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Abstract We present an atlas-based registration method for
bones segmented from quantitative computed tomography
(QCT) scans, with the goal of mapping their interior bone
mineral densities (BMDs) volumetrically. We introduce a
new type of deformable atlas, called subdivision-embedded
atlas, which consists of a control grid represented as a
tetrahedral subdivision mesh and a template bone surface
embedded within the grid. Compared to a typical lattice-
based deformation grid, the subdivision control grid pos-
sesses a relatively small degree of freedom tailored to the
shape of the bone, which allows efficient fitting onto sub-
jects. Compared with previous subdivision atlases, the nov-
elty of our atlas lies in the addition of the embedded
template surface, which further increases the accuracy of
the fitting. Using this new atlas representation, we devel-
oped an efficient and fully automated pipeline for register-
ing atlases of 12 tarsal and metatarsal bones to a segmented
QCT scan of a human foot. Our evaluation shows that the
mapping of BMD enabled by the registration is consistent
for bones in repeated scans, and the regional BMD automat-
ically computed from the mapping is not significantly

different from expert annotations. The results suggest that
our improved subdivision-based registration method is a
reliable, efficient way to replace manual labor for measuring
regional BMD in foot bones in QCT scans.
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Background

Bone mineral density (BMD), measured as the amount of
calcium hydroxyapatite per unit volume, is an important
indicator of bone health [1]. The three-dimensional (3D)
BMD within a bone can be captured using quantitative
computed tomography (QCT), which offers per-voxel
BMD measures [2]. Comparing the BMD over localized
regions (e.g., region of the bone near the joint) between
scans at different time points or from different individuals
can potentially provide clinically valuable information. For
example, a drop in BMD in a bone region over time may
predict future fractures within that region [3]. Also, within a
specific region, differences in BMD between a patient and a
healthy individual may be indicative of disease.

The key to performing such spatial comparison is estab-
lishing a mapping between the interior (i.e., 3D space
bounded by the surface) of two bones in QCT scans. While
there are tools that can accurately segment individual bones
in QCT images [4], obtaining interior mapping between
bones is challenging for two reasons. First, the shape of
the bone can change over time and (more drastically) varies
among different subjects in a non-rigid manner, and current-
ly there is no known physical model for bone shape varia-
tion. Second, the BMD can change regionally within a bone
over time, and such changes may or may not correspond to
the change of the anatomical shape. In other words, BMD
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computed from QCT scans cannot be used as a guide for
computing the spatial mapping of bone interiors.

There is a rich literature on non-rigid registration meth-
ods (see for example extensive surveys in citations [5–7]).
These methods typically compute over the source image a
displacement field that achieves some fitting objective while
minimizing some energy formulation. When BMDs, which
are computed from Hounsfield Units and displayed as image
intensities, in source and target images are well-correlated,
an intensity-based metric such as mutual information [8] can
be used as the fitting objective. However, as discussed
above, such metrics are not suitable for registering bones
in QCT scans. Since the segmented bone surfaces can be
easily obtained [4], we choose the fitting objective as the
Euclidean distance between the registered source and target
surfaces [9]. For warping anatomical structures, a variety of
energy formulations have been proposed, such as thin-plate
splines [10], elasticity [11], strain energy [12], fluid dynam-
ics [13], and diffusion energy [14]. In this work, we adopt a
linear energy formulation that is similar to thin-plate splines
and penalizes locally non-affine transformations [15].

The computation of the displacement field is determined
largely by the way in which the field is represented. While
the displacement can be computed for each and every voxel
in the source image, the computational cost of such compu-
tation is high due to the extremely large number of degrees
of freedom. A much more efficient choice is to compute the
displacements only at the grid points of a sparse lattice, and
obtain the displacement at an individual voxel by blending
the displacements at the lattice points, for example using B-
spline basis functions [16]. While the lattice-based approach
has a drastically reduced number of degrees of freedom, the
volumetric lattice in practice still needs hundreds or even
thousands of grid points to capture the deformation of a
flexible anatomical structure (e.g., a lattice with 10 points
in each dimension has 1,000 grid points). More recently,
subdivision meshes [17] have emerged as an even more
efficient way to represent the displacement field. Unlike
volumetric lattices that are limited by a regular Cartesian
structure, the control grid of a subdivision atlas can assume
arbitrary topology, allowing the warping to be captured with
a small number (typically several tens) of control points. To
use subdivision meshes in registering anatomical images, an
atlas is constructed from a reference anatomical structure
and is subsequently registered onto target images. The sub-
division atlases have been used in registering both 2D [18]
and 3D [15, 19] biomedical images.

An inherent drawback of existing subdivision atlases is
that they are limited to anatomical structures with a smooth,
“blobby” boundary. Representing shapes with rich boundary
details (e.g., foot bones) using subdivision atlases can result
in larger errors in fitting the target boundary. This is due to
the lack of geometric details on the atlas, and not due to the

lack of flexibility in the deformation control. In this paper,
we present an improved atlas representation, called subdivi-
sion-embedded atlases, which inherits the compact structure
of previous subdivision atlases but is capable of accurately
capturing the geometry of anatomical shapes with rich
boundary features.

Using the new atlas representation, we created atlases for
all 12 tarsal and metatarsal human foot bones, whose BMD
measures are important for assessing the bone-related
impairments due to diabetes mellitus and peripheral neurop-
athy [19]. We designed an efficient and fully automatic
pipeline for registering all 12 bones in a segmented QCT
scan to their respective atlases, which allows spatial map-
ping of BMD between the interior of these bones from
different subjects and scanned at different time points. To
the best of our knowledge, this is the first unsupervised
method for registering all mid- and hind- foot bones from
segmented QCT scans.

The efficiency and accuracy of our method is evaluated
using a suite of segmented QCT scans. Registering all 12
bone atlases finished within minutes for each scan. The
evaluation shows that registering the atlases in our improved
representation gives lower error in fitting the boundary
surface of a target bone than registering the previous subdi-
vision atlases. We also showed that our spatial BMD map-
ping is consistent for bones in repeated scans and agrees
with manual measurements by experts over user-specified
volumes-of-interest (VOIs).

Methods

Atlas Representation

Subdivision Atlases Subdivision is a modeling technique
widely used in geometric design [20]. Starting from a coarse
initial mesh M0 consisting of polygonal or polyhedral cells,
subdivision generates a sequence of smoother meshes with
finer cells M1, M2, M3… that approach some limit shape
M∞. Various subdivision algorithms have been proposed for
different kinds of meshes. For modeling anatomical struc-
tures in 3D, we consider the tetrahedral subdivision scheme
of Schaeffer et al. [21]. Given an initial mesh consisting of
tetrahedral cells of arbitrary topology (Fig. 1a), this algo-
rithm yields smoothly subdivided meshes Mk consisting of
both tetrahedral and octahedral cells (Fig. 1b–d).

Subdivision has been applied for deformable registration
of anatomical structures (see the review by Ju et al. [15]). In
these methods, an atlas of an anatomical structure is con-
structed as some coarse mesh M0 so that the exterior of the
subdivided mesh Mk at a sufficiently high level k (e.g., 5)
fits the boundary of a template structure. As an example,
Fig. 1e is an atlas of the calcaneus represented as a
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tetrahedral subdivision mesh, showing M0 in wireframe and
the exterior of Mk as a shaded surface. The key motivation
of using subdivision is that the deformation of the subdi-
vided mesh Mk is controlled by the displacement of the
vertices in the coarse mesh M0 in a simple, linear fashion.
Each vertex v in Mk can be represented by a linear combi-
nation of vertices in M0. The coefficients in this linear
combination are called the mask of v, which can be comput-
ed entirely by the topological structure of M0 and are inde-
pendent of the locations of vertices in M0 [15]. After the
vertices in M0 are displaced, the deformed location of v can
be simply computed by multiplying its mask with the new
vertex locations in M0. Figure 1f demonstrates the deformed
subdivided meshMk after one of the control vertices (colored
red) is dislocated. To register the atlas onto a target structure, a
least-squares system can be set up to compute a deformed
coarse mesh bM 0 such that the exterior vertices of the sub-
divided mesh bMk fit the boundary surface of the target
structure and that the interior of the atlas is warped with low
distortion. Registering the atlas onto multiple target structures
establishes a common anatomy-based coordinate framewithin
each structure (as defined by the polyhedral cells in the de-
formed bMk ), which allows mapping of spatial data among
these structures.

An inherent drawback of subdivision atlases is that they
exhibit an overly smooth shape and often cannot represent
anatomical structures with rich geometric features on the
boundary. For example, the smooth exterior of the subdi-
vided atlas Mk in Fig. 1e does a poor job of capturing some
of the key bony prominences and articular indentations on
the calcaneus shown in Fig. 1g. Such a “blobby”-looking
exterior cannot be accurately registered to a target calcaneus
surface, and this in turn results in errors in interior mapping.
This drawback has limited the application of subdivision
atlases to those structures with smooth boundary shapes,
such as the mouse brain [18] and the metatarsal bones
(which have smoother exteriors than tarsal bones like the

calcaneus) [19]. Note that an accurate registration of the
boundary is particularly important for mapping bone
BMD, since the BMD is most concentrated near the bone
surface in the cortical shell. Although the overly smooth
appearance of subdivision atlases can be alleviated by using
a more complex coarse mesh bM 0, this choice is undesirable
as the increased complexity of the atlas leads to increased
difficulty in constructing the atlas (which is typically done
by hand) as well as a higher computational cost for
registration.

Subdivision-embedded Atlases To accurately capture
boundary details without adding complexity to the subdivi-
sion mesh, we propose a hybrid atlas representation called a
subdivision-embedded atlas. As in subdivision atlases, a
coarse mesh M0 is used for controlling the deformations of
the volume enclosed by the subdivided mesh Mk. Instead of
using the exterior of Mk to model the boundary of the
anatomical structure, we use an additional triangular mesh
(called the template surface) constructed from the boundary
surface of the template structure. An example atlas for the
calcaneus is shown in Fig. 1g, where M0 is drawn in wire-
frame and the embedded template surface is shaded. Note
that, compared with the subdivision atlas shown in Fig. 1e,
the subdivision-embedded atlas exactly captures the surface
geometry of the bone without increasing the complexity of
the coarse mesh M0. As a consequence, registering the
subdivision-embedded atlas to a target bone results in a
more accurate fitting of the bone surface without increasing
the computational complexity.

The template surface can be warped by manipulating the
coarse mesh M0 in a similar way to how the subdivided
mesh Mk is deformed. Specifically, we represent each vertex
v of the template surface as a linear combination of locations
of the vertices in M0. The coefficients of such a linear
combination are called the mask of v, and are computed by
barycentric interpolation of the masks associated with the

Fig. 1 Left A tetrahedral subdivision mesh after 0, 1, 2, and 3 iter-
ations of subdivision (a–d). Right: the subdivision atlas of the calca-
neus (e) consisting solely of a subdivision mesh, the subdivision-

embedded atlas (g) consisting of a subdivision mesh and a template
surface (purple), and the deformed atlases (f, h) after dislocating a
single vertex (red) in the coarse subdivision mesh
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vertices of the tetrahedral or octahedral cell in Mk that
encloses v. For computing the barycentric interpolation, we
use mean value coordinates, which offer robust, smooth
interpolation over any polyhedral shape [22]. After deform-
ing the coarse mesh M0, the new location of v is determined
by multiplying its mask to the deformed locations of control
vertices in M0. Figure 1h shows an example of template
surface deformation by dislocating one control vertex (col-
ored in red).

We create one atlas for each of the seven tarsal bones
(first through third cuneiforms, cuboid, navicular, talus,
and calcaneus) and five metatarsal bones in the human
foot from a user-chosen segmented QCT scan (see
Fig. 2). For each bone, we first create the template
surface by extracting a triangulated boundary of the
segmented bone using marching cubes [23] and smooth-
ing the surface with Laplacian-based fairing [24]
(Fig. 2a). To create the coarse mesh M0, we first deci-
mate the template surface down to a small number of
triangles using quadratic-error-based simplification [25].
The simplified triangular surface is inflated from the
centroid of the template by 5% to form the exterior
triangles of M0, so that the subdivided mesh Mk com-
pletely encloses the template surface. Finally, we create
the interior tetrahedra of M0 by manually placing a
couple of interior vertices and connecting them to the
exterior triangles (Fig. 2b).

Atlas Registration

To compare BMD interior to bones in different scans,
we need to register the atlas onto the segmented bones
in each scan. To register a subdivision-embedded atlas
onto a target structure, we displace the vertices of M0

so that the deformed template surface fits the boundary
of the target (called the target surface) by a low-
distortion warp. Our method extends the registration
pipeline for subdivision atlases by Ju et al. [15] to use
our new subdivision-embedded atlases. The pipeline

consists of a rigid alignment stage and a non-rigid
deformation stage. We will explain these two stages
next and use a second cuneiform as an example to
illustrate the effect of each stage in Fig. 3. Similar to
subdivision atlases, registering a subdivision-embedded
atlas onto multiple target structures allows mapping of
the interior of these structures using the common coor-
dinate frame defined by the polyhedral cells in the
deformed atlases.

Rigid Alignment The target surface is created in the
same way as the template surface from the segmenta-
tion. An initial alignment between the atlas and the
target surface is achieved using translations and rota-
tions by aligning their centroids and principle axes that
are obtained by principle component analysis (PCA).
For robust results, the centroids and the axes are com-
puted using all interior voxels in the segmented tem-
plate and target bones, instead of using only vertices on
their boundary surfaces. Since some bones (e.g., the
cuneiforms) exhibit spherical shapes, the PCA-based
alignment may not give satisfactory results (e.g.,
Fig. 3a). We improve the alignment using iterative clos-
est point (ICP) registration. During each iteration, the
atlas is transformed by the best rigid-body transforma-
tion (in the least-squares sense) that brings each vertex
on the template surface into alignment with its closest
point on the target surface. Such transformation can be
computed using singular-value decompositions. The pro-
cess terminates if the displacement of the template ver-
tices between two iterations falls beneath a user-
provided threshold. The ICP-based improvement brings
the template surface into close alignment with the target
surface (e.g., Fig. 3b).

Non-rigid Deformation To further account for local shape
variations between the template and target structures, we
next compute a flexible warp of the atlas as displacements
of the vertices in the coarse subdivision meshM0. Denoting

Fig. 2 Template surfaces for 12
tarsal and metatarsal bones (a)
and the subdivision-embedded
atlas for each bone (b)

J Digit Imaging (2013) 26:554–562 557



the vertex positions inM0 after rigid alignment asX. Our goal
is to compute new positions bX that minimize the combined
energy,

E bX� �
¼ Ef bX� �

þ aEd bX� �
whereEf bX� �

measures the fitting error between the deformed
template surface and the target surface, Ed bX� �

measures the
distortion in the deformation, andα is a balancing weight. The
fitting error is defined as

Ef bX� �
¼
X
i

bX � vi � bi
� �2

where vi is the stored mask of the ith vertex on the template
surface (and hence bX � vi is the deformed location of the
vertex), and bi is the location of the closest point on the target
surface to that vertex prior to deformation. We follow the
approach in [15] to define the distortion as the amount of
non-affine deformation (i.e., deformations that cannot be rep-
resented as a combination of translations, rotations, scalings,
and shearings) of each pair of cells in the subdivided meshMl

for a chosen level l (e.g., 2). Consider a tetrahedralized Ml

where each octahedron is divided into eight tetrahedra by its
centroid, the distortion term is a summation over all pairs of
tetrahedra {pi,ps,pt,pr}, and {pj,ps,pt,pr} in the resulting tet-
rahedral mesh that share a common triangle {ps,pt,pr}:

Ed
bX� �

¼
X
i;j;s;t;rð Þ

bX � aijtrms þ aijsrmt þ aijstmr � ajstrmi � aistrmj

� �
4l aistr þ ajstr
� �2

 !2

Here, aistr denotes the unsigned volume of the tetrahe-
dron formed by {pi,ps,pt,pr} in the un-deformed mesh, and
mi denotes the mask of the vertex pi. Note that both terms Ef,

Ed are quadratic in the variables bX , and hence minimizing
the combined energy E is a least-squares problem that can
be solved by a linear system of equations. An example result
is shown in Fig. 3c.

BMD Mapping We mark each tetrahedral or octahedral cell
in the un-deformed mesh Mk as interior if all vertices of the
cell belong to some voxel of the segmented template. After
registering the atlas to the target bone, we compute at each
deformed interior cell of bMk the tri-linearly interpolated
intensity (in Hounsfield Units) of the QCT volume at the

centroid location of the cell. The value at each cell can then
be compared with that mapped from another target bone. In
this way, the atlas acts as a common coordinate system for
comparing regional BMD from different scans.

Evaluation Method

Test Data The QCT images from nine young healthy adult
subjects were used in this study. The healthy subjects were
recruited from the Washington University staff and student
population. The subject demographics for the five males and
four females are given in Table 1. Two repeated scans over a
short interval (within approximately 30 min) were acquired
for both feet of each subject, amounting to a total of 36 foot
scans. The 12 foot bones were segmented from each scan.
We chose one of the 36 scans, called the template scan, to
construct the twelve bone atlases (as shown in Fig. 2), which
were automatically registered to the other 35 scans.

The complete details for acquiring the QCT images with
the image processing and segmentation methods have been
previously published [4, 26, 27], but we provide a brief
description. Each subject was supine on the spiral CT scan-
ner table. The images of the foot from the toes to above the
talus were acquired with a Siemens Definition 64-Slice CT
dual-source scanner (Siemens Medical Systems, Inc, Mal-
vern, PA, USA) using only a single radiation source. The
middle of each foot was placed approximately in the iso-
center of the scan volume since the table was positioned at
approximately 120 mm down from the rotation center (iso-
center). The right foot was positioned at approximately 45°
relative to the table surface and scanned first. Then the left
foot was positioned and scanned. The right and left foot
scans were repeated for a total of four foot scans per patient.
The CT parameters used to acquire the images were: 38.4-mm
table increment per gantry rotation (64 slices×0.6 mm

Fig. 3 Registering the atlas of a
second cuneiform onto a target
surface (the atlas is shown in
black wire frame and the target
surface is shown in blue): after
PCA-based rigid alignment (a),
after ICP-based rigid alignment
(b), and after non-rigid
deformation (c)

Table 1 Subject demographics. The table reports mean and standard
deviation (in parenthesis) of age, height (in centimeters) and weight (in
kilograms) of the nine subjects who participated in our evaluation

Number Age Height Weight

Male 5 26(3) 176(5) 87(18)

Female 4 26(5) 171(9) 70(11)
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collimation038.4 mm), 220 mAs, 120 kVp, pitch of 1, rota-
tion time of 0.5 s, and a 512×512 matrix. The Siemens’ B70f
kernel was used to reconstruct CT images with a 0.6-mm slice
thickness (no gaps between slices).

Analyze software [28, 29] was used to convert the CT
DICOM images to Analyze 7.5 formatted files. With Java
software running in ImageJ 1.40g, edge detection methods
[19, 26, 30] were used to determine the edges of the bones
within the soft tissue [31]. Graph-cut methods [4, 26] were
used to segment each bone individually once the edges of
the bones were determined. The BMD at each voxel was
determined from a calibration phantom (QCT-Bone Mineral
Phantom, Image Analysis, Inc., Columbia, KY) [19, 27].

Evaluation Metrics Atlas registration is evaluated in three
ways. First, we evaluate the accuracy of fitting the target
bone surfaces using our subdivision-embedded atlases, and
compare it with the accuracy using the previous subdivision
atlases [15, 19]. We constructed subdivision atlases for the
12 bones by taking the coarse mesh M0 in each of our 12
subdivision-embedded atlases. These 12 bone atlases from
one scan were registered to the 35 scans using the pipeline
described in [15]. The fitting accuracy of both techniques
(subdivision-embedded atlas vs. subdivision atlas) is mea-
sured using two metrics, the two-sided Hausdorff distance
and the mean distance. The two-sided Hausdorff distance
computes the maximum shortest distance from a vertex on
one surface to any vertex on the other surface. The mean
distance computes the mean of shortest distances over all
vertices on two surfaces. The Hausdorff and mean distances
capture respectively the worst and average deviation be-
tween two surfaces. The two metrics are evaluated between
the target bone surface and the deformed template surface
(for subdivision-embedded atlases) or the deformed exterior

surface of the subdivision mesh (for subdivision atlases).
Multivariate repeated measures analysis of variance was
performed to determine if there is a significant difference
between the two techniques in terms of these metrics.

With the lack of ground-truth of how the interior of two
bones are mapped, we evaluate the quality of BMD map-
ping created by our registration in two ways. First, we assess
its consistency in mapping bones segmented from two re-
peated scans of the same foot. Due to changes in positioning
during imaging, the two scans generally do not align when
they are superimposed. Ideally, after atlas registration, the
BMD mapped from both scans onto the same atlas cell
should be identical. We compute the difference between
the two mappings as the root mean squared deviation
(RMSD) of the mapped values over all atlas cells, normal-
ized by the difference between the maximum and minimum
Hounsfield Unit values in the first scan.

Second, we compare BMD measurements in VOIs pro-
duced by our mapping method with those created by expert
annotations. We examined the second metatarsal, a cylindri-
cal bone consisting of three parts, head, shaft, and base,
which we consider as VOIs. We took 18 scans, the first of
each pair of repeated scans (including the template scan).
We numbered the bones in these scans 1 through 18, with
the 18th bone being the template scan. A human expert was
asked to place two cutting planes along the bone axis in each
scan to define the three VOIs. The expert did three trials for
each bone. For each trial, the expert was blinded with regard
to the VOIs defined in previous trials. Hence, for each VOI i
on each bone j, we obtained three Hounsfield Unit values
based on the three human trials, noted as H1

i,j, H
2
i,j, H

3
i,j for

i01,2,3 and j01,…,18. We also registered the atlas (created
from the 18th bone) to the 17 non-template scans, and
obtained three Hounsfield Unit values for each VOI i in

Fig. 4 Plots of Hausdorff and mean distances for each bone for the
subdivision-embedded atlas and subdivision atlas methods. Vertical
lines are 95% confidence intervals. For each bone, the Tukey honestly

significant difference p value for the comparison of the two methods is
shown above the interval lines
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each bone j using only the three VOI definitions on the
template bone. The average of these three values was used
as the atlas-based measurement, noted as Ai,j for i01,2,3 and
j01,…,17. Multivariate repeated measures analysis of vari-
ance was used to determine if there is a significant difference
among the three human-basedmeasurements (H1

i,j,H
2
i,j,H

3
i,j)

and the atlas-based measurement (Ai,j) over all VOIs and
bones.

Results

All experiments were performed on a consumer PC with
2.4 GHz CPU and 2 GB of memory. After the initial process
of bone segmentation, surface generation, and atlas construc-
tion, registering the atlases onto the bone surfaces was com-
pletely automated and took less than 3 min for each scan.

Figure 4 reports the Hausdorff distances and mean dis-
tances, measured in millimeter, between the target bone
surfaces and the deformed surfaces of the subdivision-
embedded atlases (blue lines) or the subdivision atlases
(red lines) for each bone over all 35 scans. The vertical bars
are 95% confidence intervals. For each bone, the Tukey
honestly significant difference (HSD) p values for the com-
parison of the two methods using multivariate repeated
measures analysis of variance are shown above the vertical
lines. Based on the analysis, the Hausdorff distances for
subdivision-embedded atlases were lower than subdivision
atlases for the first, second, and third metatarsals, talus, and
calcaneus (Tukey HSD p<0.016). For mean distances, the
values for subdivision-embedded atlases were lower than
subdivision atlases for all bones (Tukey HSD p≤0.012).

Figure 5 visually compares the fitting accuracy between
the two techniques on the second cuneiform and talus. Note
that traditional subdivision atlases (Fig. 5c,d) cannot accu-
rately fit to the local bony prominences and articular

indentations of the target surfaces, whereas the subdivision-
embedded atlases (Fig. 5a,b) are able to fit those areas with
much less error due to the use of the geometrically rich
template surface.

Figure 6 reports the difference between BMD mappings
of each pair of repeated scans. The normalized RMSDs for
all 18 pairs of scans are shown in this box plot, where each
bar marks the minimum, lower quartile, median, upper
quartile, and maximum of the 18 values for each bone. In
most cases, the RMSD deviation between the two mappings
is within 4% of the in-bone BMD variation, and is within
6% in all cases.

Figure 7 reports the regional BMD, measured in Houns-
field units, using human annotations (“Trial 1, 2, 3”) and
atlas registration (“Automatic”) for each VOI (head, base
and shaft) over all 17 second metatarsals. The vertical bars
are 95% confidence intervals. Using multivariate repeated
measures analysis of variance, we found that, for the head
VOI, Trial 1 resulted in higher Hounsfield Unit values than
the other methods (Tukey HSD p≤0.035). For the base VOI,
no difference was demonstrated between methods (p≥
0.765). For the shaft VOI, Trial 1 resulted in higher values
than Trial 3 and Automatic methods (p≤0.001). In sum,
there is no significant difference between the atlas-based
regional measurements and those based on human

Fig. 5 Comparing the registration of subdivision-embedded atlases
(top) and subdivision atlases (bottom) on second cuneiform (left) and
talus (right). The three pictures in each table cell show, from left to
right, the original un-deformed atlas, deformed atlas surface (blue dots)

with the target surface (black wire), and the target surface where each
point is colored by its shortest distance to the deformed atlas surface.
The color legend is shown to the right

Fig. 6 Box plot of normalized RMSD between mapped BMD in 18
pairs of repeated scans over each bone
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annotations. Note that the definitions of VOI by the same
expert in different trials can exhibit large variation, as shown
in Fig. 8 for subject 16. On the other hand, the automated
atlas-based method produces repeatable measurements.

Discussion

The primary application of our bone registration technique is
to perform quantitative measurements in an efficient and non-
subjective way. While human experts are equipped with tre-
mendous domain knowledge and powerful visual perception
skills, they cannot always make judgments consistently and
bias always exists. The atlas-based mapping allows user-
provided annotations on the template bone to be automatically
and consistently “transferred” onto target surfaces. Our meth-
od can also be used to transfer from the template to target
bones other types of annotations, such as surface landmarks,
interior landmarks, and bone orientations. This would enable a
range of geometric measurements to be automated.

Our registration method assumes the target boundary has
similar geometric features as those of the template surface.
While such similarity is observed in our testing suite made
up of bone scans of healthy feet, bones from patients with
severe foot deformities may exhibit significant variation in
boundary geometry and even loss of large bone regions, in
which case the proposed method would not be able to

register as accurately or consistently as reported here. More-
over, it is questionable what constitutes a good spatial map-
ping between severely deformed or fractured bones.

As the target bone surface is pre-processed with
Laplacian-based fairing [24] prior to being fitted by the
atlas, our registration method is not sensitive to small var-
iations in segmentation. Such robustness can be seen in the
consistency of BMD mapping between the same bones in
repeated scans (the same bone has different segmentation in
the two scans due to the change in position and orientation).
However, large errors in segmentation, such as missing or
adding a significant bone volume, could potentially affect
the registration as much as bones with sever deformities do.
The graph-cut based segmentation method we used in our
pipeline [4] is a semi-automated routine that has been shown
to be both highly consistent with human annotation [4] and
reliable among individual operators [26].

We constructed the atlas from an arbitrarily selected
healthy subject in our experiments. When working with a
particular group of subjects, selecting one whose bone shape
is representative of that group would yield more accurate
results. Alternatively, an average foot can be constructed by
statistical method such as [32] and used for constructing the
atlases.

Like previous subdivision-based approaches [15, 19], our
registration method makes the assumption that the interior
of the bone mostly likely undergoes a locally affine (i.e.,
linear) warping between two time points or between two
different subjects. Although seemingly artificial, the as-
sumption is supported by our evaluation results in terms of
consistency and accuracy on healthy foot bones. As part of
the future work, we would like to explore the use of non-
linear energy formulations, such as elasticity and strain
energy, in the context of subdivision-embedded atlases and
compare these results with those using our energy formula-
tion. We would also like to explore how correspondences of
surface features (e.g., ridges and corners) [33] can be incor-
porated in our matching framework to further improve the
accuracy of boundary fitting.

Conclusion

We proposed a novel atlas representation (subdivision-em-
bedded atlases) and applied it for deformable spatial

Fig. 7 Plots of regional BMD measured by human annotations and
atlas registration for each VOI (head, base and shaft) of the second
metatarsal over 17 scans. Vertical lines are 95% confidence intervals

Fig. 8 VOI definitions annotated by a human expert in three trials on
the second metatarsal bones in two different subjects. The VOIs are
defined by planar boundaries selected by the expert using an interactive

in-house software. The intersection curves of these planes with the
bone surface are drawn in different color for each trial. Note that large
deviation of the planes among the trials in Subject 16
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mapping of segmented foot bones from QCT scans. Com-
pared with existing subdivision atlases, the new atlases
capture detailed boundary geometry of anatomical structures
while maintaining a coarse control grid for efficient defor-
mation. Our experiments indicated that the method offers a
reliable, efficient alternative to human annotations for mea-
suring regional BMD in QCT scans of foot bones.
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