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Abstract Pulmonary interlobar fissures are important ana-
tomic structures in human lungs and are useful in locating
and classifying lung abnormalities. Automatic segmentation
of fissures is a difficult task because of their low contrast and
large variability. We developed a fully automatic training-free
approach for fissure segmentation based on the local bending
degree (LBD) and the maximum bending index (MBI). The
LBD is determined by the angle between the eigenvectors of
two Hessian matrices for a pair of adjacent voxels. It is used to
construct a constraint to extract the candidate surfaces in three-
dimensional (3D) space. TheMBI is a measure to discriminate
cylindrical surfaces from planar surfaces in 3D space. Our
approach for segmenting fissures consists of five steps, in-
cluding lung segmentation, plane-like structure enhancement,
surface extraction with LBD, initial fissure identification with
MBI, and fissure extension based on local plane fitting. When
applying our approach to 15 chest computed tomography
(CT) scans, the mean values of the positive predictive value,
the sensitivity, the root–mean square (RMS) distance, and the
maximal RMS are 91 %, 88 %, 1.01±0.99 mm, and
11.56 mm, respectively, which suggests that our algorithm
can efficiently segment fissures in chest CT scans.

Keywords Fissure segmentation . Chest CT data . Local
bendingdegree .Maximumbending index .Localplane fitting

Introduction

An interlobar fissure consists of a double layer of visceral
pleura and is generally 1–3 mm thick [1]. The right lung is
divided into three lobes by an oblique fissure and a horizontal
fissure, whereas the left lung is divided into two lobes by an
oblique fissure. Detection of fissures is an important proce-
dure in lung registration and lobe segmentation, which is
useful to surgical intervention planning, and is helpful for
locating lung abnormalities in computer-aided diagnosis sys-
tems. Although fissures can be easy for the radiologists to pick
out instantaneously on their own, automatic fissure detection
is still a challenging task.

To date, some semiautomatic and fully automatic fissure
detection methods have been reported in the literature, which
could be classified into three types: two-dimensional (2D)
methods [2], 2D and three-dimensional (3D) hybrid methods
[3, 4], and true 3D methods [5–9]. The former two methods
mainly employed 2D operators, such as VanderBrug linear
feature detector [2] and shape-based curve-growing model [3,
4], to detect fissures slice by slice. Then, different 2D and 3D
methods were used tomend the segmented fissures. Due to the
discontinuity of fissures in 2D space and the lack of 3D
information in the 2D methods, human intervention was
expected [3, 4] or some fissure patches were missing [2].
Compared to these methods, 3D methods [5–8] performed
better. Because pulmonary fissures have a planar shape in 3D
computed tomography (CT) images, the computational geom-
etry theory [5] and the eigenvalues of the Hessian matrix [6–8]
were employed to detect fissures. But the eigenvalues of the
Hessian matrix cannot distinguish fissures from the walls of
other tissues, so extra processing was required. For instance,
several supervised filters constructed through training were
used to segment the fissures [6, 8]. Although they achieved
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good performance, they required a significant amount of
workloads for manual segmentation of fissures and long com-
putational time to train the system. Gu et al. [9] developed a
plane fitting algorithm to identify the planar patches and then
classified them into three types of fissures.

We proposed a fully automatic training-free algorithm for
segmenting fissures on chest CT volume data. Our method is
based on the observation that fissures are relatively large 3D
planes in the local area. We propose to use the local bending
degree (LBD) to extract candidate surfaces and the maximum
bending index (MBI) to distinguish the initial fissures from
the walls of other tissues, which are extended in the end based
on the local plane fitting to get the final fissures. We validated
our algorithm with 15 chest CT scans.

Materials and Methods

Data Acquisition

For our studies, 15 chest CT scans were selected randomly
from the existing datasets in the Second Affiliated Hospital of
Soochow University, Suzhou, Jiangsu, China. Out of the 15
cases (9 males and 6 females), with ages ranging from 24 to
67 years, who had underwent chest CT scans, 4 cases had 15–
30 years smoking history. Fourteen subjects took CT exams
because they had chest pain or discomfort and only 1 took the
CTexam in his routinemedical checkup. Each high-resolution
CT examination was performed with a routine protocol using
a LightSpeed VCT 64-row CT scanner (GEMedical Systems,
Milwaukee, WI, USA). Subjects held their breath during CT
acquisition. CT data were obtained using a helical technique
with the following scan parameters: a spiral pitch between
0.9844 and 1.375, 120 kVp, and a revolution time of 0.4 s/r. The
volumetric data were smoothed by a median filter, reconstructed
with the bone kernel, and stored in Digital Imaging and Com-
munications in Medicine format. The slice thickness was
0.625 mm; each slice contained 512×512 pixels; and the pixel
size ranged from 0.7031 to 0.7363 mm. Before processing, 3D
linear interpolation was performed in each of the three dimen-
sions to obtain isotropic voxels of 0.6×0.6×0.6 mm3.

To assess the performance of our method, fissures in the 15
chest CT scans were manually delineated by a reader who
knows the anatomic structures of human lungs and were
reviewed and corrected by an experienced radiologist. We
developed a sketching tool to assist the reader and radiologist
to mark and draw the profiles of fissures slice by slice. The
manually delineated fissures were employed as the reference
standard for the evaluation of segmented fissures.

Our method consists of five steps, including lung segmen-
tation, plane-like structure enhancement, surface extraction
with LBD, initial fissure identification with MBI, and fissure
extension based on local plane fitting (Fig. 1).

Lung Segmentation

For the purpose of reducing the influence of other tissues
outside the lung regions, lung segmentation is performed
and its result is shown in Fig. 2. Successive steps of the
approach are performed inside the segmented lung areas.

The method of lung segmentation is described as follows:

1. Based on the histogram of the volume images in the range
of CT values, a suitable threshold is selected by Otsu’s
method [10] for converting the images into the binary im-
ages. Zero is set to the voxels with CT values lower than the
threshold, while 1 is set to the others (Fig. 2b). The 0 areas
cover the air inside the lung and trachea and outside the
body, while the 1 areas cover the body tissues and the bed.

2. As pointed by the black arrow in Fig. 2b, the biggest 26-
connected volume of voxels with a value of 1 is found and
regarded as the body area, and then the 0 regions enclosed
in the body area are regarded as the lung areas. Now, the
lung areas are roughly obtained with some segmentation
offsets caused by the irregular pleurae and tracheas.

3. The morphologic rolling ball technique [11] is applied to
smooth the irregular pleurae and the boundary identifica-
tion bridge method [12] is used to enclose the trachea
regions within the lung area. Then, we obtain the com-
plete lung areas and their corresponding 3D contours,
denoted as Sc, as shown in the Fig. 2a.

Plane-Like Structure Enhancement with the Hessian Matrix

Once the lung areas were identified, a plane enhancement
filter is applied to detect planar structures. The enhancement
filters based on the Hessian matrix can be used to detect dot-
like nodules, line-like vessels, and plane-like tissues [13].
However, the detection effect is sensitive to noises, so the
CT images should be smoothed with a 3D Gaussian template.
For better smooth performance, the scale parameter σ of the
3D Gaussian template should be chosen as large as possible,
but it cannot be larger than half of the thickness of the fissures.
Thus, the scale σ is considered as 1 voxel width.

Let f (x , y, z ) be the CT value of the voxel (x , y, z ) in the
smoothed CT image. Then, the eigenvalues λ0(x , y, z ), λ1(x ,
y, z ), and λ2(x , y, z ) (|λ0(x , y, z )|≥ |λ1(x , y, z )|≥ |λ2(x , y, z )|)
and their corresponding unit eigenvectors v0(x , y, z ), v1(x , y,
z ), and v2(x , y, z) of the Hessianmatrix are calculated for each
voxel inside the lung areas. For an ideal brighter plane, an
ideal brighter line, and an ideal brighter dot, three eigenvalues
must satisfy, respectively [12]:

λ0 x; y; zð Þ ¼ −
1

σ2
; λ1 x; y; zð Þ ¼ λ2 x; y; zð Þ ¼ 0 ð1Þ

λ0 x; y; zð Þ ¼ λ1 x; y; zð Þ ¼ −
1

σ2
; λ2 x; y; zð Þ ¼ 0 ð2Þ
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λ0 x; y; zð Þ ¼ λ1 x; y; zð Þ ¼ λ2 x; y; zð Þ ¼ −
1

σ2
ð3Þ

Due to the CT values of fissures ranging between −800 and
−400 Hounsfield units (HU) [5], the plane-like structure en-
hancement function is defined as:

E x; y; zð Þ ¼

λ0 x; y; zð Þj j− λ1 x; y; zð Þj j
λ0 x; y; zð Þj j ; if λ0 x; y; zð Þ < 0;

−800≤ f x; y; zð Þ≤−400
0 ; otherwise

8>>><
>>>:

ð4Þ

Figure 1c shows the enhancement results of the plane-like
structures based on the Hessian matrix.

Surface Extraction with LBD

Now that voxels on the fissures besides some other plane-like
structures have been enhanced, we remove the voxels on the

lung borders based on the previous lung segmentation results
and use an empirical threshold T1 to delete the voxels with
weak plane enhancement. So, the set of the remaining voxels
Se is defined as:

Se ¼ x; y; zð Þ
���E x; y; zð Þ > T1 and x; y; zð Þ∉Sc

n o
ð5Þ

Empirically, T1=0.3 was selected to settle the trade-off
between suppressing the non-plane structures and keeping
the lower contrast thin fissures. But due to the similar en-
hancement of the voxels on the fissures and the walls of other
tissues, many non-fissure voxels are still left. So, we propose
to define the LBD based on the eigenvectors of the Hessian
matrix to refine the selected surfaces.

For a voxel (x , y, z ) on the plane-like structures, the
eigenvector v0(x , y, z ) corresponding to the largest absolute
value of eigenvalue λ0(x , y, z ) represents the direction of the
biggest CT value change, which is orthogonal to the local
plane centered at the voxel (x , y, z ). Thus, v0(x , y, z ) is the
normal vector of this local plane, and the included angle
between two local planes of the neighboring voxels can be
described by the included angle between their normal vectors.
If these two planes belong to the same flat surface, their
normal vectors are approximately parallel. On the contrary,
if they belong to the different flat surfaces, their normal
vectors have an included angle. Thus, the LBD between two
26-adjacent voxels u and w, denoted by LBD(u , w ), is given
by the cosine of the included angle between their correspond-
ing local planes, i.e., the inner product of the normal vectors.
Noticing that the cosine function is decreasing in [0, π ], we
define the LBD as follow:

LBD u;wð Þ ¼ 1−〈v0 uð Þ⋅v0 wð Þ〉 ð6Þ

Fig. 1 2D figures of the
segmented fissures in different
stages. a Original image, b lung
segmentation image, c plane
enhancement image, d surfaces
extracted with LBD, e initial
fissures identified with MBI, and
f final fissure determined by local
plane fitting based on initial
fissures

Fig. 2 The segmented results of the lung area: a 3D surface rendering of
the segmented lungs and b the threshold results, with a black arrow
pointing to the biggest connected area
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Then, each group of the connected voxels is extracted as a
candidate surface using the 3D region-growing method under

the constraints of LBD. We describe the candidate surface
extraction algorithm as follows.

Algorithm surface extraction

Input: Se,v0; 

Output: n, the total number of extracted surfaces; S(1), S(2), …, S(n), the 

corresponding voxel sets of the extracted surfaces;

Begin 

n← 0; 

While Se ∅ do 

n←n+1; 

Arbitrarily pick a voxel w∈Se; 

S(n) ←w;  

Se ←Se−{w}; 

While there exists a voxel u∈Se such that there exists a voxel w∈S(n)∧N(u), 

where N(u) is the set of voxels in the 26-neighborhood of the voxel u, such that

LBD(u,w)<1-cos(π/18) 

do 

S (n) ← S (n)∪{u};

Se ←Se−{u}; 

End of while 

Output S(n); 

End of while  

Output n; 

End 
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During the region-growing procedure, constraints on the
LBD limit the local shape of the surfaces. Furthermore, the
fissures should commonly appear as large connected regions.
So, if the number of voxels in a connected surface is smaller
than an empirical threshold T2=200, it will be discarded.
Figure 1d shows the extracted surfaces, where many small
surfaces and surfaces having large LBD are eliminated. The
extracted surfaces no longer need to be smoothed because the
Hessian matrix is calculated based on the smoothed image.
Owing to the low contrast of voxels or sudden change in
shape, the fissures might be broken into isolate patches and/
or there might be some holes left on it. The remaining surfaces
will be remedied in the follow-up steps.

Initial Fissure Identification with MBI

After the previously described steps, the remaining connected
surfaces are the larger ones with less bending deformation in
some direction, mainly containing the fissures and the walls of
other tissues such as vessels and bronchi. Nevertheless, the
fissures are planar objects and the walls of vessels and bronchi
are cylindrical ones.

As shown in Fig. 3, the bending degree of the cylinder-like
surface differs significantly in different directions. Generally,
the bending degree along the axial direction of the cylindrical
surfaces is the smallest; on the other hand, the bending degree
perpendicular to the axial direction is large and its quantity
depends on the diameter of the cylinder.

In Fig. 3, a cylinder model (Fig. 3a) for simulating the walls
of the cylinder-like tissues, with its lateral section (Fig. 3b) and
cross section (Fig. 3c), is shown. A1 adjoins A2 and A3,
respectively, at two different directions. Orientation of the arrow
depicts the normal vector direction of the local surface at the
current point. As we can see, even though the included angle
between the vectors centered at A1 andA2 is small, the direction
change of the vectors centered at A1 and A3 is still significant.

In real CT chest images, the diameters of the blood vessels
and bronchi are smaller than 15 mm, so the bending degree
perpendicular to the axial is much bigger than the one along
the axial. However, the bending degree along all directions in
the planar surface is basically similar.

Therefore, to effectively distinguish cylinder surfaces from
planes, we propose to define the MBI of the surfaces. The
MBI of the i -th surface, denoted by MBI(i), is defined as:

MBI ið Þ ¼ 1

S ið Þj j
X
u∈S ið Þ

max
w∈ S ið Þ⋂N uð Þð Þ

LBD u;wð Þ
� �

ð7Þ

where S (i ) is the set of voxels belonging to the i -th surface.
We set the mean MBI of all surfaces as a threshold to delete
the cylinder surfaces. Thus, in the remaining surfaces, the ones
containing more than 5,000 voxels are regarded as the initial
fissures (Fig. 1e) and the others are regarded as the isolate
plane patches.

Fissure Extension by Using Local Plane Fitting

In the previous steps, for avoiding misdetection, some uncer-
tain fissure patches are neglected by making stricter fissure
segmentation criteria (i.e., the restrictions on the LBD, the
MBI, and the surface size). As a consequence, the missing
fissure patches should be retrieved to mend those strictly
determined initial fissures. Because the adjacent patches of
the fissures orientate basically the same, the discontinue
patches can be mended to form the complete fissures based
on the local plane fitting.

First, the local plane fitting is used to fill the holes in the
initial fissures and the gaps between the initial fissures and the
isolate plane patches. We employ a 3D window with the size
of 15×15×15 moving across the grid in step length of 1 voxel
in each of three directions, respectively. The size of the win-
dow is determined empirically. If the size is too big, compu-
tation takes a long time; if the size is too small, there are many
windows with less than 4 voxels where the plane fitting
method is inapplicable. At each position of the window, if at
least 3 voxels besides the window center belong to the initial
fissures, we can construct a fitting plane which can be formu-
lated by the following equation:

axþ byþ czþ d ¼ 0 ð8Þ

where a , b , c , and d are the coefficients of the fitting plane
determined by the modified Golub–Reinsch algorithm [14].
Once the plane equation is determined, Eq. 8 is used to find all
voxels on the plane and in the window and to add them into
the fissures.

Then, all voxels in one isolate plane patch can be added
into the fissures, if there exist a voxel in this patch and a voxel
in the existing extended fissures, which are 26-connected
neighbors of each other and the LBD between them is less
than 0.5.

Fig. 3 Comparison of two curvatures in different directions of the
cylindrical surface: a the cylindrical surface, with A1 adjacent to A2
and A3 , respectively, in the cross and lateral sections, b the lateral section,
and c the cross section
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Evaluation

Because the reference segmentation is delineated slice by
slice, we apply a 2D evaluation rather than the 3D ones to
assess the performance of our segmentation approach.

The positive predictive value (PPV) is used to quantify
how consistent are the segmented results with the reference
standard. It is defined as the proportion of the number of
correctly segmented voxels to the total number of voxels in
the segmented fissures. Here, the correctly segmented voxels

include all the segmented voxels which are less than 2 mm
away from the closest voxel of the reference standard in the
same slice, i.e.:

PPV ¼
w
���w∈Sseg∧∃u; u∈Sref ∧D2 u;wð Þ≤2mm

n o��� ���
Sseg
�� �� � 100% ð9Þ

where S seg is the set of the fissure voxels segmented automat-
ically by our approach, S ref is the set of the fissure voxels

Fig. 4 Some fissure
segmentation results produced by
our proposed method with the
reference standard. a Original
image in axial view where the
fissures were indicated by the red
arrows and b segmentation
results marked in green
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provided manually as the gold standard, and D2(•) means the
2D Euclidean distance of 2 voxels in the same slice.

Sensitivity (SENS) is also applied to provide information
on whether the segmented results are actually included in the
reference fissures.

SENS ¼
w
���w∈Sref ∧∃u; u∈Sseg∧D2 u;wð Þ≤2mm

n o��� ���
Sref
�� �� � 100%

ð10Þ

An exact segmentation will have a high PPV and a high
SENS. However, PPV and SENS do not reveal how far the
distance is between the results and the reference fissures.
Thus, we use two distance measures as complementary
criteria, including the root–mean square (RMS) distance and
its standard deviation. RMS was defined as [5]:

RMS ¼
X
u∈Sref

min
w∈Sseg

D3 u;wð Þf g
� �2

= Sref
�� ��

0
@

1
A

1
2

ð11Þ

whereD3(•) represents the 3D Euclidean distance of 2 voxels.
The mean RMS indicates the positioning accuracy of the
approach. The standard deviation implies the stability of
the algorithm and the maximal RMS represents the maximal
error.

Results

Figures 4, 5, and 6 illustrate the results of some fissures
segmented by our approach of the axial views, sagittal views,
and coronal views, respectively. Each row corresponds to an
axial CT image of the case. The original CT images and the
segmentation results marked in green are shown in each
column. As shown in Figs. 4a, 5a, and 6a, where the fissures
are indicated by red arrows, the locations, shapes, and sizes of
the fissures vary greatly from case to case. However, the
results of the proposed method follow the fissures very well.
As we can see in Figs. 4b, 5b, and 6b, both the oblique and
horizontal fissures are relatively complete. Table 1 lists the
PPV, SENS, mean RMS distance, and maximal RMS distance
for our segmentation technique, ranging from 87 %, 80 %,
0.81 mm, and 7.98 mm to 96 %, 94 %, 1.35 mm, and
15.2 mm, respectively. And the means of the PPV, SENS,
RMS distance, and maximal RMS distance of 15 cases are
91 %, 88 %, 1.02±1.00 mm, and 11.56 mm, respectively. It
shows that the segmented fissures follow the reference fis-
sures well, but still a few fissure voxels with CT values similar
to their surroundings are missing, and a few non-fissure

voxels similar to fissure voxels’ CT values and very close to
the fissures are falsely included.

Fig. 5 Some fissure segmentation results produced by our proposed
method with the reference standard. a Original image in sagittal view
where the fissures were indicated by the red arrows and b segmentation
results marked in green
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Discussion

Our main contributions include three aspects. First, we propose
the LBD to measure the local flatness of the surface. Then, the
region-growing algorithm based on the LBD is applied to extract

candidate surfaces. As a result, the surfaces with complex local
shapes are discarded. The isolate small structures are eliminated
by using an empirical threshold for sizes of the surface. Second,
we apply theMBI to identify the initial fissures and isolate plane
patches, which can effectively distinguish the fissures from the
walls of cylinder-like tissues such as vessels and bronchi. Third,
the local plane fitting is used to extend fissures to fill the holes in
the fissures and connect the isolate patches.

In our approach, the eigenvalues of the Hessian matrix are
used to enhance the plane-like structures, which have also
been utilized by van Rikxoort et al. [6, 8] and Wiemker
et al. [7]. But in Wiemker et al. [7] and van Rikxoort et al.
[8], the quantitative performance of fissure segmentation was
not reported and the walls of other tissues were still left
because only the eigenvalues and no eigenvectors of the
Hessian matrix were used. Then, in van Rikxoort et al. [6], a
supervised enhancement filter was applied to improve the
performance of Wiemker et al. [7] and van Rikxoort et al.
[8]; in their method, manual segmentation was required to
train the system and the whole process, including training and
testing, would spend more time. Rather than take an extra
training process, our system directly exploits the LBD, that is,
the cosine of the included angle between the eigenvectors of
twoHessianmatrices for a pair of adjacent voxels, and theMBI,
so that it is more convenient to be implemented. We propose to
apply the eigenvectors of the Hessian matrix, so the walls of
other tissues can be effectively distinguished from the fissures.

For the differences in data obtaining and processing, we
could not directly compare our results with other literatures.
However, in the existing publications on fissures segmenta-
tion, Wang et al. [3], Zhang et al. [4], and Pu et al. [5] had

Table 1 Performance of our segmentation method, including PPV,
SENS, RMS distances, and maximal RMS distances of 15 chest CTscans

Case PPV (%) SENS (%) RMS (mm) Maximal RMS (mm)

1 95 93 0.95±0.73 11.71

2 88 90 1.07±0.94 11.46

3 92 86 0.93±1 12.76

4 93 90 0.85±1.01 14.16

5 92 80 0.97±1.01 11.53

6 96 94 0.81±0.65 9.2

7 94 88 0.89±0.64 8.92

8 92 86 0.95±0.84 11.06

9 89 89 1.04±1.11 11.46

10 89 84 1.16±1.23 11.16

11 88 83 1.12±1.27 13.54

12 87 94 1.11±1.08 12.88

13 89 85 0.99±0.8 7.98

14 88 91 1.35±1.52 15.2

15 88 91 1.12±1.1 10.34

Average 91 88 1.02±1.00 11.56

Fig. 6 Some fissure segmentation results produced by our proposed
method with the reference standard. a Original image in coronal view
where the fissures were indicated by the red arrows and b segmentation
results marked in green
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reported RMS distances as the quantitative analysis of the
performance. The method of Wang et al. [3] had been applied
to 10 cases, and their mean RMS was 1.38±1.01 mm. Tested
on 22 cases, the technique of Zhang et al. [4] acquired the
mean RMS distance of 1.96±0.71 mm. The results of Pu et al.
[5] were obtained with 100 images from 10 cases, and their
RMS distances ranged from 1.48±0.92 to 2.04±3.88mm. It is
obvious that the RMS of our approach is lower than their
results, so that the fissures segmented by our approach are
closer to the true fissures.

Two parameters, T1 and T2, have impacts on surface iden-
tification, which are selected by observing the results of two
cases with different parameters. Figure 7 shows five different
results by assigning five different values to T1, ranging from
0.1 to 0.9, and assigning 200 to T2. While T1 is increasing,
fewer surfaces are extracted and the holes in the surfaces and
the gaps between surfaces are getting bigger so that they are

hard to be filled in the fissure extension step.When T1 is equal
to or bigger than 0.7, lots of major fissures are missing,
whereas, when T1 is smaller than 0.3, many false planes stuck
to the major fissures are left, which are hard to be eliminated in
the later steps. T1 in the range between 0.3 and 0.7 ensures to
keep most plane structures and also to suppress most non-
plane structures. But we found that, when T1 is bigger than
0.3, holes differ enormously in size, which increases the
difficulty of filling holes. Thus, we set T1 equal to 0.3.

The appropriate T2 is used to eliminate the small plane
surfaces dominated by non-fissure planes. Figure 8 shows five
different results by assigning T1=0.3 and assigning six differ-
ent values to T2, ranging from 50 to 400. When T2 is smaller
than 200, more surfaces are extracted and non-fissure surfaces
increase dramatically. With increasing of T2, the number of
non-fissure surfaces, as well as fissure surfaces, decreases.
Especially when T2 is bigger than 300, there are too many

Fig. 8 Surface extraction with
T1=0.3 and different T2 values:
a original image, b T2=50,
c T2=100, d T2=200, e T2=300,
and d T2=400

Fig. 7 Surface extraction with
T2=200 and different T1

values: a original image,
b T1=0.1, c T1=0.3,
d T1=0.5, e T1=0.7, and
d T1=0.9
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missing fissure patches to be filled in the extension step. With
T2 in the range between 200 and 300, the number of extracted
surfaces has stabilized and most fissure surfaces can be left.
Thus, to minimize the missing fissure surfaces and stabilize
the results, we set T2 equal to 200. So far, the tested samples
are high-dose examinations; future work is aimed at applying
the proposed method on low-dose examinations.

Conclusion

We have developed an automatic training-free segmentation
approach of pulmonary fissures in CT images. Based on the
3D geometric morphology knowledge of fissures, we propose
the concepts of LBD and MBI. The LBD represents the local
surface flatness in 3D space. Due to the walls of non-fissure
structures having a similar local feature to the fissures, the
MBI is defined to distinguish cylindrical surfaces and planes
in order to suppress non-fissure structures. In the end, local
plane fitting is used to fill the holes of fissures and connect the
isolate patches of fissures. Our approach achieves a better
performance compared with the existing training-free systems
and achieves basically the same performance compared with
the existing training-required methods, but our method does
not need a training process.
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