
Support Vector Machine Model for Diagnosing
Pneumoconiosis Based on Wavelet Texture Features
of Digital Chest Radiographs

Biyun Zhu & Hui Chen & Budong Chen & Yan Xu &

Kuan Zhang

Published online: 9 July 2013
# Society for Imaging Informatics in Medicine 2013

Abstract This study aims to explore the classification abil-
ity of decision trees (DTs) and support vector machines
(SVMs) to discriminate between the digital chest radio-
graphs (DRs) of pneumoconiosis patients and control sub-
jects. Twenty-eight wavelet-based energy texture features
were calculated at the lung fields on DRs of 85 healthy
controls and 40 patients with stage I and stage II pneumoco-
niosis. DTs with algorithm C5.0 and SVMs with four differ-
ent kernels were trained by samples with two combinations
of the texture features to classify a DR as of a healthy subject
or of a patient with pneumoconiosis. All of the models were
developed with fivefold cross-validation, and the final per-
formances of each model were compared by the area under
receiver operating characteristic (ROC) curve. For both
SVM (with a radial basis function kernel) and DT (with
algorithm C5.0), areas under ROC curves (AUCs) were
0.94±0.02 and 0.86±0.04 (P=0.02) when using the full
feature set and 0.95±0.02 and 0.88±0.04 (P=0.05) when
using the selected feature set, respectively. When built on the
selected texture features, the SVM with a polynomial kernel
showed a higher diagnostic performance with an AUC value
of 0.97±0.02 than SVMs with a linear kernel, a radial basis
function kernel and a sigmoid kernel with AUC values of
0.96±0.02 (P=0.37), 0.95±0.02 (P=0.24), and 0.90±0.03
(P=0.01), respectively. The SVM model with a polynomial
kernel built on the selected feature set showed the highest
diagnostic performance among all tested models when using
either all the wavelet texture features or the selected ones.

The model has a good potential in diagnosing pneumoconi-
osis based on digital chest radiographs.
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Introduction

Pneumoconiosis is a major occupational disease caused by
inhaled particles, such as free silica, asbestos, mixed dust, and
coal. For mass screening of pneumoconiosis, chest radiograph
(digital chest radiograph at present) is a prevalent approach;
therefore, the International Labor Organization (ILO) established
a standardized system for classifying radiographic abnormalities
of pneumoconiosis according to the profusion level of small
opacities on chest radiographs [1]. Four ILO standard radio-
graphs of normal person and patients with stage I, II, and III
pneumoconiosis are shown in Fig. 1. There are only a few small
opacities that can been seen from Fig. 1b, c, which make it an
error-prone and difficult process for radiologists to distinguish
the chest radiographs of a normal person from those of patients
with pneumoconiosis, especially from patients with stage I and II
pneumoconiosis. Therefore, many investigators devoted them-
selves to developing computer-aided diagnosis (CAD) schemes
which were necessary to reduce the workload and improve the
workflow in mass chest screening for pneumoconiosis.

Studies investigating CAD for pneumoconiosis date back to
the 1970s, with a recent revival of interest in the late 1990s [2,
3]. Yu et al. [4] detected pneumoconiosis using the gray-level
histogram features and the co-occurrence matrices features on
digital radiographs (DRs). Their support vector machine
(SVM)-based models gave an overall accuracy of up to
89.2 % and an area under the receiver operating characteristic
(ROC) curve of up to 0.978 when tested on 300 normal DRs
and 125 pneumoconiosis DRs. Using a similar approach, Xu
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et al. [5] distinguished 175 pneumoconiosis DRs from 252
normal DRs, giving a 95.5 % overall accuracy. In another
investigation [6], power spectra of chest DRs which implied
image texture were obtained through Fourier analysis and
were input into an artificial neural network with the back-
propagation algorithm to detect pneumoconiosis, resulting in
an area under ROC curve (AUC) of 0.961. In our previous
study [7], the use of texture features extracted through gray-
level histogram and co-occurrence matrix of chest DRs and
artificial neural network with the back-propagation algorithm
also suggested a relatively high performance for the diagnosis
of pneumoconiosis.

Generally, the performance of machine learning classifiers
depends on many factors, such as the classification models and
their structure or parameter settings, the training methods, the
datasets, and the selected features [8]. In this paper, we focused
on the investigation of the impact that the classification models
and the input features put on the performance of the classifiers
when they were used to diagnose pneumoconiosis based on
DRs. We used the wavelet transform-based texture features of
chest radiographs, which to our best knowledge have never
been used in previous studies of CAD schemes for pneumoco-
niosis, as the classifiers' input features. Classification models
chosen in this study were the decision tree (DT) and the SVM.
The performances of the classifiers with different parameter

settings as well as the classifiers built on different feature sets
were then compared and discussed.

Materials and Methods

Study Dataset

A total of 125 DRs collected from the Beijing Friendship
Hospital were analyzed in this study. These DRs were 85
posterior–anterior digital chest radiographs for male normal
subjects of average age of 62 years old and 40 for male
pneumoconiosis patients of stage I and II (20 for each stage)
of average age of 61 years old, respectively. All of the images
were digitized with a matrix of 2,900×3,000 and 15-bit gray
level in the Digital Imaging Communications in Medicine
format. The work was approved by the Beijing Friendship
Hospital Research Ethics Committee.

Lung Segmentation

The method for lung segmentation used in this study was
based on the traditional Otsu threshold method and was
improved by reprocessing the image with a morphological
reconstruction filter, which was applied to the original DR to

Fig. 1 Standard chest
radiographs used for the diagnosis
of pneumoconiosis. a Chest
radiograph of a normal person. b
Chest radiograph of a patient with
stage I pneumoconiosis. c Chest
radiograph of a patient with stage
II pneumoconiosis. d Chest
radiograph of a patient with stage
III pneumoconiosis
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eliminate local gray-level extremes before the Otsu threshold
method was used. The whole image was then partitioned into
several connected regions, the contours of which were
extracted and smoothened by using connected-components
labeling technique and a morphological closing operator.
The inside areas of the complete contour with the longest
perimeter was segmented as lung fields [9] (as shown in
Fig. 2).

Feature Extraction

In medical images, the quantitative or qualitative changes of
the texture characteristics often reflect pathological changes.
Therefore, many researchers try to analyze various medical
images by means of texture analysis to explore new ways for
the diagnosis and treatment of some diseases. However, due
to the complexity of medical image and their texture features,
there is no universal texture analysis method that is suitable
for all kinds of medical images.

More recently, methods based on multi-resolution or multi-
channel analyses such as the wavelet transform have received
considerable attention. After wavelet transformation, the en-
ergy of the original image focuses on several wavelet coeffi-
cients, which have a high degree of local relevance in detail
components of three directions. It provides a favorable condi-
tion for feature extraction.

Discrete Wavelets Transform

Compared with the normal DRs, there are a number of small
opacities in the pneumoconiosis DRs, resulting in the differ-
ences of texture features between the normal and pneumoco-
niosis DRs. It is a hint that the diagnosis of pneumoconiosis
could be conducted by using texture features derived from
DRs of lung fields after a series of wavelet transformation.

The two-dimensional wavelet decomposition has two
structures: pyramid decomposition and tree structure decom-
position. In this paper, the tree structure decomposition was

adopted. After decomposition for the first scale, the original
image is divided into four sub-bands, which could be
expressed by combinations of L and H (as shown in Fig. 3a).
The sub-band LL1 represents the low-frequency sub-image,
corresponding to an approximation image, while the sub-
bands LH1, HL1, and HH1, collectively called high-
frequency sub-images, corresponded to the detail images.
For future decomposition, the sub-band LL1 alone is
decomposed, resulting in a two-scale wavelet decomposition
(as shown in Fig. 3b) [10].

Taking the resolution of the given images used in our
study into consideration, each DR image has been wavelet-
decomposed for seven times (called a seven-scale wavelet
transform), resulting in 28 sub-bands of each image (i.e.,
LL1, LH1, HL1, HH1…LL7, LH7, HL7, HH7).

Feature Calculation

Energy is a commonly used texture feature in the texture
analysis, and it was adopted in our study. In the seven-scale
wavelet transform for each DR image, the energy Ekl for the
lth sub-band image at the kth scale (l = 1 to 4 and k = 1 to 7,
respectively) is calculated as follows [11]:

Ekl ¼ 1

Mk ⋅Nk

X
i¼1

Mk X
j¼1

Nk

x i; jð Þ2 ð1Þ

whereMk and Nk represent the size of sub-band images at the
kth scale (the four sub-band images at the kth scale are of
equal size as Mk × Nk) and x(i, j) (i = 1 toMk and j = 1 to Nk,
respectively) is the gray value of pixel (i, j) of the image. The
final feature vector contains 28 energy features of wavelet
coefficients calculated in sub-bands at successive scales.

Since the order of magnitude, ranging from 10−1 to 104,
differed quite a bit among these features in this study, the pre-
processing of these features was necessary in order to pro-
vide informative data for the classifier. Logarithmic transfor-
mation was applied to the feature values before they were
input into the classifiers.

Fig. 2 Results of lung field
segmentation. a Original digital
chest radiograph of a patient with
stage I pneumoconiosis. b
Segmented lung fields from the
original digital chest radiograph
with the background in black
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Classification Models

There are many available models for binary classification,
such as DT, Bayesian networks, SVM, and neural networks.
Two popular, but not being used, models in our study scenar-
io, DT and SVM, were selected to perform the classification.

Decision Tree

Decision trees are powerful classification algorithms that are
becoming more and more popular with the growth of data
mining methods. A DT-based classifier is expressed as a DT
or a set of if–then rules, forms that are generally easier to
understand than neural networks. The common DT algo-
rithms include ID3, C4.5, C5.0, the classification and regres-
sion tree, and the chi-square automatic interaction detector.
Essentially, DT is a process of data classification on the basis
of a series of splitting criteria, among which three of the most
well-known splitting criteria are based on the Gini index,
entropy, and the chi-square test [12, 13].

Of all the DTs, DT with algorithm C5.0 can handle nu-
meric attributes and can induce from a training set that in-
corporates missing values by using corrected gain ratio
criteria [14]. The splitting ceases when the number of in-
stances to be split is below a certain threshold. Error-based
pruning is performed after the growing phase. Due to its
applicability and interpretability, DT with algorithm C5.0
was selected as one of the classifiers in our study.

Support Vector Machine

The SVM, put forward by V.N. Vapnik et al., is a research
direction of statistics, which is developed based on small
sample data and has a strong ability of generalization to high-
dimension space. For the binary class issue, the basic idea for
SVM is to construct a hyperplane that maximizes the margin
between negative and positive examples. The classification
performance of SVM is closely related to the choice of

kernel function, which is used to construct the hyperplane
and the relevant parameter settings for every kernel function.
There are many kinds of kernel functions used for SVMs.
However, there is no uniform standard to judge the suitabil-
ity of the kernel function for a particular application [15, 16],
and there is no standard guidance for the selection of param-
eters. In this study, the following four kernels were selected
for further comparisons, and the parameter settings depended
on experience:

Linear kernel K x; yð Þ ¼ x⋅y ð2Þ

Polynomialkernel K x⋅ yð Þ ¼ x ⋅ yþ 1ð Þq; q ¼ 1; 2::::::;N

ð3Þ

Radial basis function RBFð Þkernel K x; yð Þ ¼ exp −
x − yk k2

2σ2

( )

ð4Þ

Sigmoid kernel K x; yð Þ ¼ tanh v x ⋅ yð Þ þ c½ � ð5Þ

Model Validation and Performance Assessment

Model Validation

In this study, k-fold cross-validation was used to assess the
classification models. In k-fold cross-validation, the com-
plete data set is randomly split into k mutually exclusive
subsets of approximately equal size. The classification mod-
el is trained and tested k times. At each time, it is trained on
all folds but one and tested on the remaining single fold [17].

Due to the relatively small sample size in this study, k was
selected as 5. By stratified sampling, all of the 125 DR
samples were randomly divided into five folds, including
17 normal and eight pneumoconiosis DRs for each fold. At
each modeling–validating iteration, four folds of samples

Fig. 3 Sketch map of the
discrete wavelet transform on a
2D image. a After the first-scale
wavelet transform on the whole
image, it was divided into four
sub-bands, namely, LL1, LH1,
HL1, and HH1. b After the
second-scale wavelet transform
on sub-band LL1, it was divided
into four sub-bands, namely,
LL2, LH2, HL2, and HH2. Here
H and L denote the high- and
low-pass filters, respectively
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containing 68 normal cases and 32 abnormal cases were used
to build the classifier models, and the remaining fold of
samples containing 17 normal cases and eight abnormal cases
was used to assess the performance of the classifiers.

Performance Assessment and Comparison

Accuracy, sensitivity (the percentage of pneumoconiosis DRs
being correctly classified as abnormal), and specificity (the
percentage of normal DRs being correctly classified as nor-
mal) were used as objective measures to assess the classifica-
tion performance. The ROC curve analysis was used to further
evaluate and compare the performance of two classifiers. An
ROC curve is a graphic plot in which the values of sensitivity
are plotted on the Yaxis and those of one minus specificity are
plotted on the X axis for a binary classifier system, and the area
under the ROC curve (AUC) is used as a single measure for
evaluation and comparison. ROCKIT software (Charles E.
Metz, Department of Radiology, University of Chicago,
USA) was employed for the ROC curve analysis.

Results

Training and Setting Classification Models

For an SVM with a particular kernel, the soft margin param-
eter C which was used to penalize the decision errors when
searching for the maximum marginal hyperplane was deter-
mined experimentally as 10. Other parameters for the train-
ing process were as follows: (1) the tolerant error for stop-
ping the training was set at 0.001 and (2) the parameter
epsilon of the insensitive loss function was set at 0.1.

The parameters of each SVM kernel were set by trial and
error. They were (1) q = 3 for the polynomial kernel in
Eq. (3), (2) σ2 = 0.1 for the RBF kernel in Eq. (4), and (3)
c = −1 and ν(z) for sigmoid kernel in Eq. (5).

Performance of Both Classifiers with Different Feature Sets

A total of 28 energy features of wavelet coefficients were
calculated in the 28 sub-bands, namely the full feature set.
Upon the full feature set, a DT with algorithm C5.0 and an
SVM with an RBF kernel were built to discriminate normal
DRs from pneumoconiosis ones, respectively. After the five-
fold cross-validation, the classification performances were
obtained. In terms of accuracy, sensitivity, specificity, and
AUC value (listed in Table 1), the SVM all showed a higher
performance than the DT.

When building the DT model, not all of the features were
retained in the model, which means that some of the features
were redundant and were removed from the full feature set
automatically by the DTalgorithm. According to the results of

Pearson correlation analysis on each pair of all the features,
features that had a high correlation (i.e., the correlation coef-
ficient was greater than 0.95) with at least one of the features
retained in the DT model were selected. The selected features
and those retained in the DT model composed the selected
feature set, which contained 16 features out of the full feature
set. The performance of the DT and of the SVM, which were
built on the selected feature set, is also listed in Table 1,
respectively.

The ROC curves for SVMs and DTs built on both full
feature set and the selected feature set are shown in Fig. 4.

As the results indicated, the classification performances
were improved in terms of the accuracy and the AUC value
for both the DT and SVM with the selected feature set
compared to those with the full feature set. Furthermore, on
the selected feature set, the AUC value for the SVM was
0.95±0.02. It was greater than that for the DT (0.88±0.04),

Table 1 Performance of the decision tree with algorithm C5.0 and of
the support vector machine with radial basis function kernel for the
diagnosis of pneumoconiosis by using different feature sets

Classification
model

Feature
set

Performance index

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC
value

DT Full 83.2 70.0 89.4 0.86

Selected 88.0 82.5 90.6 0.88

SVM Full 87.2 80.0 90.6 0.94

Selected 88.8 80.0 92.9 0.95

DT decision tree, SVM support vector machine, AUC area under ROC
curve

Fig. 4 Comparison of receiver operating characteristic curves for de-
cision tree (DT) models with algorithm C5.0 and support vector ma-
chine (SVM) models with radial basis function kernel for the diagnosis
of pneumoconiosis. SVM-FF SVM model with the full feature set, DT-
FF DT model with the full feature set, SVM-SF SVM model with the
selected feature set, DT-SF DT model with the selected feature set
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showing that the SVM had a superior performance to the DT
for the detection of pneumoconiosis on DRs.

Performance of SVMs with Different Kernels

Accuracies, sensitivities, specificities, and AUC values
of SVMs built on the selected feature set with different
kernels when diagnosing pneumoconiosis based on DRs
are listed in Table 2. ROC curves of these SVMs are
shown in Fig. 5. The SVM model with a polynomial
kernel showed a higher diagnostic performance in terms of
AUC value than SVMs with a RBF kernel (P=0.24), a linear
kernel (P=0.37), and a sigmoid kernel (P=0.01), respectively.

Discussion

Several computerized schemes have been developed for the
detection and classification of pneumoconiosis on chest ra-
diographs. Some studies [2, 18, 19] detected the small round-
ed or somewhat irregular opacities on a chest radiograph and
then classified the radiograph as a normal radiograph or a
pneumoconiosis one according to the standardized system
for classifying radiographic abnormalities of pneumoconio-
sis as established by the International Labor Organization.
Other studies [3–5, 20] took the texture analysis on the chest
radiographs to diagnose pneumoconiosis. Texture features
used in these studies included statistical texture features from
the gray-level histogram and gray-level co-occurrence ma-
trix, power spectrum, and frequency on the chest radio-
graphs. Diagnostic models built in these studies showed
different performances due to the different methods and
dataset. Theoretically and practically, the performance of
classifiers depends on many critical factors, such as the
database used, the features extracted and selected, the clas-
sifier chosen, and even the validation method when evaluat-
ing the system performance [8].

Dataset of Digital Chest Radiographs

In clinical practice, it is relatively not too hard for radiolo-
gists to make a diagnostic decision on pneumoconiosis of
stage III based on DRs (Fig. 1). However, almost all of the
developed computerized schemes were built and tested on
sample DRs that included pneumoconiosis DRs of stage III.
To build and evaluate a more clinically meaningful model for
the diagnosis of pneumoconiosis, DR samples of patients
with stage III pneumoconiosis were excluded from our study.
With only DRs of patients with stage I and II pneumoconi-
osis and of normal individuals, the SVM classifier built in
this work got a rather high performance with an accuracy of
up to 92.0 % and an AUC value of up to 0.97, which was not
inferior to or even superior to those developed by using DR
samples including DRs of stage III pneumoconiosis in other
studies [4, 6].

Feature Extraction and Selection

Texture analysis on the chest radiographs proved to be
helpful when diagnosing lung diseases and breast dis-
eases [21, 22]. Texture features had been used by many
investigators in developing computerized schemes for pneu-
moconiosis [3, 4, 6, 7, 16, 17]. However, traditional statistical
texture features may have some disadvantages when applied
to digital chest radiographs [23], such as the huge computa-
tion. More recently, methods based on multi-resolution or
multi-channel analysis, such as Gabor filters and wavelet
transform, have received a great deal of attention. The wavelet
transform provides a precise and unifying framework for the
analysis and characterization of a signal at different scales

Table 2 Performance of the support vector machines with different
kernels for the diagnosis of pneumoconiosis by using the selected feature
set

SVM kernel Performance index

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC
value

Polynomial 92.0 82.5 96.5 0.97

Linear 88.8 87.5 89.4 0.96

Radial basis
function

88.8 80.0 93.0 0.95

Sigmoid 84.8 77.5 87.1 0.90

SVM support vector machine, AUC area under ROC curve

Fig. 5 Comparison of receiver operating characteristic curves for the
support vector machines with different kernels which were built on the
16 selected features out of 28 energy features. The area under the curve
(AUC) for the polynomial kernel SVM is greater than those for SVMs of
linear kernel, radial basis function kernel, and sigmoid kernel (P=0.37,
0.24, and 0.01, respectively)
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[10]. In this paper, we tried using the energy of wavelet
coefficients as the texture features to build classification
models for the diagnostic tasks. Based on 28 energy features
extracted after seven successive scales of wavelet transform,
an SVM classifier presented a higher performance compared
to our previous one [7] with an accuracy of 87.2 % and an
AUC value of 0.94.

Furthermore, considering that redundant or irrelevant fea-
tures may affect the performance of classification models
[24], we conducted a feature selection by using the correla-
tion analysis in alignment with the DT model. The resulting
feature set included 16 selected features out of the total of 28
features. With the selected feature set, performances of the
SVM- and DT-based classifiers were both improved (Fig. 4;
Table 1). The experimental results suggested that the wavelet
texture features of DRs were feasible and helpful in diagnos-
ing pneumoconiosis.

Classifiers and Their Parameter Settings

DTs and SVMs are two popular machine learning models for
application in binary classification. The DT is considered as
easy to interpret, whereas SVM has a relatively poor inter-
pretability. That is, compared to SVM, one can understand
more easily why a DTclassifies an instance as belonging to a
specific class. However, the advantages of an SVM are
notable. It is more suitable to learning tasks where the
number of features is large with respect to the number
of training samples, and SVM tends to perform much
better when dealing with multiple dimensions and con-
tinuous features [25, 26]. Some studies [27–29] showed
that SVMs had better classification efficiency than DTs.
In our study, the two models were chosen for pneumo-
coniosis diagnosis using DR images. By means of a
five-fold cross-validation, SVMs outperformed DTs on
the basis of both the full feature set and the selected
feature set in terms of accuracy and AUC value (Fig. 4;
Table 1). The result was similar to those derived from the
cited studies.

For the SVMs, it is well known that there are no
golden rules for determining which kernel will result in
the most accurate one. Some researchers believed that
the kernel chosen did not generally make a large differ-
ence in resulting accuracy [30]. In this study, a further
comparison of classification performances of SVMs with
four different kernels (as listed in Eqs. (2), (3), (4), and
(5)) was conducted. The SVM with a polynomial kernel
showed the highest performance among the four SVMs
(Fig. 5; Table 2), especially compared to the SVM with
a sigmoid kernel (P=0.01), which was equivalent to a
simple two-layer neural network known as a multilayer
perception. Of course, the results were just obtained under
our study condition and there is still no universal conclusion

regarding the performance comparison of SVM models with
different kernels.

Other Influence Factors

For a classifier that built on the texture features extracted from a
segmented image area, the classification results may be affected
by the segmentation accuracy. To investigate the influence of
segmentation accuracy, we randomly selected nineDRs of three
normal subjects, of three patients with stage I pneumoconiosis,
and of three patients with stage II pneumoconiosis. Lung fields
of these DRs were segmented automatically by the algorithm
presented in this paper andmanually by an experienced thoracic
radiologist, respectively. There was little difference among the
wavelet energy features calculated on these image areas,
resulting in few influences on the classification results. The
reasons may lie in that the small opacities accumulated mainly
inside the lung fields that may cause little change of the texture
features. Another reason may be that the shortage of the edges
due to the inaccuracy segmentation just occupied a small frac-
tion of the whole lung fields, which led to less effect on the
classification result.

In addition, the results were obtained from a relatively limited
number of cases (85 normal cases and 40 cases of pneumoconi-
osis) in this study. For sample size calculation for SVMs, some
simulation studies revealed that the relative performance of the
different combinations of classifier and feature selection method
depends on the feature space distributions, the dimensionality,
and the available training sample sizes [31, 32]. SVM is an
effective classifier for the problems of high dimension and small
sample sets; however, the finite-sized available sample may still
introduce variance and bias into the performance of the trained
classifier relative to that obtained with an infinite sample size and
further have an adverse impact on generalization and robustness
of the trained classifier. Therefore, the classifier models could
benefit from a larger size of samples.

Conclusions

When used to differentiate between normal and pneumoco-
niosis chest radiographs based on the wavelet transform-
based energy texture features, the SVM model with a poly-
nomial kernel built on the selected feature set showed the
highest performance among all of the tested models when
using either the full feature set or the selected feature set. The
model has a good potential in diagnosing pneumoconiosis
based on digital chest radiographs.
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