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Abstract Traditionally, image studies evaluating the effec-
tiveness of computer-aided diagnosis (CAD) use a single
label from a medical expert compared with a single label
produced by CAD. The purpose of this research is to present
a CAD system based on Belief Decision Tree classification
algorithm, capable of learning from probabilistic input
(based on intra-reader variability) and providing probabilis-
tic output. We compared our approach against a traditional
decision tree approach with respect to a traditional perfor-
mance metric (accuracy) and a probabilistic one (area under
the distance–threshold curve—AuCdt). The probabilistic
classification technique showed notable performance im-
provement in comparison with the traditional one with respect
to both evaluation metrics. Specifically, when applying cross-
validation technique on the training subset of instances, boosts
of 28.26% and 30.28% were noted for the probabilistic ap-
proach with respect to accuracy and AuCdt, respectively.
Furthermore, on the validation subset of instances, boosts of
20.64% and 23.21% were noted again for the probabilistic
approach with respect to the same twometrics. In addition, we
compared our CAD system results with diagnostic data avail-
able for a small subset of the Lung Image Database Consortium

database. We discovered that when our CAD system errs, it
generally does so with low confidence. Predictions produced
by the system also agree with diagnoses of truly benign
nodules more often than radiologists, offering the possibility
of reducing the false positives.

Keywords Chest CT. Computer-aided diagnosis (CAD) .

Feature extraction . Image analysis . Machine learning .

Radiographic image interpretation . Computer-assisted

Introduction

Consensus interpretation of imaging studies is defined as the
agreement reached when two or more radiologists report the
imaging findings [1]. In the clinical practice of radiology,
consensus, when interpreting the medical image, is hardly
ever reached, especially with diagnostic tests where interpreted
components are subjective. Several studies showed substantial
observer variability not only among non-specialized radiologists
during standard clinical reporting [2, 3], but also at the expert
level of image interpretation [4, 5].

In the computer-aided diagnosis (CAD) literature, con-
sensus image interpretation is used as a standard of refer-
ence to which the CAD method is compared. Although there
are several CAD studies [6–8] that looked at the perfor-
mance of individual radiologists before and after using
CAD, most CAD systems consider consensus as the refer-
ence standard for development and evaluation when inter-
pretations of multiple radiologists are available. Within the
consensus approach, either only the consensus opinion is
known [9–11] or individual interpretations are known but a
consensus opinion is formed [12–20].

In a comparison of standard reading and computer-
aided detection on a national proficiency test of screening
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mammography [12], the CAD performance was compared
with double reading emulated by combining evaluations of
four experienced radiologists. The combination was performed
in such a manner that a case was considered positive if at least
one of the observers marked it as positive. In another study for
comparing computer-aided detection versus independent dou-
ble reading of masses inmammograms, Karssemeijer et al. [13]
evaluated three reading conditions: a single radiologist’s inter-
pretation, emulated double reading (emulation was performed
by combining radiologist interpretations pair-wise and then
averaging the results of produced pairs), and emulated CAD
as a second reader by combining CAD results with single
radiologist interpretations. Muratmatsu et al. [14] used the
mean or mode to form a consensus when investigating a
psychophysical measure for evaluation of similar images for
mammographic masses. Tao et al. [16] described a system for
joint segmentation and spiculation detection of mammographic
masses. The system demonstrated overlap ratios between
reference truth and produced segmentation of 0.766 and 0.642
for the whole mass and margin portion of mass correspond-
ingly. In order to create a reference truth for the segmentation,
the consensus region was formed out of five available radiol-
ogists boundaries in such way that the pixel was considered a
part of the region if it was marked by at least three out of five
radiologists. In the work of Sahiner et al. [17] dedicated to
extraction of image features for mammographic mass charac-
terization, artificial consensus was employed to build one of the
reference standards: the ratings provided by the majority of
radiologists (two out of three) were used to label the mass.

In the realm of CAD for pulmonary nodules, there are
several studies that investigate the use of the consensus ap-
proach as a reference truth. The creation of the National
Cancer Institute (NCI) Lung Image Database Consortium
(LIDC) dataset [21] also allowed for investigating the vari-
ability among readers as it includes ratings for nine nodules
characteristics and the boundary delineations by up to four
radiologists. Two recent studies by [18, 19] looked at the
impact on reader agreement on reported CAD systems when
using the LIDC dataset. Furthermore, Armato et al. [20]
assessed the radiologist performance in the detection of lung
nodules and demonstrated the strong impact of the definition
of “truth” on the lung nodule detection process. A total of 24
reference standards were created from the annotations of four
radiologists in the following manner: 1—all possible pair-
wise combinations of four radiologists (six combinations)
using logical AND and OR operators (total of 6×2 reference
standards); 2—all possible triplet combination of four radiol-
ogists (four combinations) using AND, OR, and majority oper-
ators (total of 4×3 reference standards). The number of ≥3 mm
nodules of interest ranged from 15 to 89 in different reference
standards. On the next step the performance of each of four
radiologists was evaluated against all the available reference
standards. The results showed mean sensitivities (across

radiologists) ranging from 51% to 83.2% and mean false-
positive rates ranging from 0.33 to 1.39 for different reference
standards.

In summary, the use of a consensus standard does not show
the extent to which a new technique is accurate in establishing
a diagnosis, but only the extent to which a new technique
agrees with the consensus reading. This becomes problematic
since although a consensus might be reached, nothing guar-
antees that the consensual result is true, as mere consensus
does not imply the correctness of a diagnostic decision [1].
The American College of Radiology Imaging Network
(ACRIN) recently highlighted that if imaging research results
are aimed to be translated into the clinical practice of radiol-
ogy, then the potential variability among observers should
require the same level of attention as the potential variability
among study subjects and variability in the imaging devices
[22]. As a result, ACRIN has recommended the incorporation
of the expected variability between observers into sample size
calculations and other fundamental parameters that determine
a given experimental design [22]. Furthermore, in a Radiology
journal editorial, Bankier et al. [1] concluded that the use of
consensus readings should be regarded as a study limitation
and recommended that researchers look into more robust and
viable alternatives to reference standards based on consensus.

To the best of our knowledge, none of the previously
published works proposed classification system for learning
from and predicting the whole distribution of radiologists’
annotations. Such approach can be beneficial for CAD pur-
poses for several reasons: learning from the distribution of
annotations will help to avoid the loss of potentially important
information when classification system has no knowledge on
radiologists’ level of expertise; probabilistic prediction can
carry important information besides the malignancy of the
nodule (shape of the distribution can be used as an indicator
of complexity of the particular classification task).

In this work, we propose the investigation of CAD perfor-
mance based on the distribution of radiologists’ interpretations
rather than their consensus. Specifically, instead of consider-
ing the majority malignancy rating among R radiologist rat-
ings r1; . . . ; rR½ � for a certain case, we consider the probability
distribution of these ratings pðc1Þ; . . . ; pðckÞ½ �across each of
the p c1ð Þ; . . . ; p ckð Þ½ �malignancy classes (k≥2) where p(ci) is
calculated as the number of radiologists who assigned the case
to class ci over the total number of radiologists. To deal with
the inter-observer variability quantified through a vector of
class probabilities, we propose a probabilistic classification
approach based on belief decision trees [23]. Although other
approaches can be used such as those based on support vector
machines with pair-wise coupling [24]; however, we chose to
employ Decision Tree classification approach in this research
because the decision rules can be easily visualized and under-
stood; furthermore, the decision trees approach also has a
feature selection algorithm embedded in the classification
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process which allows to understand which image features are
more important.

Furthermore, in addition to the inter-observer variance, the
LIDC dataset presents another interesting challenge in dealing
with degrees of uncertainty such as: 1 0 ‘highly unlikely’, 2 0
‘moderately unlikely’, 3 0 ‘indeterminate’, 4 0 ‘moderately
suspicious’, 5 0 ‘highly suspicious’. This is a situation present
in most biological systems where there is overlap or gradation
between normal and abnormal [25]. Given that interpretation
disagreement often occurs for these complex cases and that
setting thresholds for transforming the problem to the two
conventional states, malignant versus benign, is challenging
as thresholds can vary among observers, we propose to also
investigate this classification problem as a multi-class classi-
fication problem in which k is >2.

In conclusion, our proposed work aims to open new
avenues of exploration for building and evaluating CAD
systems in terms of including both the variability among
readers—recently identified as a current limitation of the
current CAD studies [1] and the degree of uncertainty (‘lack

of diagnostic confidence’)—the perceived Achilles heel of
the radiology report [26]. Figure 1 provides a visual repre-
sentation of the probabilistic multi-class space we aim to
explore.

The rest of the paper is organized as follows: Section
“Materials andMethods” presents the LIDC dataset, traditional
decision trees, and the belief decision trees for our proposed
approach; Section “Results” presents our results and findings;
Section “Discussion” discusses the results in the context of a
LIDC subset for which the gold truth (from biopsies and follow
up studies) is available; and Section “Conclusions” summarizes
our presented work and describes directions for future work.

Materials and Methods

This section describes the LIDC dataset employed in
this research, provides details on image extraction process,
and explains both traditional and multi-class probabilistic
classification algorithms. The final sub-section discusses the

Fig. 1 The probabilistic multi-
class space in which one nodule
was interpreted by four radiol-
ogists: two assigned rating 2,
one rating 3, and the fourth one
label 5 (white points). The dark
points represent the predicted
probabilistic ratings for the
same nodule. Explored area
represents those cases that take
into account agreement/consen-
sus when predicting malignan-
cy; the gray area represents
those cases for which the
nodules are not clearly benign
or malignant
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performance evaluation technique for the multi-class probabi-
listic classification system.

LIDC Dataset

The publicly available LIDC database (downloadable through
the National Cancer Institute’s Imaging Archive web site—
http://ncia.nci.nih.gov/) provides the image data, the radiolog-
ists’ nodule outlines, and the radiologists’ subjective ratings of
nodule characteristics for this study. The LIDC database cur-
rently contains complete thoracic CT scans for 400 patients
acquired over different periods of time and with various
scanners.

The Extensible Markup Language (XML) files accompa-
nying the LIDC Digital Imaging and Communications in
Medicine images contain the spatial locations of three types
of lesions (nodules <3 mm in maximum diameter, but only
if not clearly benign; nodules ≥3 mm but <30 mm regardless
of presumed histology; and non-nodules ≥3 mm) as marked
by a panel of four LIDC radiologists. For any lesion marked
as a nodule ≥3 mm, the XML file contains the coordinates of
nodule outlines constructed by any of the four LIDC radiolog-
ists who identified that structure as a nodule ≥3 mm. Since a
nodule can appear on a different number of slices associated
with that particular nodule (Fig. 2), each nodule is represented
by a number of instances equal to the number of slices con-
taining the nodule multiplied by the number of radiologists
who marked that nodule on each slice. Moreover, any LIDC
radiologist who identified a structure as a nodule ≥3 mm also
provided subjective ratings for nine nodule characteristics:
subtlety, internal structure, calcification, sphericity, margin,
lobulation, spiculation, texture, and malignancy likelihood
(1 0 highly unlikely, 2 0 moderately unlikely, 3 0 indetermi-
nate, 4 0 moderately suspicious, and 5 0 highly suspicious).

Until recently, diagnostic truth was not available for the
LIDC dataset and therefore, the ratings supplied by radiologists
had to be used for training the computer-aided diagnostic
system and evaluating the results. However, LIDC radiologists
are anonymous and represented by ID numbers in the XML
files. ID numbers are not consistent across different nodules;
therefore, it is not possible to extract a subset of outlines or
ratings provided by a particular radiologist for all LIDC nod-
ules. If radiologists’ IDs were known, then a Bayesian ap-
proach could have been employed to model the performance
of each radiologist for nodule classification. Therefore, either a
consensus approach (mode rating per nodule) had to be
employed as proposed by Zinovev et al. [27] or a new proba-
bilistic multi-class approach as proposed in this paper.

Image Feature Extraction

For each nodule greater than 5×5 pixels (around 3×3 mm)—
nodules smaller than this would not have yielded meaningful

texture data—we calculate a set of 63 two-dimensional (2D),
low-level image features from four categories: shape, texture,
intensity, and size. Although each nodule is present in a
sequence of slices, in this study we are considering only the
slice in which the nodule has the largest area with respect to
the outlines provided by up to four radiologists who annotated
the corresponding nodule. Therefore, only the largest outline
is considered as the most representative for feature extraction.
Future work will be looking into other ways to quantify the
outline such as using probabilistic p-maps from manually
generated outlines or computer-based generated ones.

Size Features We use the following seven features to quan-
tify the size of the nodules: area, ConvexArea, perimeter,
ConvexPerimeter, EquivDiameter, MajorAxisLength, and
MinorAxisLength. The area and perimeter image features
measure the actual number of pixels in the region and on the
boundary, respectively. The ConvexArea and ConvexPerime-
ter measure the number of pixels in the convex hull and on the
boundary of the convex hull corresponding to the nodule
region. EquivDiameter is the diameter of a circle with the same
area as the region. Lastly, the MajorAxisLength and Minor-
AxisLength give the length (in pixels) of the major and minor
axes of the ellipse that has the same normalized second central
moments as the region.

Shape Features We use seven common image shape fea-
tures: circularity, roughness, elongation, compactness, ec-
centricity, extent, and the standard deviation of the radial
distance. Circularity is measured by dividing the circumfer-
ence of the equivalent area circle by the actual perimeter of
the nodule. Roughness can be measured by dividing the
perimeter of the region by the convex perimeter. A smooth
convex object, such as a perfect circle, will have a roughness
of 1.0. The eccentricity is obtained using the ellipse that has
the same second-moments as the region. The eccentricity is
the ratio of the distance between the foci of the ellipse and
its major axis length. The value is between 0 (a perfect
circle) and 1 (a line). Solidity is the proportion of the pixels
in the region to the pixels in the convex hull of the region.
Extent is the proportion of the pixels in the bounding box
(the smallest rectangle containing the region) that are also in
the region. Finally, the RadialDistanceSD is the standard
deviation of the distances from every boundary pixel to the
centroid of the region.

Intensity Features We use a total of nine intensity features:
the minimum, maximum, mean, and standard deviation of
the gray-level intensity of every pixel in each segmented
nodule and the same four values for every background pixel
in the bounding box containing each segmented nodule.
Another feature, IntensityDifference, is the absolute value of
the difference between the mean of the gray-level intensity of
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the segmented nodule and the mean of the gray-level intensity
of its background.

Texture Features Normally, texture analysis can be grouped
into four categories: model-based, statistical-based, structural-
based, and transform-based methods. Structural approaches
seek to understand the hierarchal structure of the image, while
statistical methods describe the image using pure numerical
analysis of pixel intensity values. Transform approaches gen-
erally perform some kind of modification to the image,

obtaining a new “response” image that is then analyzed as a
representative proxy for the original image. Model-based
methods are based on the concept of predicting pixel values
based on a mathematical model. In this research, we focus on
three well-known texture analysis techniques: co-occurrence
matrices (a statistical-based method) which produces 11 fea-
tures in total—contrast, correlation, entropy, energy, homoge-
neity, third-order moment, inverse variance, sum average,
variance, cluster tendency, maximum probability; Gabor fil-
ters (a transform-based method) which produces 24 features in

Fig. 2 Visual representation of
the LIDC data structure; one
nodule is exemplified through
the differences in the nodule’s
outlines and malignancy ratings

Fig. 3 Upper 3 levels of belief
decision tree constructed for
malignancy semantic
characteristic
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total—mean and standard deviation of 12 Gabor response
images produced by varying orientation 0 0°, 45°, 90°, and
135° and frequency 0 0.3, 0.4, and 0.5 of the corresponding
filter; and Markov Random Fields (a model-based method)
which captures the local contextual information of an image
and produces five features in total—means of four different
Markov response images produced by varying orientation 0

0°, 45°, 90°, 135° of the corresponding filter, along with the
variance response image. All extracted features were repre-
sented by continuous values and were normalized using min–
max normalization to the range from 0 to 1.

After completion of the feature extraction process, each
nodule is represented using a 63-dimensional low-level im-
age and a probabilistic label p c1ð Þ; . . . ; p c5ð Þ½ � where c1 ¼½
highly unlikely; . . . ; c5 ¼ highly suspicious� represent the
malignancy classes and p(ci) is the probability of that class
for that corresponding nodule based on the radiologists’
interpretation.

Traditional Decision Trees

Most classification approaches used to build computer-aided
diagnosis systems take a set of features as input and a single
value class (malignant versus benign) output. These approaches
include neural networks, support vector machines, linear dis-
criminant analysis, and decision trees. In this paper, we employ

a classification approach based on decision trees, and therefore
we will describe a traditional algorithm for the decision trees,
C4.5, and later compare it with our proposed approach based on
belief decision trees.

The C4.5 classification approach described by Quinlan
[28] is a decision tree classification algorithm that is able to
construct classifiers based on continuous attributes. The clas-
sifier constructed by the model is a series of rules that are used
to make a decision about the class membership of a test case,
based on its attributes. In order to create a classifier, the
algorithm performs a series of consecutive splits, each resulting
in two nodes. If no splits are created after a certain node, this
node is considered a terminal node (leaf). Each split is based on
a threshold value of a single attribute. The decision on which
attribute/threshold value is optimal for a particular split is
based on the current training subset of classification instances.
After the split is determined, the current training subset of
classification instances is also split into two parts, according
to the attribute/threshold of the split. All the consecutive splits
are based on the corresponding subset. Optimality of the split is
determined by a selection measure which is, in case of C4.5
algorithm, the gain ratio—an information-based measure that
takes into account different numbers and different probabilities
of test outcomes. The decision on whether the particular split
should or should not take place is based on some stopping
criterion or on a combination of several stopping criteria such

Table 1 Experimental design summary

Approach No. of
instances

Assigned class Predicted class

Traditional DTs 2204 Individual ratings assigned to
corresponding individual outlines

Single rating carried by the majority of instances that
reached the particular leaf node.

Traditional DTs
with consensus

914 Single rating calculated as mode of
all ratings assigned to that nodule

Single rating carried by the majority of instances that
reached the particular leaf node.

BDTs 914 Distribution of ratings over panel
of radiologists (probabilistic
multi-class label)

Class probability distribution calculated by averaging
assigned probability labels of the instances that reached
the particular leaf node. (Resulting belief for each
class of predicted BBA is calculated using Eq. 3.)

Table 2 Example of calculating
the probability distributions for a
terminal node for DTs versus
BDTs

Malignancy Highly
unlikely

Moderately
unlikely

Indeterminate Moderately
suspicious

Highly
suspicious

Assigned class

Nodule 1 0.25 0.75 0 0 0

Nodule 2 0.75 0.25 0 0 0

Nodule 3 0.75 0 0.25 0 0

Predicted class

Traditional DTs 0. 67 0.33 0 0 0

BDTs 0.58 0.33 0.08 0 0
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as the number of instances that reached the node, maximum
achievable splitting measure, uniformity of all the instances
that reached the node, etc. For every terminal node of the
constructed classifier, the class probability of each class is
calculated as a ratio of the instances of that class that reached
the node to the total number of instances that reached the node.
The class with the highest calculated probability is considered
the predicted class of a terminal node:

ck ¼ max
1�i�5

@S
i

Sj j
� �

ð1Þ

(where S is the subset of instances that reached the node and @S
i

is the count of instances from S for every class ci)

Belief Decision Trees

In this work, we propose the adaptation of the decision-tree-
based classification approach proposed by Elouedi et al.
[23] that is able to handle data instances with uncertain
labels. Classification is performed in a manner similar to
the one of regular decision trees. At every node, the instance
that is currently being classified is redirected to the right or
the left child of the node depending on the value of the
attribute corresponding to this node. The process is repeated
until the instance reaches the leaf node, which has a class
membership probability distribution or a basic belief assign-
ment (BBA) associated with it. This BBA is considered to
be the newly predicted class of a classified instance. The
main difference lies in the way a tree is constructed. At
every node of the tree, starting with the root, the algorithm
attempts to perform a split based on every attribute/feature

existing in the dataset. Out of all constructed splits it deter-
mines the best one and uses it for growing the tree further. In
order to define a best split, the algorithm performs the follow-
ing steps:

First the algorithm computes the pignistic probability (prob-
ability calculated from a belief) of instance Ij for each possible
class Ci for every instance in the dataset. Due to the fact that all
BBAs in the LIDC dataset are singletons (meaning that each
radiologist has to pick one class and one class only when
assigning the rating to a nodule), the pignistic probability of
instance Ij for classCi is the ratio of observers who assigned the
instance to a given class to the total number of observers for
that instance:

BetPΘ I j
� �

Cif g ¼ liP5
l¼1 ll

ð2Þ

(where λl0{0,1,2,3,4} is rater count for every class ci)
Second, the algorithm computes the average pignistic

probability function BetPΘ Sf g over the set of S instances
present in the subset that reached the node to get the average
probability on each class:

BetPΘ Sf g Cif g ¼ 1

Sj j
X

Ci2C�Θ

BetPΘ I j
� �

Cif g ð3Þ

where Θ is a set of all possible classes.
On the following steps the algorithm uses average pignistic

probability to calculate the entropy of the node and finally
calculate information gain and gain ratio values for every
possible subsequent split from entropy of the parent node
and entropies of resulting child nodes to determine the optimal
split. Every newly created node is associated with a BBA that

Table 3 Conversion table of
the ratings for both LIDC and
diagnosis data

Rating value New (3-number scale) Diagnosis data
file (4-number scale)

LIDC data Radiologist/
computer (5-number scale)

Benign 1 1 1.2

Indeterminate/unknown 2 0 3

Malignant 3 2.3 4.5

Table 4 Comparison of the two approaches based on accuracy (ACC) and area under the distance–threshold curve (AuCdt) performance metrics

Traditional decision tree Belief decision tree

Malignancy % AuCdt

(nodule based)
% ACC
(nodule based)

% ACC
(2204 instances)

% AuCdt

(nodule based)
% ACC
(nodule based)

% ACC
(2,204 instances)

Training subset 42.82 33.32 39.44 73.10 61.58 −/−

Validation subset 40.95 28.81 31.00 64.16 49.45 −/−

The nodule based denotes the consensus setup. The column for 2,204 instances is empty under the BDTs because BDTs assume probabilistic
classes as part of their input
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is constructed by the average of the BBAs of all training cases
that reached that node. The initial BBA of a single training
case is a set of pignistic probabilities of all classes that the case
can belong to, where the pignistic probability for each class is
calculated using Eq. 2. The process of creating decision rules
and new nodes is repeated until one of the stopping criteria is
reached: (1) there is only one instance that reached this node;
(2) all BBAs of the instances which reached the node are
equal; (3) all the available attributes/features are split; or (4)
the gain ratio of all possible further splits is less than or equal
to 0. Once one of the stopping criteria is reached, the newly
created node is considered to be a leaf. The whole algorithm is
described in detail in [23]. There were several modifications
that wemade to the original algorithm proposed in [23].While
the approach described by Elouedi et al. [23] assumes a
categorical nature of the attributes, attributes present in the
LIDC dataset are continuous. We modified the algorithm to
work with continuous attributes by setting the threshold on
attribute value that will divide a set of instances into the
subset. In order to choose an appropriate threshold, we

employed the approach proposed by Quinlan [28]. The ap-
proach extracts a separate threshold from every distinct pair of
values in the sorted set of attribute values and uses the gain
ratio maximization criterion to determine the most suitable
one. Furthermore, we also noticed that the Gain Ratio splitting
criterion in the case of the LIDC dataset tends to favor very
unbalanced splits, assigning a very small ratio of training
instances (as small as stopping rules allow) to one of the
node’s children at every case. As a result the produced trees
contained large numbers of terminal nodes and were over
fitted. In order to avoid this we decided to use information
gain instead of gain ratio as a splitting criterion.

As the last change we modified one of the stopping rules
setting the smallest number of instances that can reach any
non-terminal node in a tree to 10 and setting the smallest
number of instances that can reach the terminal node to 5. This
change has also been implemented to avoid over fitting of the
classification model. Figure 3 shows the first three levels of
belief decision tree for malignancy semantic characteristic. The
complete decision tree has not been shown due to its

Fig. 4 Sample distance–
threshold curve for training
dataset (first iteration of cross-
validation). BDT stands for be-
lief decision trees, TDT stands
for traditional decision trees

Table 5 Nodules where the CAD is in agreement with radiologists and
diagnosis

Predicted Summary

1 2 3 Sum

Radiologists and
diagnosis agreement

1 1 1 1 3 7/10 0 70%

2 1 1 FN:1/10

3 1 5 6 FP: 1/10

Sum 2 2 6 10

Table 6 Nodules where the diagnosis coincides with the agreement
between the radiologists and the computer

Diagnosis Summary

1 2 3 Sum

Radiologists
and predicted
agreement

1 1 1 2 7/11 0 63.63%

2 2 1 1 4 FN:1/11

3 5 5 FP:0/10

Sum 3 1 7 11
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complexity. Each node on the figure shows the attribute and
the value of this attribute on which the following split will be
performed. The BBA associated with the node is also reported.

Performance Evaluation

When evaluating a classification system that utilizes a prob-
ability distribution of ratings or classes as an input, and
outputs a probability distribution of class membership, eval-
uation methods beyond accuracy should be used to better
capture performance of the system. We propose the idea of a
distance curve, in a similar vein to a receiver operating
characteristic (ROC) curve [29], to assess the performance
of our probabilistic multi-class classification approach. We
were not able to construct ROC curves for the results that we
obtained since the definitions of true-positive rate and false-

positive rate are not directly applicable to the probabilistic
multi-class classification task.

The distance curve is defined as follows: Let L be a
sequence of instance labels, L 0 [L1,L2,…Lj…LN] where N
is the number of instances and each Lj is a discrete proba-
bility density function over the label set λ.

Similarly, let P be a sequence of predicted labels, P 0 [P1,
P2,…Pj…PN] where each Pj is discrete probability density
function over the label set λ.

Let D be a normalized distance function defined on the
instance/prediction pairs, D(Lj,Pj) ∈[0,1]. We define the
distance–threshold curve as

PN
j¼1 D Lj;Pj

� � � x
� 	

N
ð4Þ

where x, threshold value for the distance, is defined from 0
to 1, and the [] are Iverson brackets, which equal 1 when the
statement inside the brackets is true and 0 otherwise. It can
be seen that the values of the curve itself are between 0 and
1 and that the curve is monotonically increasing.

We define the area under the distance–threshold curve sim-
ply as

Z1

o

PN
j¼1 D Lj;Pj

� � � x
� 	

N
dx ð5Þ

Table 7 Nodules where the radiologists’ interpretation coincides with
the agreement between diagnosis and computer

Radiologists Summary

1 2 3 Sum

Diagnosis and
predicted agreement

1 1 1 2 4 7/10 0 70%

2 1 1 FN:0/10

3 5 5 FP:2/10

Sum 1 2 7 10

Fig. 5 Nodules found in both the LIDC dataset and the diagnosis dataset which correspond to the analysis of Tables 5, 6, and 7. Each row shows
the nodules on which there was disagreement between radiologists, computer, and diagnosis as identified in Tables 5, 6, and 7
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To generate the curve, we varied the thresholds of distance
between the distributions for the classification to be considered
“accurate.” For example, if we looked for nodules that have a
normalized distance of 0, with 0 being a threshold value,
between the input and output distributions, we would find little
to none. As we increase the distance we find more and more
nodules within that threshold. With a normalized distance–
threshold of 1 between distributions, all the nodules would
be considered correct or accurate. Once the curve is generated,
the area under the distance–threshold curve (AuCdt) was used
as the metric for comparison. For this study, we used the

Jeffrey Divergence distance metric [30] to generate the D
distance function for formula (6):

JD r; cð Þ ¼
X5
i¼1

pri log
pri

pri þ pcið Þ=2
� �

þ pci log
pci

pri þ pcið Þ=2
� �� �

ð6Þ

Where r is uncertain label calculated from ratings assigned
by radiologists, c is the label generated by the classification
approach, i is the rating, and pi is the class probability for
rating i.

Fig. 6 Probabilistic
interpretation of eight
malignant nodules by the
computer and radiologists; dark
bars denote the computer-based
ratings and the light ones rep-
resent the radiologists’ ratings;
the y-axis represents the proba-
bility and the x-axis represents
the malignancy class
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Experimental Design

The experimental design is summarized in Table 1. The dataset
used for training and testing of traditional decision tress
contained 2,204 instances (up to four instances per nodule,
depending on the number of radiologists who rated the nodule).
The assigned class was drawn directly from each individual
radiologist’s assessment; the predicted class was calculated as
the majority class across all instances that reached the same leaf
nodule as the nodule instance under consideration. In the
consensus approach, the dataset of 2,204 nodules was reduced
to 914 nodules by considering only one instance (the outline
with the largest area) and one rating (the mode across all
radiologists’ ratings for that particular nodule). The consensus
approach produces comparable results in terms of having the
same number of instances under consideration for building and
validating the model.

The dataset for belief decision trees contained 914 instan-
ces (one instance per nodule - the outline with the largest
area). The assigned probabilistic multi-class label of every
instance (nodule) was constructed as a BBA, where the
belief for each class was calculated as the ratio of radiolog-
ists who assigned the nodule to a given class (rating) to the
total number of radiologists who rated that nodule as in
Eq. 2. The predicted probabilistic multi-class label was
calculated by averaging the assigned BBAs of instances in
a leaf node. The belief for each class in a resulting BBAwas
calculated as an average of pignistic probabilities for this
class over the set of instances that reached the leaf node as
shown in Eq. 3. Table 2 shows an example of BBA calcu-
lations for a hypothetical single terminal node of a tree that was
reached by three instances; it also shows how a probability
distribution can be associated with a terminal node for the
traditional decision tree tomake the results comparable in terms
of probabilities and therefore, AuCdt.

To build the three classification models, a 10-fold cross-
validation technique was applied on 90% (training subset)
of the data, and further validated on the remaining 10%
(validation subset). The 90% and 10% subsets were formed
in such a way that the nodule distributions of the validation
subsets mimic the nodule distributions of the training sub-
sets with respect to radiologist agreement and the number of
radiologists who rated the nodule. For the 2,204 instances
dataset the split was done in such manner that instances
describing the same nodule could not appear in both 90%
and 10% subsets simultaneously.

Furthermore, as diagnostic truth for an LIDC subset has
recently become publically available, we explore further the
impact of using probabilistic labels instead of deterministic/
consensus ones. The diagnosis data from follow-ups or
biopsy procedures is provided on a patient level for each
nodule found in the CT series of that patient. Although the
numbering of the nodules in the diagnosis data file is not

consistent with numbering of nodules in LIDC xml files, we
were able to reliably identify a correspondence between the
LIDC dataset and the diagnosis file for a total of 18 nodules.
This dataset of 18 nodules was obtained selecting those
nodules that corresponded to patients for which there was
only one nodule in the diagnosis dataset. This was the best
way to get a reliable mapping with the LIDC data given the
lack of nodule IDs in the diagnosis data.. We examined both
radiologists’ ratings of malignancy and predictions provided
by our system with respect to the diagnosis data. Since the
diagnosis was provided on a 4-number scale (0—unknown,
1—benign or nonmalignant disease, 2—malignant, primary
lung cancer, 3—malignant metastatic) and radiologists and
predicted ratings were on 5-number scale, we created a 3-
number scale translation metric described in Table 3. Rows
of the table represent the correspondence between different
ratings in three datasets. After the translation was performed
the dataset contained eight truly malignant, nine truly be-
nign and one truly indeterminate nodule.

Results

Table 4 shows the distance–threshold curve (AuCdt) and
accuracy (ACC) for the two approaches. Although the defini-
tion of accuracy applies only for deterministic labels, we
nevertheless used it to evaluate the proposed approach and
compared it with the traditional approach by considering the
consensus values (maximum probability) of the probabilistic
labels as well. Figure 4 shows the example of distance–thresh-
old curve for the first iteration of the cross-validation process
on training dataset.

Tables 5, 6, and 7 presents the nodules (10 out of 18) on
which the CAD is in agreement with radiologists and diagno-
sis (Table 5), nodules (11 out of 18) on which the diagnosis
coincides with the agreement between the radiologists and the
computer (Table 6), and the nodules (10 out of 18) on which
the radiologists’ interpretation coincides with the agreement
between diagnosis and computer (Table 7). Since maximum
probabilities for each probability distribution were taken into
account to produce these tables, we also show the assigned
and predicted distributions for these nodules in Figs. 6 and 7
organized by the nodule category. The misclassified nodules
from this subset are shown in Fig. 5.

The main diagonal of Table 5 contains seven nodules out
of 10 in total on which ratings provided by the classification
system agreed with joint diagnosis/radiologists’ ratings.
There were three misclassified nodules by the computer:
one of the truly benign nodules was indeterminate with a
confidence of ~45% by the computer (nodule no. 403), one
of the truly malignant nodules was predicted as benign
(nodule no. 367), and one of the truly benign nodules was
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Fig. 7 Probabilistic
interpretation of nine benign
and one indeterminate nodules
by the computer and
radiologists; dark bars denote
the computer-based ratings and
the light ones represent the
radiologists’ ratings; the y-axis
represents the probability and
the x-axis represents the malig-
nancy class
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predicted as malignant (nodule no. 138) but the confidence
of both predictions was very low (~28%).

The main diagonal of Table 6 contains seven nodules
out of 11 in total on which diagnosis information coincided
with the agreement between the radiologists and computer
(Figs. 6–7).

The main diagonal Table 7 contains seven nodules out of
10 in total on which ratings provided by the radiologists
coincided with the agreement between diagnosis and com-
puter. There were three nodules on which the radiologists’
interpretation was different; in particular, two of the truly
benign nodules were classified by radiologists as malignant.
The computer predictions for these two cases were made with
confidences of ~50% (nodule no. 556) and ~85% (nodule no.
781). The computer prediction for the case where a truly
benign nodule was predicted by radiologists as indeterminate
was also made with confidences of ~85% (nodule no. 368).

Discussion

The results demonstrate that the belief decision tree ap-
proach outperforms the traditional decision tree algorithm
with respect to both accuracy and area under the distance–
threshold curve. On the 90% training subset using cross-
validation evaluation technique, the relative performance
boost for AuCdt was 30.28% in comparison with traditional
decision trees based on consensus; for accuracy (ACC), the
increase was 28.26%. With respect to the 10% validation
subset, the belief decision trees also outperformed traditional
decision tree with respect to both AuCdt (23.21% boost) and
accuracy (20.64% boost) which indicates a higher generaliza-
tion power for the belief decision trees.

When studying the behavior of distance–threshold curves
on Fig. 4 we noticed that belief decision tree technique
demonstrates higher performance than traditional decision
tree algorithm starting from normalized threshold of 0.1.
After this intersection point, the BDT curve shows steep
growth; for example, for 80% of the nodules the distance
between predicted and original probabilistic labels was less
than 0.3 distance–threshold, while for the TDT curve that
shows only gentle growth, only 35% of the nodules had the
distances smaller than the 0.3 threshold.

When examining CT series in a hospital environment,
radiologists cannot afford to produce false-negatives, therefore
ratings that they provide are biases towards a high possibility
of malignancy. Our system demonstrates the ability to correct
diagnosis errors caused by this bias with a high confidence,
therefore having the potential to reduce the amount of false-
positive diagnoses when used as an aid by the radiologist
expert. On the other hand, the false-negatives produced by
the classification system are associated with a very low con-
fidence and should not affect the opinion of a human expert

toward the incorrect diagnosis, since the radiologist will be
provided with the probabilistic label as opposed to a “crisp”
(deterministic) decision. We suspect that multimodal probabi-
listic labels for a particular nodule will act as an alarm for the
radiologist, signaling that the nodule requires additional atten-
tion and therefore helping to avoid incorrect diagnosis.

Conclusions

In this paper we adapted and evaluated a probabilistic multi-
class belief decision tree and further compared its performance
with another classification approach that is not probabilistic
by its nature. We determined that the belief decision trees
significantly outperformed the traditional decision trees in
terms of both the accuracy and the area under the distance–
threshold curve. We examined the performance of our system
as well as the performance of human readers with respect to
available ground truth and revealed several interesting trends
such as high confidence for correctly classified cases and low
confidence for incorrectly classified cases. We also determined
that the classification system was more in agreement with the
diagnosis of the truly benign cases than the radiologists, and
therefore, the proposed system has the potential to reduce the
number of false positives.

In terms of future work, we plan to expand this work as
follows: first, we will include 3D image features in addition to
the current 2D features; second, we will look at combining
radiologist outlines using p-map approaches instead of con-
sidering just the largest outline; and lastly, we will look at
incorporating belief classifiers such as belief decision trees
described in this work, support vector machines with pair-
wise coupling or logistic regression with thresholding into
active ensemble learning workflow to take advantage of their
classification capabilities in a combined rather than individual
way. Additionally, when more diagnosis data becomes avail-
able, we will be able to conduct a statistical analysis to support
the conclusions that we made from observing Tables 5, 6, and
7. We will also investigate the applicability of the developed
CAD system to other radiological tasks such as interpretation
of medical images produced by magnetic resonance imaging.

References

1. Bankier AA, Levin D, Halpern EF, Kressel HY: Consensus inter-
pretation in imaging research: is there a better way? Radiology
257:14–17, 2010

2. Mower WR: Evaluating bias and variability in diagnostic test
reports. Ann Emerg Med 33(1):85–91, 1999

3. Turner DA: Observer variability: what to do until perfect diagnos-
tic tests are invented. J Nucl Med 19(4):435–437, 1978

4. Jarvik JG, Deyo RA: Moderate versus mediocre: the reliability of
spine MR data interpretations. Radiology 250(1):15–17, 2009

J Digit Imaging (2012) 25:423–436 435



5. Carrino JA, Lurie JD, Tosteson AN, et al: Lumbar spine: reliability
of MR imaging findings. Radiology 250(1):161–170, 2009

6. MacMahon H, Engelmann R, Behlen F, Hoffmann K, Ishida T,
Roe C, Metz C, Doi K: Computer-aided diagnosis of pulmonary
nodules: Results of a large-scale observer test. Radiology 13:723–
726, 1999

7. Matsuki Y, Nakamura K, Watanabe H, Aoki T, Nakata H,
Katsuragawa S, Doi K: Usefulness of an artificial neural network for
differentiating benign from malignant pulmonary nodules on high-
resolution CT: evaluation with receiver operating characteristic anal-
ysis. Am J Roentgenol 178(3):657–663, 2002

8. Li F, Aoyama M, Shiraishi J, et al: Radiologists’ performance for
differentiating benign from malignant lung nodules on high-
resolution CT using computer estimated likelihood of malignancy.
Am J Roentgenol 183:1209–1215, 2004

9. Marten K, Grillhösl A, Seyfarth T, Obenauer S, Rummeny EJ,
Engelke C: Computer-assisted detection of pulmonary nodules:
evaluation of diagnostic performance using an expert knowledge-
based detection system with variable reconstruction slice thickness
settings. Eur Radiol 15:203–212, 2005

10. Peldschus K, Herzog P, Wood SA, Cheema JI, Costello P, Schoepf
UJ: Computer-aided diagnosis as a second reader—spectrum of
findings in CT studies of the chest interpreted as normal. Chest
Journal 128:1517–1523, 2005

11. Baker JA, Rosen EL, Lo JY, Gimenez EI, Walsh R, Soo MS:
Computer-aided detection (CAD) in screening mammography:
sensitivity of commercial CAD systems for detecting architectural
distortion. Am J Roentgenol 181:1083–1088, 2003

12. Ciatto S, Turco MR, Risso G, et al: Comparison of standard
reading and computer-aided detection (CAD) on a national profi-
ciency test of screening mammography. Eur J Radiol 45:135–138,
2003

13. Karssemeijer N, Risso G, Catarzi S, et al: Computer-aided detec-
tion versus independent double reading of masses on mammo-
grams. Radiology 227:192–200, 2003

14. Muramatsu C, Li Q, Suzuki K, et al: Investigation of psychophys-
ical measure for evaluation of similar images for mammographic
masses: Preliminary results. Medical Physics 32:2295–2304, 2005

15. Fletcher JW, Kymes SM, Gould M, Alazraki N, Coleman RE,
Lowe VJ, et al: A comparison of the diagnostic accuracy of
18FFDG PET and CT in the characterization of solitary pulmonary
nodules. J Nucl Med 49:179–185, 2008

16. Tao Y, Lo S-C B, Freedman M T, Xuan J: Joint segmentation and
spiculation detection for ill-defined and spiculated mammographic
masses. Proc. SPIE, doi:10.1117/12.844045, February 16, 2010

17. Sahiner B, Hadjiiski L M, Chan H P, Paramagul C, Nees A, Helvie
M, Shi J: Concordance of Computer-Extracted Image Features
with BI-RADS Descriptors for Mammographic Mass Margin.
Proc. SPIE, doi: 10.1117/12.770752, March 17, 2008

18. Ochs R, Kimb HJ, Angel E, Panknin C, McNitt-Gray M, Brown
M: Forming a reference standard from LIDC data: impact of reader
agreement on reported CAD performance. Proc. SPIE, DOI:
10.1117/12.707916, March 30, 2007

19. Opfer R, Wiemker RD: Performance Analysis For Computer-
Aided Lung Nodule Detection On LIDC Data. Proc. SPIE, DOI:
10.1117/12.708210, February 21, 2007

20. Armato III, SG, Roberts RY, KocherginskyM, Aberle DR, Kazerooni
EA, MacMahon H, van Beek EJR, Yankelevitz DF, McLennan G,
McNitt-Gray MF, Meyer CR, Reeves AP, Caligiuri P, Quint LE,
Sundaram B, Croft BY, Clarke LP: Assessment of radiologist perfor-
mance in the detection of lung nodules: dependence on the definition
of “truth”. Acad Radiol 16:28–38, 2009

21. Armato III, SG, et al: Lung Image Database Consortium: develop-
ing a resource for the medical imaging research community. Radi-
ology 232:739–748, 2004

22. Hillman BJ: ACRIN—lessons learned in conducting multi-center
trials of imaging and cancer. Cancer Imaging 5(Spec No A):S97–
S101, 2005

23. Elouedi Z, Mellouli K, Smets P: Belief decision trees: theoretical
foundations. International Journal of Approximate Reasoning
28:91–124, 2001

24. Wu TF, Lin CJ, Weng RC: Probability estimates for multi-class
classification by pairwise coupling. J Mach Learn Res 5(Au-
gust):975–1005, 2004

25. Robinson PJA: Radiology’s Achilles’ heel: error and variation in the
interpretation of the Rontghen image. Br J Radiol 70:1085–1098, 1997

26. Reiner B: Uncovering and improving upon the inherent deficien-
cies of radiology reporting through data mining. J Digit Imaging
23:109–118, 2010

27. Zinovev D, Raicu D, Furst J, Armato III, SG: Predicting radiolog-
ical panel opinions using a panel of machine learning classifiers.
Algorithms Journal 2:1473–1502, 2009

28. Quinlan JR: Improved use of continuous attributes in C4.5. Journal
of Artificial Intelligence Research 4:77–90, 1996

29. Spackman KA: Signal detection theory: Valuable tools for evaluating
inductive learning. Proc. 6th Int. Workshop on Machine Learning
160–163, 1989

30. Liu H, Song D, Rüger S, Hu R, Uren V: Comparing dissimilarity
measures for content-based image retrieval. Proc. 4th Asia Inf. Ret.
Conf. on Information Retrieval Technology 44–50, 2008

436 J Digit Imaging (2012) 25:423–436


	Consensus Versus Disagreement in Imaging Research: a Case Study Using the LIDC Database
	Abstract
	Introduction
	Materials and Methods
	LIDC Dataset
	Image Feature Extraction
	Traditional Decision Trees
	Belief Decision Trees
	Performance Evaluation
	Experimental Design

	Results
	Discussion
	Conclusions
	References




