To measure the overall performance
of the systems, we aggregated recall (for problems with a
body location) and precision in the F‐measure, i.e., their
harmonic mean: (2×recall×precision)/(recall+precision).

We observe that the recall scores of our systems are
consistently lower than their precision scores. We wish to
emphasize that these recall results are not indicative of
MedLEE’s performance as a medical natural language
processing toolkit.

The poor recall scores of the proposed system and its
variants are due to a number of factors. First, we observed
that quite a number of body locations were consistently
interpreted incorrectly. For instance, in the neuro domain,
MedLEE understood T1 and T2 as being the first and
second thoracic vertebrae, respectively, whereas in this
context they refer to T1 and T2 relaxography (MRI
protocols). This happened in 19 cases. Also, the BI-
RADS frame filler introduced body location errors. For
instance, it assigned the default value breast to unknown
region attributes. For most findings this is appropriate, but
it is not in the case of lymph node-related findings, which
are generally located in the axillary region.

Second, we saw that MedLEE occasionally failed to
extract breast locations with multiple modifiers, such as
upper inner quadrant of the left breast. We manually added
the BI-RADS body location phrases to MedLEE’s vocab-
ulary, but MedLEE would still occasionally miss these

Table 7 Recall results for breast terms

Carcinoma Lesion Mass (Micro) calcification Total

No. of occurrences 32 57 48 57 194

No. of occurrences with location 30 49 31 49 159

% Retrieved 36.67 51.02 48.38 44.89 45.91

(% not completed/% completed) (23.34/13.33) (30.61/20.4) (32.26/16.13) (30.61/14.28) (29.56/16.35)

% Retrieved by in-XML rule 16.67 30.61 35.48 36.73 30.82

(% not completed/% completed) (6.67/10) (18.37/12.24) (25.81/9.68) (26.53/10.20) (20.13/10.69)

% Retrieved by in-sentence rule 20.00 20.41 12.90 8.16 15.09

(% not completed/% completed) (16.67/3.33) (12.24/8.16) (6.45/6.45) (4.08/4.08) (9.43/5.66)

No. of occurrences w/o location 2 8 17 8 35

% Retrieved 100 100 100 100 100

The percentage of instances that were retrieved by the respective rules is broken down into the percentage of instances that were not completed by
the BI-RADS frame filler and the percentage of instances that were completed, i.e., the values x and y in (x/y), respectively

Table 8 Precision results for pairs (A, B)j extracted from the
breast reports

In-XML
rule

In-sentence
rule

Total

No. of problems with
location (% correct)

514 (83.66) 114 (76.32) 628 (82.32)

O the 1,000 pairs, 372 have no body location (i.e., B is the empty
string). Values in parentheses represent the percentage of pairs that
were correctly inferred by the respective rule

Table 9 Precision results for pairs (A, B)j extracted from the breast
reports, differentiating between the rule that derived the relevant body
problem and whether it was completed by the BI-RADS frame filler

In-XML rule In-sentence rule Total

Not completed 79 36 115

(% Correct) (100) (94.44) (98.26)

Completed 61 21 82

(% Correct) (83.61) (76.19) (81.71)

Total 140 57 197

(% Correct) (92.86) (87.72) (91.37)

Out of 500 pairs, 303 had no body location
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anatomy-specific terms. We concluded that MedLEE’s
grammatical rules need to be updated as well to accommo-
date this type of body location. Our license did not allow us
to modify MedLEE’s grammar, however, so we could not
test this hypothesis.

The third type of missed correlation is caused by the fact
that the system is incapable of making cross-sentence
correlations. This is because MedLEE processes the reports
in a sentence-by-sentence fashion, and the inference rules
applied by the correlation engine can only connect body
locations and problems that appear in the same sentence.
However, radiology studies typically give a multidimen-
sional assessment of findings (e.g., location, size, signal
intensity, differential diagnoses) which are spread over
multiple sentences, especially if the finding is complex.
Since there is no reporting guideline that instructs radiol-
ogists to state problems and their locations in the same
sentence, the correlation engine is expected to fail on
complex problems in particular.

The first two error types are also discussed in [18]. They
are essentially caused by the fact that MedLEE is not
geared to the specifics of body location descriptors in our
reports. It may not be hard to write patches for individual
errors, such as extensions of the vocabulary and domain-
sensitive rules that determine the meaning of abbreviations.
But it remains to be seen how much work needs to be done
in each new domain.

The third class of error calls for cross-sentence inference
rules. These rules can be aided by anaphora resolution
techniques that correlate anaphoric phrases with problems
and body locations from previous sentences. To the best of
our knowledge, no anaphora resolution software is current-
ly available for medical reports [19]. General anaphora
resolution software exists (e.g., OpenNLP and GATE), but
it fails to account for domain-specific anaphora, such as
part–whole co-references [20] or hypernym/hyponym co-
references. The following sentences illustrate the latter type
of co-reference: There is a spiculated mass in the left breast.
The lesion measures 12 × 6 mm. The term lesion refers to
the more specific phrase spiculated mass. A recent
publication [21] gives a thorough analysis of the distribu-

tion of anaphora in a corpus of clinical reports, including
radiology reports.

One of the reviewers suggests that the task of correlating
problems and body locations considered in this paper is a
type of (generalized) co-reference resolution. We find this
an inspiring notion since we could think of a problem (e.g.,
meningioma) and a body location (e.g., anterior falx) as
two linguistic devices that refer to the same discourse entity
(e.g., the meningioma in the patient’s anterior falx). From
this perspective, the correlation engine is an intra-sentence
co-reference handler.

We saw that the heuristic in-sentence rule is less reliable
than the in-XML rule. The precision of the former rule might
be increased by endowing it with a table of admissible
problem–location combinations, or alternatively with a table
of forbidden problem–location combinations. Such a table of
domain knowledge would for instance prevent the in-sentence
rule from assigning left leg to headache on the basis of the
sentence Numbness in left leg and headache. A table like this
can be based on existing ontologies, such as Systematized
Nomenclature of Medicine–Clinical Terms (SNOMED CT)
or Unified Medical Language System. For instance,
SNOMED CT has a finding-site relation that models exactly
the relation we are interested in. An investigation should be
carried out to see whether this relation is sufficiently rich for
our purposes.

One of the reviewers suggests that statistical methods
could also be used to model prior knowledge on the
problem–location pairs. The reviewer considers that such
statistics can be computed from collocation distributions of
problems and body locations in sufficiently large corpora of
medical texts, which could be extracted using available
concept extraction tools [22]. If future research demon-
strates that this approach is indeed useful, it would mean
that establishing highly specific relations (i.e., relations
between one particular problem descriptor and one partic-
ular body location descriptor) can be leveraged by
collocation statistics, which are ipso facto not specific.

Collocation statistics can also be used to implement
other rules, which might improve the recall of the system.
For instance, such a rule may dictate that if there is one
problem in a sentence that contains two or more body
locations, we select the body location that co-occurs most
frequently with the problem at hand. In its current form, the
in-XML rule chooses the first body location element if a
problem has several. By so doing, we ignore parts of the
anatomical information that was attached to a problem. It is
quite conceivable that an extension of this rule that knows
when and how to aggregate multiple body locations would
increase the recall of the correlation engine. Collocation
statistics can also be used to this end.

In its current form, the overall system is particularly useful
for applications that require high precision, such as tools for

Table 10 Summary of the recall and precision scores of the in-XML
rule, the correlation engine, and the entire reasoning engine for the
neuro and breast reports

Recall Precision F‐measure

In-XML rule Neuro 22.91 83.66 35.97

Breast 20.13 100 33.51

Correlation engine (in-XML
rule+in-sentence rule)

Neuro 35.67 82.32 49.77

Breast 29.56 98.26 45.45

Correlation engine+frame filler Breast 45.91 91.37 61.11

248 J Digit Imaging (2012) 25:240–249



researching trends in sizeable report repositories. MedLEE
was used in such a way in [23]. On the other hand, the system
is less suitable for applications that require high recall, such
as tools that summarize and/or visualize the contents of one
particular report. Such an application is described in [15, 16],
but no performance analysis is given of the NLP system
used in these publications with respect to the problem–
location correlation task, nor were we able to reproduce it
from the description.

As discussed above, we only consulted neuro reports in
the development phase of the correlation engine. In
Table 10, we see that the aggregated performance of the
correlation engine in the breast and neuro domains is
comparable (F‐measure 45.45 vs. 49.77). These figures
seem to indicate that the correlation engine is sufficiently
domain-independent and may be applicable to other
anatomical regions. Different domains may have different
reporting styles, though, which may pose different NLP
challenges. Dedicated engines, such as our BI-RADS frame
filler, can be developed to face these challenges, resulting in
an increased F‐measure of the overall system.

Conclusion

In this paper, we have described a system that
automatically correlates body locations and clinical
problems. The system was fully specified and relatively
easy, and it should therefore be straightforward to
reproduce. Our evaluation on the basis of two corpora
shows that the system’s precision is satisfactory, but that
its recall lags behind. We have outlined the repercus-
sions of the usability of the system in real applications.
We have sketched several ways to improve the results,
one of which touches on anaphora resolution in medical
data. This seems to us a new and exciting problem area
for natural language processing. This system can be
used in various applications, such as anatomy-based
retrieval of cases, researching problem-finding site
trends, and visualization of report data.
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