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Abstract In this work, we propose a new approach for
three-dimensional registration of MR fractional anisotropy
images with T1-weighted anatomy images of human brain.
From the clinical point of view, this accurate coregistration
allows precise detection of nerve fibers that is essential in
neuroscience. A template matching algorithm combined
with normalized cross-correlation was used for this

registration task. To show the suitability of the proposed
method, it was compared with the normalized mutual
information-based B-spline registration provided by the
Elastix software library, considered a reference method.
We also propose a general framework for the evaluation of
robustness and reliability of both registration methods. Both
registration methods were tested by four evaluation criteria
on a dataset consisting of 74 healthy subjects. The template
matching algorithm has shown more reliable results than the
reference method in registration of the MR fractional an-
isotropy and T1 anatomy image data. Significant differences
were observed in the regions splenium of corpus callosum
and genu of corpus callosum, considered very important
areas of brain connectivity. We demonstrate that, in this
registration task, the currently used mutual information-
based parametric registration can be replaced by more ac-
curate local template matching utilizing the normalized
cross-correlation similarity measure.

Keywords Neuroscience . Brain . MRI . Fractional
anisotropy . Multimodal image registration . Template
matching . Inverse consistency error

Background

Analysis of brain functions and its structure at different scales
is a challenging and important issue in neuroscience [1, 2],
especially in clinical neuroimaging. Magnetic resonance im-
aging (MRI) offers acquisitions based on different scan pro-
tocols to acquire unique and complementary information
about the tissue. Combination of such registered data provides
complex information about the structure and function of hu-
man brain. The current research deals with accurate and time-
efficient multimodal intrasubject MRI registration of high-
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resolution T1-weighted images (T1) of anatomy with low-
resolution diffusion tensor imaging (DTI) that provides frac-
tional anisotropy (FA) images, containing information about
the tissue microarchitecture. Precise spatial alignment of these
image data is necessary for applications, especially in the areas
such as brain connectivity research [3, 4], preoperative surgi-
cal planning [5], and imaging genetics [6, 7]. Precise FA-T1
registration is essential also in the studies of cognitive aging
for early recognition of biomarkers describing normal and
abnormal degenerations, i.e., Alzheimer [7] and dementia [8].

The DTI is an MRI acquisition technique based on detec-
tion of direction and degree of water diffusion in the brain [2,
9]. It allows evaluation ofmyelinated nerve fibers contributing
to anisotropic water diffusion in white matter of the brain and
the spinal cord. Further visualization is possible by a fiber
tracking technique [10]. In order to describe the position of
myelinated nerve fibers within the region of interest in the
brain, it is necessary to complement the DTI FA image by
additional information about the corresponding anatomical
structure of the brain [2, 11]. Then, precise three-
dimensional (3D) FA-T1 registration is necessary, which
allows further reliable statistical evaluation of spatial relations
between FAvalues and anatomy, as needed particularly in case
of longitudinal studies of cognitive aging.

Both data sets, T1 and FA, must be preprocessed to
suppress acquisition artifacts and to ensure identical geo-
metrical image properties such as resolution and voxel
size. Initial spatial alignment of FA and T1 data is
usually based on a global rigid or affine geometric

transforms [2, 11, 12], followed by a 3D deformable
registration method. Li and Verma [13] proposed multi-
modal feature based image registration using Gabor
wavelet transform to create an image collection suitable
for multichannel image analysis. Walimuni et al. [14]
used the nonlinear image registration tool (FNIRT,
http://www.fmrib.ox.ac.uk/fsl/fnirt/) utilizing Gauss–New-
ton optimization to quantify tissue microstructural integ-
rity. Jahanshad et al. [15] presented a study of brain
asymmetry using a fluid registration technique of DTI,
T1, and T2 MRI data. Other relevant publications to the
problem can be found in [7, 16, 17], as well as in the
form of software packages such as ITK [18] and Elastix
[19] that are commonly used for image registration.

Although both FA and T1 brain image scans are usually
obtained within one MR session, a global affine transform
as provided in FMRIB Software Library (FSL, [20]) or
FreeSurfer does not ensure precise alignment of local areas
in the brain due to geometric distortions, and a nonlinear
registration approach is needed. Since the registration of FA
and T1 image data is a bimodal registration problem, the
normalized mutual information (NMI) seems to be the opti-
mal similarity criterion. However, our approach is based on
the verified hypothesis of monotonous intensity dependence
between the corresponding two image data sets, which
enables using an intensity based similarity. In this paper,
we propose a registration approach based on a combination
of template matching and the normalized cross-correlation
criterion [21]. Computations of correlation via the Fourier

Table 1 MR imaging protocol

Series Pulse sequence parameters

1 Localizer 2D TR/TE07.8[ms]/1.7[ms]/30[o]; acq. voxel: 1.0×1.0×5.0 [mm3]; 3 [img]

2 Ax PD/T2 2D FSE TR/TE1/TE2/FA03840/12.1/84.9/90; voxel: 0.94×0.94×4.0; 52

3 Sag T1 3D FSPGR IR prepped TR/TE/TI/FA09.45/2.41/450/7; voxel: 0.94×0.94×1.40; 124

4 Sag T1 3D FSPGR IR prepped [same as 3 to improve SNR for FreeSurfer segmentation]

5 Ax DTI, EP SE, 26 slices TR/TE/FA03840/84.9/90; 25 b01,000, 5 b00; voxel: 0.94×0.94×4.0; 780

Fig. 1 Preprocessing of DTI
FA data (left original FA image,
right segmentation of brain)
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transform domain and parallelization allow a significant
reduction of the computational time. The proposed method
is compared to the B-spline registration based on NMI, as
implemented in the Elastix software (http://elastix.isi.uu.nl),
serving here as the reference method. For evaluation of the
performance, a general framework based on inverse consis-
tency error (ICE) [22], checkerboard visualization, and
nerve fiber intersection (NFI) is suggested and used.

Methods

Image Data Acquisition

The used datasets consist of 3D high-resolution magnetic
resonance (MR) T1 weighted images (acquisition matrix,
256×256×124) and low-resolution DTI-based FA images
( 128×128×26) from 74 elderly people that participated in
the longitudinal study “Cognitive Aging” [23, 24]. The project
was approved by the Ethical Committee of Western part of
Norway. The MR imaging protocol that has been used in this
study is described in Table 1. The multimodal MR acquis-
itions were performed on a 1.5-T GE Signa Echospeed Scan-
ner (MR laboratory, Haraldsplass Deaconess Hospital,
Bergen) using a standard eight-channel head coil. The

participants were instructed to lie still with their eyes closed
in the scanner during the MRI examination.

Preprocessing

The DTI data consist of 30 diffusion-weighted (DWI) vol-
umes containing 25 diffusion sensitive (b01000) directions
and 5 baseline (b00) images without diffusion sensitization.
Eddy current distortions of the DWI images caused by local
magnetic fields were suppressed by a tool (“Eddy correct”)
included in the FSL package [18]. The eigen decomposition
of the DTI recordings using the Diffusion Toolkit package
[25] enabled to estimate the diffusion tensor and determine
the voxel-wise FA using the general formula (1)

FA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 � lh ið Þ2 þ l2 � lh ið Þ2 þ l3 � lh ið Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 l21 þ l22 þ l23
� �q ; ð1Þ

where lh i determines the mean diffusivity and λ1−3 are
principal eigenvectors of the diffusion tensor. The skull
stripping in FA images (Fig. 1) was performed by the Free-
Surfer v.5.0.0, a software library developed at Martinos
Center for Biomedical Imaging [26–28].

Fig. 2 Preprocessing of MRI
T1-weighted image data (left
original, right skull strip of
brain)

Fig. 3 Searching for the
displacement βp
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The anatomical MRI T1-weighted data were geometri-
cally interpolated from their native space (0.94×0.94×
1.4 mm) into an isotropic space (1.0×1.0×1.0 mm) and
preprocessed by Freesurfer. The preprocessing included
the skull removal (Fig. 2), intensity normalization and la-
beling of the regions of interest.

Derivation of a Displacement Field via Spectral Domain

The T1 and FA images were registered by the designed
template matching (TM) algorithm, which was locally uti-
lized to provide the respective displacement field [8] de-
scribing the generic mutual deformation. This algorithm was
combined with the normalized cross-correlation criterion to
seek the maximum of mutual correlation between the inten-
sity patterns of compared image regions. The main idea of
this method is to find the local displacement, which ensures
the highest similarity between the template mp (k× l)
extracted from a moving (to be registered) image M, and a
corresponding neighborhood fp (K×L) extracted from a
fixed image F. Then, the local displacement βp is deter-

mined as the difference vector between position A and B
that are the central positions of fp and the position fq indi-
cated by the maximum of similarity D (see Fig. 3). The
central positions of fp and mp should correspond to the same
image detail. Searching for the displacement βp in each node
p of a spatial grid (so far regular) is based on the maximiza-
tion (2) of the normalized cross-correlation criterion D (3),

bp ¼ argmax
b

D fðpÞ;m pþbð Þ
� �

; fp 2 F;mp 2 M ; bp 2 u

ð2Þ
where F is the fixed image,M is the geometrically transformed
image, D is the similarity measure, βp denotes the displace-
ment in the node p of the defined grid, u is the final displace-
ment field, and p and q are indexes of nodes (spatial positions
in the images) and simultaneously the midpoints of m and f
(Fig. 3).The normalized cross correlation used as the similarity
criterion for finding the best match of the mask m(i,j) in the
neighborhood f(x,y) is defined for two-dimensional case as
follows:

D f ;mð Þ ¼

Pk=2
i¼�k=2

Pl=2
j¼�l=2

f xþ i; yþ jð Þm i; jð Þ � klμf μm

Pk=2
i¼�k=2

Pl=2
j¼�l=2

f 2 xþ i; yþ jð Þ � klμf
2

 ! Pk=2
i¼�k=2

Pl=2
j¼�l=2

m2 i; jð Þ � klμm
2

 ! !1=2
; ð3Þ

for all (x, y)∈K×L. Here, μf and μm denote intensity aver-
ages in m and f. The generalization for the 3D case is
straightforward.

The overall computation time is linearly dependent
on the number of nodes of the uniformly sampled grid
[21]; on the other hand, the grid has to be dense
enough to describe the displacement field reliably. The
optimal density of the grid, and thus the distribution of
its nodes, is set accordingly to the structure of images
(Table 2). According to the chosen sampling factor, the
displacements can be determined with either pixel or
sub-pixel accuracy. The computational demands would
be very high when optimizing directly in the original
space (3); nevertheless, using the convolution theorem
(4)

f � m ¼ FFT�1 FFT ff gFFT mf g*
n o

; ð4Þ

the cross-correlation can be calculated via the Fourier
space, where the computational demands are much low-
er. In this way, the first part of the numerator in Eq. (3)
can be rewritten to (disregarding for simplicity the nec-
essary zero padding of the matrices):

Xk=2
i¼�k=2

Xl=2
j¼�l=2

f xþ i; yþ jð Þm i; jð Þ ¼ FFT�1 FFTðf ÞFFTðmÞ*
� �

:

ð5Þ

Impulse-like noisemight be present in the resulting displace-
ment field u due to individual falsely found correspondences in
homogenous areas without sufficient texture. The displacement

Table 2 Parameters of
TM registration Grid spacing 6×6×6

Mask 5×5×5

Extent 11×11×11

Table 3 Parameters of Elastix registration

Optimizer Adaptive stochastic
gradient descent

Metric Normalized mutual
information

Final grid spacing in physical units 30×30×30

Number of resolutions 3

Maximum number of iterations 500
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field uwas filtered by peak and valley filter [29] to suppress the
impulsive noise and regularized by a Gaussian filter to ensure a
global smoothing effect. In order to provide a continuous
displacement field for all image points, the displacements were
interpolated linearly between the nodes of the used grid. Con-
sidering the local optimization and Gaussian filter, we obtain a
globally nonlinear regular deformation [25]. Suchmodel can be
described as a Gaussian filtered displacement analysis.

Solving the nonparametric registration problem is usually
based on using an accurate finite difference scheme [30];
however, the alternative and faster Gaussian filter approxi-
mate scheme provides satisfactory results [25, 30, 31]. The
convergence of the template matching method is dependent
on the deformation extensiveness between images. In case
that the deformation is regular enough so that it may be
locally considered as shifts, and the search region is large
enough, the template matching algorithm [8] in combination
with the Gaussian filter [30] turned out to be convergent.

Registration by Elastix

The performance of the proposed registration method was
compared with multiresolution B-spline registration with the
NMI similarity measure implemented in the free-access Elas-
tix software. The registration parameters were chosen accord-
ing to the Elastix web database with certain changes suited to
the characteristics of FA-T1 data (Table 3). The grid spacing

was chosen according to the expected local deformations of
structures in the FA images. Different combinations of param-
eters mentioned in Table 3 were tested in order to achieve the
best registration results. The experimentally found optimal
setting is mentioned in the second column of this table.

Approaches to the Evaluation of FA-T1 Registration

The evaluation of the presentedmultimodal registration approach
is a demanding and challenging task. Here, an evaluation scheme
based on three different methods is considered to provide a good
overview on the quality of any FA-T1 registration algorithms.
The scheme consists of (1) a formal numerical evaluation of the
consistency and robustness called the ICE [22]; (2) a subjective
evaluation by checkerboard images, a visual method based on
observer’s experience; and (3) the Nerve fibers intersection
method focused on white matter regions.

Inverse Consistency Error

The ICE criterion (6) evaluates the absolute difference of the
regular grid and the grid after composition of the forward
and reverse transformations obtained as a result of the
forward and reverse registration processes. The forward
transformation (FA→T1) should be ideally equal to the
inverse version of the reverse transformation (T1→FA); a
good registration thus should have a minimal ICE value,

Fig. 4 Example of evaluation
(left mark 1, middle mark 3,
right mark 5)

Fig. 5 Example of NFI
evaluation method (WM
segmentation signed by red
line; left good fit in frontal lobe,
middle good fit in CSF lobe,
right fail in genu of corpus
callosum part)
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ICE xð Þ ¼ tr tf xð Þ � xð Þk k: ð6Þ
Here, tf(x) and tr(..) are defined as tf0x−uf and tr0x−ur,

uf and ur represent values of the forward and reverse dis-
placement fields, x is the respective grid position, and || ||
denotes the Euclidean norm. The ICE values for each sub-
ject were subsequently statistically analyzed by Wilcoxon
rank sum test and two-sample t test (with parameters df0
146, tW00.0912, tT200.0912, α00.05). These tests were
chosen to show the statistical comparability of the robust-
ness of both registration methods.

Checkerboard Classification Method

Although the evaluation using ICE shows the robustness and
reliability of registration algorithms, visual evaluation of
results by an expert is necessary for assessment of the practical
acceptability. The checkerboardmethod provides a good over-
view on the continuity of edges in the checkerboard image
compound alternately of registered and target sub-images
(Fig. 4). Over thousand slices in six different regions of
interest (ROIs) were visually evaluated for both registration
methods. These ROIs were specified in the main brain lobes
as follows: frontal lobe, parietal lobe, occipital lobe, temporal
lobe, cerebrospinal fluid (CSF), and midbrain. The
corresponding slices were classified by an expert into five
different groups according to the edge continuity: 1, all edges
in the region are continuous; 2, most of the edges are contin-
uous; 3, half of the edges are continuous; 4, most of the edges
are discontinuous; and 5, no edges are continuous. The scores
were provided in each slice independently.

Nerve Fibers Intersection

As a third criterion, we suggested a new method that
evaluates the reliability of fitting the nerve fibers repre-
sented by FA values into the white matter (WM) region.

The criterion has been implemented in two forms, i.e., as
visual evaluation and as automatic assessment; both
approaches were compared. This criterion has been used
within four regions of interest: frontal, parietal, temporal,
and CSF edge.

The visual evaluation utilizes a qualitative classification
based comparison of both registration algorithms for each of
the above defined WM regions. For this purpose, five clas-
ses were defined: 1, all nerve fibers are in the WM region; 2,
rare misalignments in the lateral brain regions (about 90 %
correctly registered); 3, rare misalignments also in the main
brain regions; 4, moderate misalignments in the whole
brain; and 5, significant misalignments in the whole brain.
This evaluation was performed uniformly for each brain
region.

The automatic approach evaluated the intersection of the
nerve fibers and the WM region based on the fact that the
myelinated nerve fibers are represented by significantly
higher intensities in the FA image (Fig. 5). Higher intensity
values thus indicate better fitting registration in each of the
WM regions. Therefore, the normalized sum of intensity
values within each of the WM regions (7) is calculated

NFIval ¼ 1

M

X
i2Ψ

FAðiÞ; ð7Þ

where Ψ is the selected WM region (defined using the
Freesurfer), M is the size of a selected region, and i is the
index of WM image point.

Implementation and Testing

The registration algorithms were both tested on the same
high-performance computational cluster—CPU, 50 GB
RAM—of which eight parallel threads were used. The Elas-
tix is programmed in C++, while the TM registration algo-
rithm, utilizing the computations via spectral domain, was
implemented in the MATLAB environment.

Results

Both registration methods were tested on the dataset con-
taining 74 subjects. The whole data set was tested using
ICE; out of them, 17 randomly chosen subjects were

Table 4 ICE values from TM and Elastix registrations

Template matching Elastix

Mean Max STD Mean Max STD

Average 1.812 7.022 1.424 2.175 8.173 3.16

Table 5 Average mean and
STD values marked edge
continuity

Frontal lobe Parietal lobe CSF edge

TM Elastix TM Elastix TM Elastix

Average mean 1.224 1.398 1.127 1.205 1.354 1.973

Average STD 0.096 0.156 0.114 0.146 0.206 0.602
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evaluated also by the two other criteria. Selected regions
(frontal lobe, parietal lobe, temporal lobe, CSF, occipital
lobe, and midbrain) were evaluated by the checkerboard
method and the first four regions also by the NFI
method. The suggested TM registration method worked
reasonably for all subjects, while the reference method
(Elastix) failed completely for three subjects (ICE~8.0).
The results based on individual comparison criteria are
in detail described below.

Evaluation by Inverse Consistency Error

Three basic statistical parameters from the ICE test were
computed for all 74 subjects (Table 4). All the determined
parameters proved to be better for the TM algorithm. The
most significant parameter of registration quality is consid-
ered to be the mean ICE value [22].

Regarding the similarity criteria, the tested registra-
tion methods are different. However, the statistical
results of two-sided Wilcoxon rank sum test and two
sample t tests on the mean ICE values with 0.05 alpha
level proved that template matching algorithm together
with normalized cross-correlation criterion is a reliable
method for the registration of FA and T1 images. This
can be explained by the already mentioned positively
monotonous dependence of the intensities between both
FA and T1 modalities.

Evaluation by the Checkerboard Classification Method

The average and standard deviation values representing the
visual evaluation of the edge continuities within the check-
erboard image are described in Tables 5 and 6. The differ-
ences between both evaluated registration methods are
significant mainly in CSF and midbrain regions, while in
the remaining regions, the registration quality can be con-
sidered comparable.

Three examples based on the checkerboard method are in
Figs. 6, 7, and 8.

Evaluation by Nerve Fiber Intersection

Significant differences in the reliability of both tested regis-
tration algorithms were observed in the regions splenium of
corpus callosum and genu of corpus callosum, when evalu-
ated by the NFI criterion. These regions are considered the
main parts of WM and thus critical places for brain connec-
tivity determination [32]. The Elastix method was not fully
accurate more frequently (in about 67 %) than TM (only
about 40 %) in these regions. In addition, in the frontal lobe
region, especially in its upper part, the TM registration has
shown higher reliability (47 % failure versus 87 %). The TM
registration and the Elastix method have led to slight mis-
alignments in some of the peripheral parts of the frontal lobe
and parietal lobe. Both methods have shown comparable

Table 6 Average mean and
STD values marked edge
continuity

Occipital lobe Temporal lobe Midbrain

TM Elastix TM Elastix TM Elastix

Average mean 1.088 1.164 1.114 1.248 1.161 1.915

Average STD 0.117 0.145 0.122 0.355 0.213 0.712

Fig. 6 Example of edge
continuity showed by
checkerboard technique (left
affine registration, middle affine
and elastix registration, right
affine and template matching
registration)
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registering efficiency in the remaining regions of WM as
seen in Figs. 9, 10, and 11.

Higher values of NFI (averages±standard deviations)
inside the WM regions (Table 7) indicate slightly better fit
of nerve fibers provided by the TM registration (Fig. 11), in
some cases rather significant.

Discussion

Precise evaluation of registration accuracy and robustness is
generally difficult for multimodal images, and when done
manually, it is dependent on previous evaluator’s knowledge
and experience. According to publications mentioned in the
introduction [6, 16, 17], the FA and T1 images were so far
registered using either the ITK library or the Elastix.

However, the authors did not evaluate quantitatively either
the accuracy or the robustness of the spatial alignment. We
apply a methodology for a more quantitative evaluation by
both automatic and visual criteria. The checkerboard meth-
od provides a good subjective overview of misalignments
within the whole image by evaluation of edge discontinu-
ities. The numerical and visual evaluation of the NFI crite-
rion has proved to be a valuable method to evaluate the
relative presence of nerve fibers inside the white matter,
showing the degree of alignment. The ICE criterion, based
on forward and backward determination of the displacement
field, evaluates the robustness of the registration algorithms
even more qualitatively.

The TM algorithm has shown a better robustness and
reliability at the border of CSF region and surrounding
tissues and inside the frontal lobe and midbrain regions.

Fig. 7 Example of edge
continuity showed by
checkerboard technique (left
affine registration, middle affine
and elastix registration, right
affine and template matching
registration)

Fig. 8 Example of edge
continuity showed by
checkerboard technique (left
affine registration, middle affine
and elastix registration, right
affine and template matching
registration)
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The registration calculated by the Elastix based on B-splines
provides slightly better match in some peripheral parts of
frontal and parietal lobes. The NFI criterion was confirmed
by the checkerboard method. Significant differences be-
tween both registration methods were found at the edge of
the CSF region. Since this region represents very important
area for brain connectivity detection, precise registration is
essential here.

Implementation Aspects

The computation time necessary to determine the final dis-
placement field was approximately 80 s per subject for both
methods. However, the TM algorithm offers still a great
possibility of a further acceleration by more massive paral-
lelization. Theoretically, the number of threads can be equal
to the number of defined nodes in the image. Thus, there is

Fig. 9 Example of NFI visual evaluation (left affine registration, middle affine and elastix registration, right affine and template matching
registration)

Fig. 10 Example of NFI visual evaluation (left affine registration, middle affine and elastix registration, right affine and template matching
registration)
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still a potential for a substantial further speed-up, particular-
ly when implemented on a GPU [33]. The last version of the
parallel MATLAB toolbox (2011a) supports up to 16 simul-
taneously working labs, thus potentially offering the reduc-
tion in computation time by the factor of two. Elastix
utilizes parallelization in principle as well. However, the
tested configuration did not support the present parallel
processing, when using the parameters according to the
Table 3.

The TM algorithm, in general, can use any similarity
criterion, but in order to keep the computation time as low
as possible, the criteria convertible to the Fourier space are
preferable. This leads to the use of correlation based criteria;
among them, the correlation coefficient is insensitive to
linear contrast transforms and has proved, in experiments,
robust even to nonlinear monotonous non-decreasing inten-
sity dependencies [21].

Although the proposed registration method provided very
good spatial alignment of FA and T1 images, further devel-
opment may still be considered. So far, the TM algorithm is
based on user-defined equidistant grid spacing and also
mask and searched neighborhood sizes; this rigid setting
can be suboptimal in some cases. The grid of nodes carrying
displacements, which is thus regular so far, may be changed

to an adaptive one with spatially uneven distribution; this
might improve the computational speed as well as the qual-
ity of detailed registration. The displacement field can also
be calculated using a multilevel (pyramidal) approach,
where both the neighborhoods and masks are ever smaller
on a next level; this could further improve the reliability of
registration. Further, spatially variable adaptive form of
Gaussian filtering of the derived displacement field could
improve the accuracy, particularly in peripheral brain
regions. In addition, detection of rotation based on a cylin-
drical phase correlation method [34] might lead to improv-
ing the quality in peripheral brain regions. These
modifications that would possibly result in both higher
reliability of local displacements and better details in the
displacement field will be the subject of further research.

Conclusion

In this paper, we have proposed an intrasubject registration
method of MR fractional anisotropy images (FA) and T1-
weighted anatomy images (T1) of healthy human brain. The
registration procedure using TM registration based on the
normalized cross-correlation similarity criterion was com-
pared with the multimodal NMI-based registration provided
by the Elastix software, considered the reference method.
The nonlinear dependency of intensities between FA and T1
images was confirmed, and consequently, the normalized
cross-correlation criterion was successfully implemented in
the TM algorithm, calculated via the spectral domain.

Fig. 11 Example of NFI visual evaluation (left affine registration, middle affine and elastix registration, right affine and template matching
registration)

Table 7 Statistics of
NFI values inside the
WM region

TM Elastix

Average 0.285 0.221

STD 0.022 0.019
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According to the presented results, the TM algorithm
provided better local alignment and registration stability
than mutual information in Elastix. Therefore, the TM meth-
od can be considered as a suitable, fast, and robust approach
to registration of FA images with corresponding T1 images.
Although the peripheral brain regions are very complicated,
the chosen configuration of the TM algorithm provided
more reliable results in all our experiments.

Acknowledgments This project was supported by The Research
Council of Norway, grant number 202807 and by a grant to Prof. Astri
J Lundervold from the Western Health Authority (numbers 911397 and
911687), and to Arvid Lundervold (MedViz project #7/HV #911593)

Competing Interests The authors declare that they have no compet-
ing interests.

References

1. Sullivan EV, Pfefferbaum A: Neuroradiological characterization of
normal adult ageing. Br J Radiol 80(Spec No 2):99–108, 2007

2. Grieve SM, Williams LM, Paul RH, Clark CR, Gordon E:
Cognitive aging, executive function, and fractional anisotropy: a
diffusion tensor MR imaging study. Am J Neuroradiol 28(2):226–
235, 2007

3. Sherbondy A, Akers D, Mackenzie R, Dougherty R, Wandell B:
Exploring connectivity of the brain’s white matter with dynamic
queries. IEEE Trans Vis Comput Graph 11(4):419–430, 2005

4. Naik M, Lundervold A, Nygaard H, Geitung JT: Diffusion tensor
imaging in dementia patients with frontal lobe symptoms. Acta
Radiol 51(6):662–668, 2010

5. Archip N, Clatz O, Whalen S, Kacher D, Fedorov A, Kot A,
Chrisochoides N, Jolesz F, Golby A, Black PM, Warfield SK:
Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI
with intra-operative MRI for enhanced visualization and naviga-
tion in image-guided neurosurgery. NeuroImage 35(2):609–624,
2007

6. Kinoshita M, Hashimoto N, Goto T, Kagawa N, Kishima H,
Izumoto S, Tanaka H, Fujita N, Yoshimine T: Fractional anisotro-
py and tumor cell density of the tumor core show positive corre-
lation in diffusion tensor magnetic resonance imaging of malignant
brain tumors. NeuroImage 43(1):29–35, 2008

7. Lee AD, Lepore N, Barysheva M, Chou Y, Brun C, Madsen, SK,
McMahon K, de Zubicaray GI, Wright MJ, Toga AW, Thompson
PM: Gene effects mapped using fractional and geodesic anisotropy
in diffusion tensor images of 92 monozygotic and dizygotic twins.
In: Alexander D, Gee J, Whitaker R Eds. Proceedings of the
CDMRI’08: Workshop on Computational Diffusion MRI,
MICCAI Workshop on Computational Diffusion MRI, New
York, United States. University of Pennsylvania 31–40, 2008

8. Suárez E, Westin CF, Rovaris E, Ruiz-Alzola J: Nonrigid registra-
tion using regularized matching weighted by local structure. In:
Proceeding of the MICCAI 2002 2489:581–589, 2002

9. Basser P, Mattiello J, Le Bihan D: MR diffusion tensor spectros-
copy and imaging. Biophys J 66(1):259–267, 1994

10. Hagmann P, Jonasson L, Maeder P, Thiran JP, van Wedeen J,
Meuli R: Understanding diffusion MR imaging techniques: from
scalar diffusion-weighted imaging to diffusion tensor imaging and
beyond. Radiographics 26:205–223, 2006

11. Hodneland E, Ystad MA, Haasz J, Munthe-Kaas AZ, Lundervold
A: Automated workflow for spatial alignment of multimodal MR
image acquisitions in a longitudinal study of cognitive aging. In:
ASM’10 Proceedings of the 4th International Conference on
Applied Mathematics, Simulation, Modelling 2010. Wisconsin,
USA, WSEAS Press, 264–269, 2010

12. Bozzali M, Parker GJ, Serra L, Embleton K, Gili T, Perri R,
Caltagirone C, Cercignani M: Anatomical connectivity mapping:
a new tool to assess brain disconnection in Alzheimer’s disease.
NeuroImage 54(3):2045–2051, 2011

13. Li Y, Verma R: Multichannel image registration by feature-based
information fusion. IEEE Trans Med Imaging 30(3):707–720,
2011

14. Walimuni IS, Abid H, Hasan KM: A computational framework to
quantify tissue microstructural integrity using conventional MRI
macrostructural volumetry. Comput Biol Med 41(12):1073–1081,
2010

15. Jahanshad N, Lee AD, Barysheva M, McMahon KL, de Zubicaray
GI, Martin NG, Wright MJ, Toga AW, Thompson PM: Genetic
influences on brain asymmetry: a DTI study of 374 twins and
siblings. NeuroImage 52(2):455–469, 2010

16. Chiang MC, Leow AD, Klunder AD, Dutton RA, Barysheva M,
Rose SE, McMahon KL, de Zubicaray GI, Toga AW, Thompson
PM: Fluid registration of diffusion tensor images using informa-
tion theory. IEEE Trans Med Imaging 27(4):442–456, 2008

17. Jin Y, Shi Y, Jahanshad N, Aganj I, Sapiro G, Toga AW, Thompson
PM: 3D elastic registration improves HARDI-derived fiber align-
ment and automated tract clustering. In: Proceeding of the
Biomedical Imaging: Form Nano to Macro, 2011 IEEE
International Symposium on, 822–826, 2011

18. Ibanez L, Schroeder W, Ng L, Cates J: ITK Software Guide
Kitware. Inc., 2005

19. Klein S, Staring M, Murphy K, Viergever MA, Pluim JP: Elastix: a
toolbox for intensity based medical image registration. IEEE Trans
Med Imaging 29(1):196–205, 2010

20. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens
TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I,
Flitney DE, Niazy RK, Saunders J, Vickers J, et al: Advances in
functional and structural MR image analysis and implementation
as FSL. NeuroImage 23:208–219, 2004

21. Jan J: Medical image processing, reconstruction and restoration—
concepts and methods. CRC–Taylor and Francis, Boca Raton,
2005

22. Christensen GE, Kuhl JG, Grabowski TJ, Pirwani IA, Vannier
MW, Allen JS, Damasio H: Introduction to the non-rigid image
registration evaluation project (NIREP). In: Proceedings of SPIE,
WBIR 2006, 128–135, 2006

23. Ystad M, Hodneland E, Adolfsdottir S, Haasz J, Lundervold AJ,
Eichele T, Lundervold A: Cortico-stricetal connectivity and cog-
nition in normal aging: a combined DTI and resting state fMRI
study. NeuroImage 55(1):24–31, 2011

24. Ystad M, Eichele T, Lundervold AJ, Lundervold A: Subcortical
functional connectivity and verbal episodic memory in healthy el-
derly—a resting state fMRI study. NeuroImage 52(1):379–388, 2010

25. Thirion JP: Image matching as a diffusion process: an analogy with
Maxwell’s demons. Med Image Anal 9:243–260, 1998

26. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC,
Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT,
Albert MS, Killiany RJ: An automated labeling system for sub-
dividing the human cerebral cortex on MRI scans into gyral based
regions of interest. NeuroImage 31(3):968–980, 2006

27. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C,
van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo
A, Makris N, Rosen B, Dale AM: Whole brain segmentation:
automated labeling of neuroanatomical structures in the human
brain. Neuron 33(3):341–355, 2002

784 J Digit Imaging (2013) 26:774–785



28. Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK,
Fischl B: Hybrid approach to the skull-stripping problem in MRI.
NeuroImage 22(3):1160–1175, 2004

29. Windyga PS: Fast impulsive noise removal. IEEE Trans Image
Proc 10(1):173–179, 2001

30. Modersitzki J: Numerical Methods for Image Registration. Oxford:
Oxford University Press, 2004

31. Nielsen M, Florack L, Deriche R: Regularization and scale space.
INRIA Tech. Rep. RR-2352, September 1994

32. Sun H, Yushkevich PA, Zhang H, Cook PA, Duda JT, Simon TJ,
Gee JC: Shape-based normalization of the corpus callosum for DTI

connectivity analysis. IEEE Trans Med Imaging 26(9):1166–1178,
2007

33. Anderson RF, Kirtzic JS, Daescu O: Applying parallel design
techniques to template matching with GPUs. in: Jose M, Laginha
M, Palma MD, Osni M, Joao CL Eds. Proceedings of the 9th
international conference on high performance computing for com-
putational science (VECPAR'10). Berlin/Heidelberg: Springer,
2010, pp 456-468

34. Bican J, Flusser J: 3D rigid registration by cylindrical phase
correlation method. Pattern Recognit Lett 30(10):914–921,
2009

J Digit Imaging (2013) 26:774–785 785


	Registration of FA and T1-Weighted MRI Data of Healthy Human Brain Based on Template Matching and Normalized Cross-Correlation
	Abstract
	Background
	Methods
	Image Data Acquisition
	Preprocessing
	Derivation of a Displacement Field via Spectral Domain
	Registration by Elastix
	Approaches to the Evaluation of FA-T1 Registration
	Inverse Consistency Error
	Checkerboard Classification Method
	Nerve Fibers Intersection
	Implementation and Testing

	Results
	Evaluation by Inverse Consistency Error
	Evaluation by the Checkerboard Classification Method
	Evaluation by Nerve Fiber Intersection

	Discussion
	Implementation Aspects

	Conclusion
	References


