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Abstract Accurate quantification of bone morphology is im-
portant for monitoring the progress of bony deformation in
patients with cerebral palsy. The purpose of the study was to
develop an automatic bone morphology measurement method
using one or two radiographs. The study focused on four
morphologic measurements—neck-shaft angle, femoral
anteversion, shaft bowing angle, and neck length. Fifty-four
three-dimensional (3D) geometrical femur models were gen-
erated from the computed tomography (CT) of cerebral palsy
patients. Principal component analysis was performed on the
combined data of geometrical femur models and manual
measurements of the four morphologic measurements to gen-
erate a statistical femur model. The 3D–2D registration of the
statistical femur model for radiography computes four mor-
phological measurements of the femur in the radiographs
automatically. The prediction performance was tested here
by means of leave-one-out cross-validation and was quanti-
fied by the intraclass correlation coefficient (ICC) and by
measuring the absolute differences between automatic predic-
tion from two radiographs and manual measurements using
original CT images. For the neck-shaft angle, femoral
anteversion, shaft bowing angle, and neck length, the ICCs

were 0.812, 0.960, 0.834, and 0.750, respectively, and the
mean absolute differences were 2.52°, 2.85°, 0.92°, and
1.88 mm, respectively. Four important dimensions of the
femur could be predicted from two views with very good
agreement with manual measurements from CT and hip ra-
diographs. The proposed method can help young patients
avoid instances of large radiation exposure from CT, and their
femoral deformities can be quantified robustly and effectively
from one or two radiograph(s).

Keywords Femoral morphology . Cerebral palsy . Automatic
morphology quantification . Statistical shape model

Introduction

Cerebral palsy is a disorder related to the development of
movement and posture from a brain injury during the fetal
or infant period. It leads to functional limitations of varying
severity according to the extent and area of the central nervous
system dysfunction [1]. The most common musculoskeletal
manifestation is motor spasticity, causing joint deformities.
Abnormal growth of the femur is the primary cause for the
significant hip problems and gait disturbance in cerebral palsy
[2–7]. Increased femoral anteversion and coxa valga are com-
mon proximal femoral conditions in patients with cerebral
palsy; these conditions cause an intoeing gait and hip insta-
bility, respectively [2–7]. Femoral osteotomy is commonly
performed to treat this problem. Therefore, an accurate assess-
ment of abnormal femoral morphology would provide useful
information in determining the treatment options available for
children with cerebral palsy. Neck-shaft angle and femoral
anteversion are important morphological markers of abnormal
femur morphology in cerebral palsy patients. Also, shaft bow-
ing angle and neck length are additional potential markers of
cerebral palsy.
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The morphology of the femur can be obtained from a
computed tomography (CT) scan. Important clinical dimen-
sions of the femur such as the neck-shaft angle, femoral
anteversion, shaft bowing angle, and neck length can be
measured from a CT scan [8–11]. Although CT scans expose
children to relatively high doses of radiation [12], they provide
data on the morphological dimensions of the femur from a
projective view of the bone. Routine clinical measurements of
the morphology of the femur are obtained from a few views at
different angles, but these measurements can be inaccurate if
the radiograph is taken from wrong angles [13].

The abnormal morphology of the femur in cerebral palsy
patients is predicted from physical examinations [14], whose
accuracy have been assessed using image-basedmethods [8–11].

In this study, we hypothesized that the morphological
dimensions of the femur in cerebral palsy patients can be
predicted as accurately as those by manual measurements in
CT using a novel statistical shape modeling approach. The
specific aims include developing processes for the reconstruc-
tion of the 3D shape of a femur from one or two radiographs
and then automatically calculating the femoral morphological
dimensions from the reconstructed femur model in cerebral
palsy.

The proposedmethodwas tested using clinical CT data and
artificially reconstructed radiographs from the CT data. The
accuracy in predicting the dimensions of the four morpholog-
ical markers mentioned above was validated against the mea-
surements obtained from the standard manual method using
CT data.

Materials and Methods

Data Acquisition

This study was approved by the institutional review board at
Seoul National University Bundang Hospital (SNUBH IRB, B-
1202/145-108). Fifty-four cerebral palsy patients who were
examined by CT for torsional bony deformities and who had a
hip anteroposterior (AP) and frog-leg lateral radiograph, be-
tween May of 2004 and January of 2010, were included.
Patients with a concurrent neuromuscular disease, other than
cerebral palsy, or with a history of gait-correcting surgery were
excluded.

To build a shape database of femurs, 3D geometric shapes
were created from the CT data using medical image process-
ing software (Mimics, Materialise N.V., Belgium, version
14.1).

Standard Measurements of Dimensions of the Femur

Standard clinical measurements of femoral dimensions were
carried out from the CT images and from radiographs by one

of the authors (KHS) with 8 years of orthopedic experience.
The dimensions include neck-shaft angle, femoral anteversion,
shaft bowing angle, and neck length as illustrated in Fig. 1. The
neck-shaft angle, shaft bowing angle, and neck length were
measured by hip radiographs and femoral anteversion was
measured by 3DCT image. All measurements were taken using
a picture archiving and communication system software pack-
age (PACS) (IMPAX; Agfa HealthCare, Mortsel, Belgium).

For their measurements, we defined the distal femoral
posterior line, the center of the femoral head, and the femoral
neck point on the geometry of the femur. The distal femoral
posterior line connects most of the posterior points in the
medial and lateral condyles on a 3D CT image. The center
of the femoral head was defined as the center of the circle of

Fig. 1 Clinical dimensions of the femur—a femoral anteversion in CT, b
neck-shaft angle and neck length in hip AP radiograph, and c shaft
bowing angle in hip lateral radiograph

Fig. 2 Principal component analysis was applied to the 54 model vectors
from femur data to compute eigenvectors. The eigenvectors with higher
eigenvalues were weighted and added to the average model vector to
build a new model vector. A and B represent eigenvectors for the shape
and four clinical measurements, respectively

J Digit Imaging (2014) 27:262–269 263



best fit for the femoral head on the hip AP radiographs. The
femoral neck point is the intersection between the line
connecting the center of the femoral head and the mid-point
of the femoral neck, and the line passing through the mid-
portion of the proximal femoral shaft.

The femoral anteversion was measured on the 3D CT
image as the angle between the distal femoral posterior line
and the line connecting the center of the femoral head and
the femoral neck point. The neck-shaft angle was measured
with the line connecting the center of the femoral head and
femoral neck point and the line passing through the upper half
of the femoral shaft. The shaft bowing angle was measured
with the two lines passing through the upper half and lower
half of the femoral shaft. The neck length was the length
between the center of the femoral head and the femoral neck
point.

Statistical Shape Model and Principal Component Analysis

For the automatic measurements of femoral dimensions, a
statistical shape model based on principal component analysis
was adapted in this study. The geometric locations of points
on the surface of the reconstructed femur model were
extracted and used to make a point distribution model [15].
Before performing principal component analysis, the 3D fe-
mur shape was aligned using the long shaft axis and the shape

of the distal femoral condyles so that the analysis could focus
on characteristic shape features affected by cerebral palsy.
That is, the femoral shapes of cerebral palsy patients have
abnormal bony deformations more in the superior part than in
the inferior part; thus, the pre-alignment of the femur models
with the inferior part made the statistical shape model more
sensitive to the shapes in the superior part of the femur.

The numbers of feature points from the reconstructed geo-
metric models may vary between models. To perform a prin-
cipal component analysis on these point data, a mesh decima-
tion algorithm was employed to re-tessellate all geometric
shapes to have an identical structure and the same number of
vertices [16]. In previous studies on statistical shape model-
ing, the principal component analysis of 3D shape was applied
only to vertex coordinates [17–19]. In this study, pre-
computed clinical measurements were included in statistical
shape modeling and equally treated as vertex coordinate in-
formation. Thus, a model vector consists of the XYZ coordi-
nates of all vertices and four clinical shape measurements.

Principal component analysis of model vectors in the da-
tabase produces an average model vector and model variation
vectors with the same number of components as the model
vector.

From the result of principal component analysis shown in
Fig. 2, A represents the eigenvectors for femoral shapes. Thus,
a 3D femur shape (vertices of the shape) is represented as

Fig. 3 a 2D–3D reconstruction
process starting from an average
shape and through matching for
the artificially created radiograph
with bone boundaries and b the
final predicted shape

Fig. 4 a Three different internal–
external rotation angles and b
three different flexion angles in
the sagittal plane
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v ¼ vaverage þ Ax ð1Þ

where vaverage is the average shape vector and A is the shape
matrix of eigenvectors. Then, a new 3D femur shape v can be
made by adding the multiplication of the shape matrix of
eigenvectors and weight vector x, which is called shape var-
iation, to the average shape vector.

Once x is determined for a new femur shape, we can also
determine clinical measurements, vector y, such that

y ¼ yaverage þ Bx ð2Þ

where yaverage in Eq. (2) is the average clinical measurements
and matrix B is the matrix of eigenvectors for the clinical
measurements in Fig. 2.

3D–2D Reconstruction

To reconstruct the shape of a target 3D femur in cerebral palsy
patients from one or two radiographs as shown in Fig. 3, a new
3D femur shape was constructed by adjusting the weight
vector x in Eq. (1). The silhouette landmark points of the
average 3D femur shape were projected to the target radio-
graph image(s) of a patient with cerebral palsy. Each projected
landmark point was matched with the nearest femur edge
point on the radiograph image(s). The three-dimensional dis-
tance between the landmark point and the nearest point on the
ray connecting the corresponding femur edge point and the x-

ray source were calculated and used as a matching score.
Then, using the conjugate gradient descent method, variation
x was adjusted to minimize 3D distance. Generally, the gra-
dient descent method converges to a local minimum. In order
to find the global optimum after it reaches a local minimum,
we applied a perturbation by adding small random values to
the weight vector x. This optimization process terminated
when the 3D distance was less than the threshold or when it
reached repeatedly at the same local point.

The 3D–2D reconstruction for the femur was tested using a
single image and two images from two different views—AP
view only, lateral view only, and AP and lateral views togeth-
er—for comparison. Also, the target femur model was posi-
tioned in nine different poses for combinations of three differ-
ent internal–external rotations and three different angles in the
sagittal plane as shown in Fig. 4 to investigate the effect of
femur pose on the reconstruction results.

Statistical Method

For statistical independence, only the data from a single femur
of each patient were included in the statistical analysis [20].
The leave-one-out cross-validation was used to understand the
accuracy of the predictions of clinical measurements. Thus, a
femur model out of 54 models was selected as a test model and
the remaining 53models were used as trainingmodels to create
a statistical shape model for 3D–2D model reconstruction.

The four morphological measurements were estimated
from the reconstructed femur models with a single image
(AP or lateral) and two images (AP and lateral) each for nine
different poses.

To evaluate the effect of viewing directions, each of the
four clinical measurements were averaged for the nine poses
and compared with the measurements from the manual stan-
dard method. The intraclass correlation coefficients (ICC) and
their 95 % confidence intervals were calculated by using a
two-way mixed model.

The effect of a specific femur pose was also tested for two
views (AP and lateral) using the ICC. An ICC of 1 indicates
perfect reliability, and an ICC of >0.8 indicates excellent
reliability [21].

Table 1 Patient demographics and manual measurements of the mor-
phological dimensions (the gold standard in this study) from hip radio-
graphs and 3D CT

Gender (male/female) 36/18

Age (years) 9.9±6.5

Types of limb involvement (hemiplegia/diplegia/triplegia) 16/36/2

Neck-shaft angle (°) 133.7±5.4

Femoral anteversion (°) 35.1±12.1

Shaft bowing angle (°) 7.6±2.2

Neck length (mm) 41.4±3.8

Reported values are mean ± standard deviation

Table 2 Agreement between automatic measurements using both
anteroposterior and lateral views, and the primary manual measurements
using standard method

Clinical measurements ICC 95 % Confidence interval

Neck-shaft angle 0.812 0.697–0.886

Femoral anteversion 0.960 0.932–0.977

Shaft bowing angle 0.834 0.730–0.900

Neck length 0.750 0.604–0.847

ICC intraclass correlation coefficient

Table 3 Reliability of automatic measurement for nine different poses of
the femur using both anteroposterior and lateral views

Clinical measurements ICC 95 % Confidence interval

Neck-shaft angle 0.950 0.929–0.968

Femoral anteversion 0.983 0.975–0.989

Shaft bowing angle 0.971 0.959–0.981

Neck length 0.893 0.851–0.929

ICC intraclass correlation coefficient
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Results

The right femur models from the 54 patients (36 males and 18
females) were included in this study. The mean age of the
patients was 9.9±6.5 years. Neck-shaft angle, femoral
anteversion, shaft bowing angle, neck length, and age were
selected as clinical measurements (Table 1).

First, the automatic predictions of the morphological mea-
surements were estimated using both the AP and lateral view
images and averaged for nine different poses of the femur.
This was repeated with all models for leave-one-out cross-
validation. The result of the ICC analysis between the predic-
tions and the primary manual measurements from the standard
method is shown in Table 2. The ICC is larger than 0.8 for the
neck-shaft angle, femoral anteversion, and shaft bowing an-
gle. This means that the automatic predictions agree with the
primary manual measurements. The neck lengths show the
lowest agreement between the predictions and the measure-
ments with an ICC of 0.750.

The ICC was calculated for the nine different poses to
understand the similarity in the four predicted measurements
between the poses. The predictions were made using both
anteroposterior and lateral views. The ICC values for the four
measurements ranged from 0.893 to 0.950, as shown in
Table 3.

The demographic statistics for the differences between the
automatic measurements with two views and manual mea-
surements showed that the femoral anteversion had the
highest mean difference with 2.85°, while the shaft bowing
angle had the lowest mean difference with 0.92° as in Table 4.
The maximum differences were noticeable with 7.64° (2.7
times the mean) for the femoral anteversion and 3.79° (4.1
times the mean) for the shaft bowing angle.

To test the effect of using a single image in the evaluation of
accuracy of the automatic prediction method, the statistical
shape model was registered to either the AP view image or
the lateral view image, and the demographic statistics on the

differences between the automatic prediction method and the
standard method are shown in Tables 5 and 6, respectively. In
the case of using only the AP view image, all mean differences
in the predictions were slightly greater than those in the predic-
tions with two views (Table 4) with angles of about 0.5° and
length of 0.35 mm. The prediction errors from only a lateral
view image were slightly larger than those from only an AP
view image, except for the prediction errors related to the shaft
bowing angle.

Discussion and Conclusions

The four important morphological dimensions of the femur
could be automatically determined by performing the 3D–2D
registration of a three-dimensional statistical shape model to
single plane or bi-plane artificially reconstructed radiographs
[15, 22–24]. The statistical shape model of the femur was
generated using the femur models of 54 young cerebral palsy
patients; thus, the statistical femur model could encompass the
variations of femoral deformity incurred by cerebral palsy and
thus predict the morphological measurements of the femur.
The analyses in this study focused on the agreement between
the automatic measurements from the statistical femur model
and the manual measurements from the clinical standard
method, and the level of agreement is shown as ICCs.

Advances in the field of computer vision have allowed for
the predictions of the three-dimensional (3D) shapes and
poses of geometric models from multiple-view projective
images [25]. Thelen et al. predicted the alignment of the lower
limb using radiographs from two different views [26].
Advanced methodologies have been adopted for skeletal
shape reconstruction from the stereo radiography of a bone
[15, 22–24]. Chaibi et al. presented a fast 3D bone geometry
reconstruction method for the lower limb and calculated clin-
ical measurements using a parametric model and statistical
inference [23]. Heimann et al. reviewed several means of

Table 4 Difference between the
automatic measurements using
both anteroposterior and lateral
views and the primary manual
measurements using standard
method

Clinical measurements Mean Standard deviation Maximum Minimum

Neck-shaft angle (°) 2.52 1.97 7.31 0.01

Femoral anteversion (°) 2.85 1.8 7.64 0.2

Shaft bowing angle (°) 0.92 0.73 3.79 0.01

Neck length (mm) 1.88 1.57 7.92 0.06

Table 5 Difference between the
automatic measurements using
AP view image and the primary
manual measurements using
standard method

Clinical measurements Mean Standard deviation Maximum Minimum

Neck-shaft angle (°) 2.87 2.18 8.05 0.12

Femoral anteversion (°) 3.38 2.48 9.55 0.04

Shaft bowing angle (°) 1.21 0.93 4.77 0.05

Neck length (mm) 2.23 1.62 7.1 0.08
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creating a statistical shape model based on landmarks for 3D
medical image segmentation [24]. Zheng et al. presented a
method of 2D–3D reconstruction for the surface of the prox-
imal femur using a statistical model and a shape deformation
technique from fluoroscopic images [15]. However, these
studies targeted normal bones; no previous study considered
the abnormal deformation of bones beyond the general scope
of normal bones and immature bones in children.

In the shape model registration process, previous studies
included the angle between the gradient vector in a radiograph
and the edge normal vector for each of the projected landmark
points, and theMahalanobis distance on every landmark point
in the calculation of the matching score [22]. But the morpho-
logical variation of the femur in patients with cerebral palsy
was larger than that of the normal femur; thus, its rate of
convergence was slow and sometimes it would not converge
to the global optimum when the Mahalanobis distance and the
angle between gradient and normal were included. So, in this
study, the angle and Mahalanobis distance scores were not
used.

The limitation of this study is the relatively small sample
size. The sample size of 54 may be enough for predicting
femur shapes with relatively mild cerebral palsy but not
enough for predicting the femur shape of those with severe
cerebral palsy, which has a larger shape variation. Thus, the
sample size should be further increased to increase the shape
prediction accuracy. The statistical shape model generated in
this study may not be applicable for predicting the femur
shape associated with other diseases.

The results from registering the statistical femur model to
the radiographs from two views, AP and lateral, showed high
ICCs for neck-shaft angle, femoral anteversion, and shaft
bowing angle. The femoral anteversion had the highest ICC
of 0.960, suggesting this morphological measurement would
be very accurately predicted using the automatic measurement
scheme.

The neck length showed a relatively lower ICC of 0.750.
The automatic measurement for the neck length depends on
the accuracy of determining the femoral head. The femoral
head of the original femur models from cerebral palsy patients
did not have a good spherical shape, as shown in Fig. 5. Thus,
the statistical shape model had relatively higher shape regis-
tration errors in this region, which caused differences in
predicting the neck length.

The absolute differences between automatic measurements
and manual measurements are shown in Table 4. While the
variation of the femoral anteversion in the population shown
as a standard deviation in Table 1 was 12.1° around the mean
angle, the mean difference in the automatic measurement was
2.85°, which would be a very small difference in a clinical
setting. Although the mean differences for the neck-shaft
angle, shaft bowing angle, and neck length were also low
compared to the population variations, the maximum differ-
ences were somewhat high, at 7.31°, 3.79°, and 7.92 mm,
respectively (Table 4). This was caused by a few severely
distorted femur models in our cerebral palsy patients. The
majority of the original femur models had mild deformities;
thus, the statistical shape model did not have a good power

Table 6 Difference between the
automatic measurements using
lateral view image and the prima-
ry manual measurements using
standard method

Clinical measurements Mean Standard deviation Maximum Minimum

Neck-shaft angle (°) 3.04 2.7 16.35 0.04

Femoral anteversion (°) 3.54 3.19 16.57 0.01

Shaft bowing angle (°) 0.88 0.69 3.16 0

Neck length (mm) 2.37 2.22 11.17 0.02

Fig. 5 a Head of the femur in an
adult with cerebral palsy (a 19-
year-old female with spastic
diplegia) and b head of the femur
in a child with cerebral palsy (a 5-
year-old male with spastic
diplegia and increased femoral
anteversion)
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span over the femur models with large deformities. This weak
point of the method could be improved by adding more
irregular models to the database and regenerating the statisti-
cal femur model.

The results from registering the statistical femur model to
the radiograph from a single view, either AP or lateral, showed
absolute mean difference to the results from the two-view case
(Tables 5 and 6). The maximum differences were about twice
larger in the lateral view, suggesting that AP view of the femur
may have more features for accurate 3D–2D registration and
that when using a single radiograph, AP view has higher
prediction power in our method. Interestingly, the mean and
maximum differences for shaft bowing angle were lowest with
a single lateral view radiograph (Table 6). This may have arisen
because the femur has anterior bowing on the sagittal plane, as
observed on hip lateral radiographs. The effect of the rotation
angle of the femur in AP and lateral views were investigated.
The reliability of an automatic prediction using the two views
was as good as ICC >0.950 for the measurements of the neck-
shaft angle, femoral anteversion, and shaft bowing angle. The
reliability was moderate for the measurement of neck length
with ICC=0.893, as shown in Table 3. Thus, the proposed
method using two views showed reliable prediction accuracies
for the four morphological measurements.

In conclusion, we proposed a statistical shape model based
on an automatic bone morphology measurement method of
the femur of cerebral palsy patients using principal component
analysis. Four important dimensions of the femur could be
predicted from two views with very good agreement with
manual measurements from CT and hip radiographs. The
proposed method can help young patients avoid instances of
large radiation exposure from CT, and their femoral deformi-
ties can be quantified robustly and effectively from one or two
radiograph(s).
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