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Abstract We present a novel algorithm for the extraction
of cavity features on images of human vessels. Fat deposits
in the inner wall of such structure introduce artifacts,
and regions in the images captured invalidating the usual
assumption of an elliptical model which makes the process
of extracting the central passage effectively more difficult.
Our approach was designed to cope with these challenges
and extract the required image features in a fully auto-
mated, accurate, and efficient way using two stages: the first
allows to determine a bounding segmentation mask to pre-
vent major leakages from pixels of the cavity area by using
a circular region fill that operates as a paint brush followed
by Principal Component Analysis with auto correction; the
second allows to extract a precise cavity enclosure using
a micro-dilation filter and an edge-walking scheme. The
accuracy of the algorithm has been tested using 30 com-
puted tomography angiography scans of the lower part of
the body containing different degrees of inner wall distor-
tion. The results were compared to manual annotations from
a specialist resulting in sensitivity around 98 %, false pos-
itive rate around 8 %, and positive predictive value around
93 %. The average execution time was 24 and 18 ms on
two types of commodity hardware over sections of 15 cm of
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length (approx. 1 ms per contour) which makes it more than
suitable for use in interactive software applications. Repro-
ducibility tests were also carried out with synthetic images
showing no variation for the computed diameters against the
theoretical measure.
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Principal component analysis · Micro-dilation ·
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Introduction

Vascular diseases continue to be among the leading causes
of death worldwide accounting for nearly 18 million
deceases by the end of 2008 and with projections of over 20
million by 2030 [29]. Due to the constant improvement of
acquisition techniques such as computed tomography and
magnetic resonance, it is possible to have a better image
detail of multiple body regions such as the vascular system
in a noninvasive fashion for the patient.

One important aspect of modeling the vessels for auto-
matic assessment is to assume a cylindrical shape in 3D and
its corresponding circular/elliptical equivalent in a transver-
sal cut. Two of the most common causes of internal cavity
or lumen deformation of these structures are stenoses and
aneurysms. In the case of stenosis, the deformation is man-
ifested as a narrowing produced by the gradual build up
of fatty deposits in the walls of the arteries (also known
as plaque), which if not treated, might eventually solid-
ify and degenerate in harder tissue accumulations known
as calcium. These deposits along with other causes such
as high pressure or plain genetics may also undermine the
wall thickness to a point where it starts to bulge producing
a dilation of the lumen known as aneurysm [27]. Figures
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Fig. 1 Volume rendering
images of a 16-bit image stack
with multiple cavity distortions
due to fat. a Red arrow points to
the locations of an aneurysm at
the end of the aorta. b Red
arrow points to the location of a
stenosis region

1 and 2 show some typical renderings of these anatomical
deformations obtained from a stack of 16-bit images.

Another important aspect when doing automatic feature
extractions in this context is to keep it reasonably fast for
interactions from the physician in order to make the whole
diagnosis pipeline more efficient. One of the ways to assess
the level of cavity distortion is to compute a stenosis ratio.
These procedure is performed by scrolling through the stack
of images and manually marking the diameter of the lumen
on each image where a reduced cavity space is found (steno-
sis point), this is then compared to the diameter (or area) of
a neighboring healthy cavity section (reference point).

%stenosis = 1 − μs

μr
(1)

In Eq. 1, μs refers to the measurement taken on the
stenosed point and μr to the measurement taken on the
healthy or reference point. This measurement can either be
the maximum diameter of an imaginary ellipsoid enclosing
the cavity (expressed in meters) or the area computed as all
pixels contained in the cavity (expressed in square meters).
The diameter measurement is one of the more straightfor-
ward metrics employed by physicians simply because it is
easier to manually draw either an ellipsoid or the axis of
an imaginary ellipsoid over the cross section to be ana-
lyzed. However, the area is an alternative way that offers
the chance to include pixels of the lumen that are normally
disregarded (see Fig. 2). The work presented in this paper
allows for stenosis computation based on both diameters
and areas.

Accurate lumen estimations are critical for the selection
of the stents and sheets employed on procedures such as
aortic aneurysm repairs (e.g., aortic aneurysm repairs) and

also to quantify plaque and/or calcium levels [5]. Despite all
the research efforts in this area, lumen segmentation remains
a primary challenge for automated processes, particularly
when the images acquired to visualize the vascular structure
are affected by the conditions previously mentioned.

Fig. 2 Cavity measurements on a vessel image. a Two cut planes of
a stack image with high level of cavity distortion and a red overlay of
the optimal lumen area. b Same areas with two examples of ellipsoids
overlaid in blue and green, notice that for both ellipsoids (or any other
potential ellipsoid) a good portion of lumen pixels are left out
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Literature on the topic of vascular segmentation has been
quite prolific partly due to the ubiquity of vessels in the
human anatomy and also to the high incidence of vascu-
lar diseases worldwide. This has not necessarily translated
in a standard way to extract features from the existing
imaging modalities since different people in healthcare will
have quite diverse opinions about a particular segmentation
result.

Broadly speaking, the outcome of a vascular segmen-
tation process involves obtaining a segmentation mask or
polygon of the contour and/or a central axis (centerline)
from the vessel. The basic assumption is that vessels have
tube-like shapes in 3D and elliptical in 2D. An automatic
contour computation can be derived from a pre-existing cen-
terline and vice versa. Methods that focus on the extraction
of a centerline (centerline tracking) may not necessarily
produce a refined representation of the wall contour that
is appropriate for quantification purposes; this central axis
information though is extremely valuable to exploit a sub-
sequent accurate contour segmentation process. Tracking
methods can be grouped as skeleton-based, where the full
vessel structure is targeted via low level operations (e.g.,
thresholding, region growing, erosion, and dilation) [6]
and then a centerline is obtained via a skeletonization or
centerline-based process where an optimal path is computed
by minimizing a cost function which usually incorporates
both geometric restrictions and image restrictions [7]; alter-
natively, the so-called medialness operators [2] try to pick
the vessel center without relying on a binary segmentation
mask.

Contour extraction as such can incorporate different
strategies. Snake and active contour approaches such as the
dynamic programming scheme from [11] offer a flexible
combination of image features and geometry. They can be
relatively slow but improvable through the use of multi-
scale filters. The principle of the technique is to guide the
segmentation via external forces based on image features
(e.g., voxel intensity and contrast) while constraining the
shape via internal forces (e.g., curvature and orientation).
Explicit or parametric active contour models for vascular
segmentation were successfully applied to vessel segmen-
tation by [10, 17, 30]. Implicit models are based on the
level-set and fast marching methods proposed by [21] and
[23] among others; On [9], a new speed-control function
was proposed for fast marching in order to handle vari-
able contrasts along the perimeter of the contour in carotid
run-offs.

Other works like [1], although applied to ultrasound data,
exposed some of the shortcomings of the classical active
contour approach and exhibits the benefits of diffusion fil-
ters based on Canny detectors [8] and operators such as

Sobel and Prewitt [19, 25] to improve the accuracy of exter-
nal energy functions. For a review of the fundamentals of
these techniques applied to medical imaging, see [16].

The survey by [13] defines the following grouping cri-
teria for vascular segmentation: extraction pattern recog-
nition techniques, model-based approaches, tracking-based
approaches, artificial intelligence-based approaches, neural
network-based approaches and tube-like object detection
approaches. Later on, the survey by [14], the techniques
were updated and grouped based on a high level approach
categorized as models, features and extraction techniques.
The reader should refer to those two comprehensive surveys
to further expand on the methods of this broad segmentation
field. In the next section, we present our own approach for
lumen extraction.

Materials and Methods

The input for the algorithm is a list of centerline points that
go through the tubular structure. These were automatically
obtained from our own centerline tracking implementation
based on the principles described by [4]. However, any cen-
terline tracking algorithm or scheme to mark these points
can be alternatively employed as this is not the main focus
of the work presented. The purpose of the list of centerline
points is to create an orientation vector between two con-
secutive points and then build a perpendicular plane; along
this plane, the image containing the vessel to be processed
is sampled from the 3D image stack (see Fig. 3a). As for
the actual location of the centerline points within the vessel,
there are no specific requirements as they might not be the
perfect centroids of the tubular structure (see Fig. 3b).

There are two main stages within the algorithm: bound-
ary estimation and inner estimation. The boundary estima-
tion stage was designed with the purpose of including image
regions of both medium–low (lumen) and high (calcium)
intensity pixels, discarding at the same time image regions
or patterns of pixels that may leak and distort the overall
tubular shape (such as the ones found in bifurcations and/or
adjacent tissue on similar data ranges of the vessel). Follow-
ing, Principal Component Analysis is applied over the edge
pixels of the previously obtained mask and the informa-
tion used to initialize parameters of subsequent iterations.
The inner extraction stage is triggered after the boundary
estimation phase; here, the lumen contour is obtained by
employing region growing, selection of the biggest compo-
nent grown, a micro-dilation and a loop-free path traversal,
or edge-walking mechanism that ensures the extraction of a
compact and consistent contour. Partial volume effects are
considered as well. Following, sections “Stage I—Boundary
Estimation” and Stage II—Inner Estimation” explain the
details of both stages, section “Algorithm” showcases the
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a b

Fig. 3 a Representation of a vessel cut where the arrows depict the
directional vectors built using two consecutive centerline points and
the resultant perpendicular image plane in green. b Axial views of two
different planes with the lumen depicted in red and the outer wall in
blue (both with its corresponding centroids). Any point inside (blue
and red dots) or close to the vessel (orange dots) can be used to center
the image plane to be processed

algorithm in pseudo-formal notation, section “Parameter
Adjustment and Measurement Tool” details how to man-
ually adjust the parameters of the algorithm, and section
“Datasets” describes the data used for the tests.

Stage I—Boundary Estimation

The objective of this stage is to avoid leakage areas caused
by pixels corresponding to branches or other tissues on the
same intensity range of the vessel. To illustrate the basic
principles of the algorithm, the synthetic image depicted
on Fig. 4a was generated to summarize the issues to be
approached on a single image. Here, we distinguish between
the internal wall of the vessel which includes areas 1, 2, and
3 and the lumen, which can be seen as area 3 not including
areas 1 and 2 (calcium artifacts).

The first step in this phase is to extract the pixels of
the internal wall of the tubular structure by performing a
circular region fill; the extracted region will contain both
the actual cavity and the calcium (if present). The filling is
done using a small circular pixel mask which starts from the
centerline point and moves around its neighbors (also in a
circular fashion) until all the region is filled. Neighbor and
border pixels are found using the tissue intervals defined in
Table 1.

The traversal of this circular mask resembles the move-
ment of a paint brush as depicted in Fig. 4b where the
brushing process maintains a smooth circular border after
filtering out any disruptions from the central passage. The
radius of the brush is set in two ways:

(a) When there is no previous fitting information avail-
able (e.g., for the first point of the centerline), a fan of
pixel rays is casted at equally spaced angles from the
centerline point in order to cover a full circumference;
the propagation of each one of these rays is terminated
when its pixel value exceeds the interval defined by
the minimum lumen and maximum calcium threshold
values (see Table 1). The radius of the brush is chosen
as the third of the maximum ray length from all rays
casted;

(b) If previous fitting information is available, the radius
is directly set as a third of the major axis of the
ellipse estimated in the previous contour. The brush
size will not exceed a predefined maximum size of
5 mm established for the image stacks tested but it
can be adjusted to support different sizes (see section
“Parameter Adjustment and Measurement Tool”).

Figure 4b also shows the effects of the brushing, where
the red top and bottom areas of the edge patterns which are
either not part of the cavity or deviate from the main struc-
ture of the vessel are left out and the circular shape of the
brush delineates a new circular or convex edge under the
red areas of pixels that were filtered out. The segmenta-
tion mask obtained acts like a bounding perimeter because
it effectively prevents that any subsequent segmentation
process leaks to undesired areas.

The next step is to use the image obtained after the filter-
ing shown in Fig. 4b as the input for Principal Component
Analysis (PCA). This is done with the objective of finding
the pixels that best approximate the tubular shape depicted
by an ellipse. The first step of the PCA employed in this
work consists in the computation of the covariance matrix
over the edge positions as:

Cov(X, Y ) =
∑numEdgeP ixels

i=1 (Xi − X̄)(Yi − Ȳ )

numEdgeP ixels − 1
(2)

With (Xi , Yi ) the center of a 3 × 3 grid where the cen-
tral pixel must have a minimum of three and a maximum
of seven neighbors pixels in the cavity in order to be con-
sidered for the statistical mean computation (X̄ and Ȳ ) (see
Fig. 4c). Subsequently, the covariance matrix is computed
as:

C =
(
Cov(X,X) Cov(X, Y )

Cov(Y,X) Cov(Y, Y )

)

(3)
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Fig. 4 First pass of the
algorithm applied to a synthetic
characterization of an image
plane: a Areas 1 and 2 represent
calcium; area 3 the cavity; red
circles, leakages or bifurcations;
blue circles, areas candidates to
partial volume effects. b
“Brushing” applied to image (a)
repulses leakage areas (red). c
Example of a 3 × 3 grid moving
along the edges which finds
three top-left pixels candidates
for PCA computation. d
Eigenvalues (λ) and
eigenvectors (ν) define the
longitude and direction of an
ellipse; pixels located in the
internal (yellow) or external
(green) areas of the ellipse that
are too far away from the
approximation (goodness of fit)
are filtered out. e New ellipse (λ′
and ν′) generated with the pixels
excluded from (c). f Final image
obtained after the first pass

From the covariance matrix, we obtain the systems (4)
and (5), {where λ represents the eigenvalues and ν the
eigenvectors.

det (C − λI) = 0 (4)

(C − λI)ν = 0 (5)

The eigenvectors represent the direction of the axes, and
the eigenvalues determine the scale of the major/minor axes
of the ellipse (see Fig. 4d and e). To solve this system, the
strategies described in [24] were used.

Table 1 Optimal threshold ranges used for segmentation (in
Hounsfield units) estimated experimentally from the image stacks used

Tissue HU value range

(Min, Max)

Lumen (150, 500)

Calcium (500, 1,300)

The ellipse obtained is compared with the bounding
perimeter in order to estimate the goodness of the fit (E).
This was achieved using the normalized sum of squares of
Euclidean distances (Dist) from the edges as shown in (6).

E = 1

n

n∑

i=1

Dist2i ; with n the number of vessel edge pixels

(6)

These distances can be computed directly from the cen-
ter of the estimated ellipse assuming it is almost circu-
lar [26]. Figure 5a shows that the intersection pixel i is
obtained between the center c and the pixel p on the ves-
sel edge. However, if the ellipse elongates beyond a certain
degree, then the distance computed is longer than the one
described by vector Vd . For this reason, an approach simi-
lar to the one used in [31] was used to make sure all types
of ellipses are considered while keeping the computations
efficient.

If E goes beyond a tolerance value (ε), then the far-
thest pixels are filtered out (see Fig. 5b and yellow/green
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Fig. 5 Error computation and goodness of the fit: a Intersection pixel
i will not yield the shortest distance (shown as vector Vd ) to pixel p
when using the center c of the estimated ellipse directly. Instead, affine
transformation Ts is applied to obtain a circle and pixel i′, then Ts

−1

is used to obtain the shortest path with i′′. b First quadrant of a sample
ellipse: distances to the estimated ellipse are computed from edge pix-
els p1, p2, p3, and p4. A threshold value ε is used to establish if a new
estimation is necessary. This threshold resembles the green dotted arcs
where pixels are identified as candidates to be filtered out (p2 and p4)
or to be reconsidered for the next PCA iteration (p1 and p3)

areas on Fig. 4d, e) and the PCA is recomputed. Three
values of ε (5, 10, and 15 %) were explored to study
the goodness of the fit over a number of 16-bit image
stacks (see section “Datasets” for more details on the image
sets) resulting in ε = 10 % the most adequate toler-
ance value according to a visual inspection performed by a
radiologist.

Here, it is worth noting that due to the initial brushing
process which filters the pixels that cause the strongest dis-
ruption of the elliptical shape, the remaining edge pixels will
tend to group more closely to the ellipse fit. This means that
the error correction process does not require a lot of iter-
ations to reach the established goodness E. Nevertheless,
a maximum number of iterations was additionally intro-
duced for a set of cases (less than 1 %) where the recovery
will take too long or is simply not possible (e.g., excessive
image noise, full obstruction); in these small set of cases, the
ellipse from the previous contour is displayed and the users
have the option to manually outline the contour themselves
(see Fig. 10).

Having refined the bounding perimeter, a more precise
boundary estimation is achieved containing both lumen and

calcification areas and discarding leakage areas as shown
in Fig. 4f. The final edge candidates of this analysis are
stored as a list of pixels to be used on the next stage. Addi-
tionally, the geometric information from the ellipse fitting
(center, eigenvectors, and eigenvalues) is cached in order
to be used in the next contour to set a more precise set of
dimensions for the patch, brush, and partial volume analysis
(see section “Stage II—Inner Estimation”).

Stage II—Inner Estimation

The purpose of the inner estimation stage is to identify
calcium areas within the boundary estimation previously
achieved and to make sure there are no further leakages that
affect the overall shape of the internal cavity contour to be
extracted.

The first step consists on extracting the pixels corre-
sponding to the lumen via another modified region filling
process. Compared to the filling described on section “Stage
I—Boundary Estimation”, this one behaves more similar
to a standard region grow (no circular mask/propagation)
but only taking into account pixel values corresponding to
the lumen (see Table 1) and performed exclusively over the
boundary estimation obtained on Stage I. The modifications
to the filling allow for filtering of partial volume effects and
identification of calcium areas. These pixels are identified
by moving along the edge and sampling to the inside of the
vessel using half of the minimum ellipse radius (a quarter
of the minimum eigenvalue) up to a maximum length of
2 mm (also adjustable, see section “Parameter Adjustment
and Measurement Tool”). If a pixel found within this sam-
pling range holds an intensity value of calcium, then they
are considered to be thin enough to be discarded and hence
removed from the lumen mask. Figure 6b depicts this princi-
ple where the purple pixels of the 3×3 grid contains calcium
and lumen in both sides and the thin pattern of lumen pixels
are considered as part of the calcium producing the shape
displayed on Fig. 6c, and d.

The edge-walking step was designed to extract the final
edge pixels that will conform the contour making sure is
properly closed and consistent with the shape obtained in
the previous steps. Using the updated edge list from the par-
tial volume filtering a path of neighboring pixels will be
followed until the starting pixel is reached again to generate
a closed contour checking at the same time that none of them
is visited more than once. During this step, a micro-dilation
is performed using the patterns shown in Fig. 7a. These were
carefully selected to identify all possible pixel combinations
that will lead to a path with no end; in other words, pix-
els that are part of additional leakage areas. Thus, removing
the central pixel of the 3 × 3 grid centered on any of the 20
patterns ensures that the algorithm does not visit pixels that
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Fig. 6 Second pass of the
algorithm applied to the
synthetic characterization
obtained in Fig. 4. a Image
obtained after Stage I used as
input for Stage II. b Partial
volume analysis: violet pixels
represent edge pixels located
between calcium (gray) and
lumen (cyan) pixels. If calcium
pixels are found when sampling
to the inner side of the violet
pixels, then the outer side is
considered to be part of the
calcium producing the image
seen in (c). d Overlay of the
final lumen mask obtained over
the original image

will not really contribute on the overall shape of the contour
and/or in the computation of lumen measurements.

Figure 7b shows an example of the micro-dilation pro-
cess where the grid moves recursively along the edge and

identifies patterns 17 and 16 from Fig. 7a; the pixels are
consequently removed and the new resulting area can be
seen in the highlighted grid of Fig. 7c. After the micro-
dilation is applied, and for cases when a previously visited

a

b c

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Fig. 7 Micro-dilation and Edge-walking processes. a Pixel patterns
for the edge-walking step. The central pixel of the 3 × 3 grid will be
removed from the edge list whenever a pattern is found. The yellow
line on pattern 1 also shows that the central pixel would cause the bot-
tom center pixel to be visited twice during the traversal if not filtered
out. b The highlighted 3×3 grid moves through the edge list and iden-
tifies three patterns (red pixels) from the list shown in (a) (from left

to right: pattern 17, pattern 16, and again pattern 16). The resulting
area is shown in (c). c Highlighted 3×3 grid after micro-dilation. This
image also shows that if a pixel is visited twice (red pixel) after the
filtering, two new segmentation components will be generated (green
and yellow areas) during the edge-walking and the biggest one chosen
as the definite lumen area (yellow area)
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pixel is hit (different from the starting pixel), then more than

one contour will be generated and the biggest closed con-

tour will be chosen as the final outcome of the algorithm

(see Fig. 7c). As previously mentioned on section“ Stage

I—Boundary Estimation”, if the contour is still not adequate

for the users, they can simply outline the contour themselves

(see Fig. 10).

Algorithm

Algorithm 1 shows in pseudo-formal notation a summary of

the steps previously described to extract the contour from a

stack of images. A more detailed version can also be seen in

Algorithm 2 where lines from 5 to 15 correspond to Stage I

and lines 16 to 31 correspond to Stage II.

It is worth mentioning that the new center of the ellipse

obtained at the end of Stage I fit may not necessarily be the

same (or even close) to the original centerline point used as

input; however, this new center could be useful to produce

curved planar reformation images (CPR) [12] where the

center of the outer walls of the tubular structure is required

instead of the lumen center. Also worth to note is that line

13 checks the maximum number of iterations (max value)

is not hit before moving on to Stage II as explained at the

end of section “Stage I—Boundary Estimation”. Figure 8

shows the algorithm applied to a single image from the

stack.

Algorithm 1 General outline of the contour extraction
algorithm

1: for all centerlinePoints do
2: // Stage I
3: LoadPreviousEstimation();
4: FilterOuterLeakages();
5: repeat
6: ApplyPCA();
7: Estimate Error();
8: until errorMinimized
9: // Stage II

10: StoreCurrentEstimation();
11: Filter Parcial Volume Effect();
12: while badPatternAlongPath do
13: Micro-dilation();
14: EdgeWalking();

Parameter Adjustment and Measurement Tool

The algorithm was integrated as part of a visualization
and measurement tool implemented in DirectX® and C++
(Visual Studio 2010®, 64-bit compiler). This tool allows
for the adjustment of the most relevant parameters of the
algorithm, manual delineation of contours across a vessel
centerline, estimation of the stenosis ratio (as previously
shown in Eq. 1), and contour correction.

The area, maximum, and minimum diameters are auto-
matically computed using Algorithm 1 on a chosen section
of the vessel (points A and B in Fig. 9a). The overall maxi-
mum and minimum diameters are also automatically located
and displayed over our own implementation of CPR images
along with the stenosis computation for the diameter and the
area. Points A and B can be manually adjusted by the user
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Fig. 8 Algorithm applied to
single image from the stack. a
Original image. b Overlay with
thresholds for lumen in green
and yellow for calcium. c Initial
edge mask used for the brushing.
d Pink circle represents the
brushing process applied on a
small leakage at the top left that
will be filtered out (red area). e
Ellipse fit to the new edge mask
obtained from the previous step
(no leakages); no error
correction was required in this
case. f The partial area obtained
is reanalyzed for partial volume
effects, this time including both
thresholds ranges for lumen
(area 1) and calcium (area 2). g
Violet pixels were marked as part
of the calcium as they fall below
the maximum tolerance defined
in the partial volume effect step.
(h) Final lumen mask obtained. i
Overlay with final contour
extracted after the micro-dilation
and edge-walking process

a b c

d e f

g h i

1

2

and the ratio is automatically recomputed and displayed in
real time.

To help alleviate the inherent variability between studies
and/or readings, a simple interface parameter configuration
tool was included (see Fig. 9b). The basic guidelines to
adjust the parameters of the algorithm are the following:

� Fit group: altering the values of the fit will help to
improve segmentation in cases where the outer wall
present a high level of distortion from an ellipse (e.g.,
noisy data).

� Dimensions group: increasing or decreasing the max-
imum patch size defines the segmentation action ratio
of all steps of the algorithm. Decreasing the stamp size
will make the region filling to go further on potential
leakage areas or around calcium areas; increasing the
stamp size will filter out small areas stronger. Reduc-
ing the max partial volume effect will have the effect
of marking a more aggressive set of pixels towards the

lumen (see section “Hypothesis Tests”); increasing it
will also filter out more portions of potential lumen.

� Threshold group: increasing the minimum lumen
threshold will have the effect of decreasing the overall
lumen area where the algorithm will operate (and vice
versa). The minimum calcium threshold defines simul-
taneously the maximum lumen threshold and hence
can be used to define the borderline between these two
regions.

Three sets of default values or presets for the algorithm
were also included. Figure 9b shows the values used for the
tests made in this work wrapped under the one called “Pre-
set# 1.” Two extra presets where provided to roughly adapt
the algorithm to vessels of smaller size; however, more pre-
sets can be included to group vessels not only by size but
also by level of fatty deposits, age, or gender among others
[18].

Finally, for cases when the segmentation result is ulti-
mately not appropriate for the user, a contour correction
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Fig. 9 Parameter adjustment
and measurement tool. a Curved
planar reformation of a tracked
section of 5.18 mm on stack S03
with overlay of stenosis
measurement: point A is the
reference or healthy point and
point B is the obstructed or
stenosed point. Points A and B

are automatically highlighted for
a chosen section of the vessel or
can also be marked interactively.
The stenosis ratio using both the
diameters and the area is shown
in the bottom as well the length
of the chosen vessel section and
a user selected label b User
interface element allows for
adjustment of lumen extraction
parameters and tissue thresholds

tool was incorporated to manually correct any section of the
contour found over a particular slice (see Fig. 10).

Datasets

To validate different aspects of the algorithm, a total of 30
anonymized CT angiography runoff scans were employed
(Toshiba Aquilion™) with 120 kVp, 250 mA, 5–15 ms scan
time, 1.0 mm slice thickness, 512 × 512 rows × columns,
0.781 × 0.781 pixel spacing, field-of-view of 400 mm, and
16 bits samples per pixel. The average number of slices per
stack was 1,440. All the studies contained stenosed sections
ranging from subtle to obvious from the base of the aorta
throughout the iliacs and its corresponding minor branches.

The studies were roughly grouped according to its visible
level of cavity distortion from low to high (low: S01 to S10,
medium: S11 to S20, and high: S21 to S30). Figure 11 shows
a representative case for each group.

A radiologist with experience on abdominal aortic aneu-
rysm repairs assisted in selecting vessel sections of 15 cm of
length on each study. These sections contained 160 planes
or slices to analyze and 4,800 in total (160 × 30 studies).
For each section, he manually delineated both the outer wall
and the lumen across each of the planes using the stan-
dard electronic measurement tools (i.e., caliper, ruler, and
polyline) provided by the built-in software tool provided by
the scanner manufacturer. The outer wall maximum diam-
eters ranged between 2 and 40 mm which offered a wide

Fig. 10 Contour correction. a A
previous ellipse is taken as the
contour of a failed fit due to full
calcium obstruction. b A user
can modify the ellipse by simply
dragging over the line contour
with the mouse to obtain the
desired contour shown in (c)
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Fig. 11 Volume rendering of
image sets S03 (red), S15
(green), and S28 (blue). Each
colored section corresponds to
the section of the vessel chosen
to run the algorithm. Notice that
all samples taken have a certain
degree of cavity distortion along
the path

range of measurements to test. For each vessel segment
defined above, our lumen detection algorithm was tested
for performance, stability, and accuracy as detailed in the
section “Results”.

Results

Performance Tests

For this test, each of the 30 segments of vessel was evaluated
using two types of commodity hardware: Type I was a 2.10-
GHz dual-core CPU with 4 GB of RAM and Type II was
a 2.40-GHz quad-core CPU with 4 GB RAM under 64-bit
Windows operating systems. Execution times are shown in
Table 2 for both platforms.

These times approximate slightly less than 2 ms/cm
along the centerline in the Type I hardware and slightly more

Table 2 Execution times in milliseconds for the 4,800 contours
evaluated

Hardware type Min Max Avg Std

Type I 3 150 24 7.67

Type II 2 65 18 4.89

than 1 ms/cm along the centerline in the Type II hardware
which makes it more than adequate for real-time changes in
tissue threshold and/or in the parameters of the algorithm.

Table 3 shows the execution times for referential cases
S03, S28, and S28. Stack S15 is a typical example of a com-
plicated case due to the area being swollen and the sheer
nature of the calcifications present (as seen in Fig. 11) hence
showing the slowest performance; however, an execution
time of 34 ms is still more than adequate to be used on inter-
active applications. Cases like S28 are similar to S15; only
the vascular structure was thinner; cases like S03 showed the
fastest performance even though they had a high presence
of calcium artifacts since they are also thinner.

Hypothesis Tests

For this part of the evaluation, our tracking algorithm was
first executed along the image slices that were included on
the 15-cm segments previously defined by the radiologist in
order to extract a centerline. Following, each of these points
were automatically fetched to the lumen detection algorithm
(see Algorithm 1).

Using the radiologists annotations as the gold standard,
image intersections were computed between the lumen
areas automatically extracted by our algorithm and the
ones manually annotated. Quantitative indicators such as
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Table 3 Execution times in
milliseconds for stacks
S03, S15, and S28

Studyid Type I Type II

Min Max Avg Std Min Max Avg Std

S03 2 39 4 0.53 1 11 3 0.19

S15 3 121 40 20.10 1 104 34 9.85

S28 5 73 22 11.24 3 59 20 5.33

true positives rate (TPR or sensitivity), false positive rate
(FPR), and positive predictive value (PPV) were computed
as shown in Fig. 12.

Table 4 shows the average and standard deviation for the
sensitivity, FPR, and PPV (Global column); studies S03, S15,
and S28 are also included. Figure 12 shows that the blue
areas marked by the specialist approximated an ellipsoid
which does not necessarily include all the lumen areas or
may also contain certain bits of calcium. Despite this fact,
the high level of sensitivity seen in the global column of
Table 4 is a natural consequence of the fact that most of the
pixel contours manually annotated were contained within
the area of the ones produced by the automatic method; this
means that only a small proportion of blue areas were left
out in the intersection image.

Figure 13a shows the relationship between sensitivity
and PPV, with the PPV showing a high dispersion. How-
ever, Fig. 13b showed a much higher variability of the
FPR against sensitivity. Further analysis of these estimators
against the average diameter per study (Fig. 13c, d and e)
confirmed the highest rate of variability around the 5-mm
mark. This is especially noticeable in slices similar to the
one depicted in Fig. 14a where the algorithm extracted a
contour more similar to the wall than the lumen (more false
positives and almost no true negatives) yielding a high FPR.

Table 4 Sensitivity, false positive rate, and positive predictive values
for all image sets compared to the representative cases S03, S15, and
S28

Global S03 S15 S28

Sensitivity

Avg 0.9809 0.9643 0.9864 0.9981

Std 0.0085 0.0065 0.0052 0.0064

FPR

Avg 0.2483 0.9510 0.2100 0.1520

Std 0.2541 0.2929 0.0523 0.0617

PPV

Avg 0.9170 0.8847 0.8926 0.9270

Std 0.0362 0.0346 0.0260 0.0188

To improve segmentation results for these cases, the algo-
rithm was re-executed changing the default values of two
parameters as shown in Fig. 13b: maximum partial vol-
ume width (max partial volume) and lumen threshold. These
parameters are the most relevant to avoid over segmentation
due to high incidence of partial volume effects, especially
within small areas. Figure 13e shows the effects of increas-
ing the minimum lumen threshold value to 200 HU (without
altering the max partial volume) and Fig. 13f, g show the
effects of reducing the max partial volume size to 1.5 and
1 mm respectively using the original threshold values for
the lumen. Figure 13g showed the best agreement according
to the radiologist and Fig. 13h depicts the new intersection
image where the gray areas represent a much higher num-
ber of true negatives and the red areas a smaller number of
FPs. This is also reflected in Fig. 13i where all FPR values
below the 12-mm mark were reduced and also yielded less
dispersion. Table 5 summarizes these results numerically.

Figure 13f, j showed a natural improvement for the PPV
values due to the reduction of false positives. It is also worth
mentioning here is that the rest of the estimators did not
show significant changes.

Reproducibility Tests

The last part of the evaluation was designed to ensure the
stability of the algorithm. For this purpose, a synthetic
image stack of 512 × 512 × 150 pixels with a pixel size
of 1 mm3 was used. The object represented is a cylinder
of 15 cm of length with a radius of 18 mm as depicted in
Fig. 15 where eight different centerline axes described by
the yellow spots were taken.

The algorithm was run for each of the eight axial axes
defined by the yellow points across the same cut planes and
the diameters obtained were compared against the theoreti-
cal value. Also a visual inspection of the diameters produced
was done to ensure that the contours were generated in the
appropriate location. The diameters obtained for all cases
were also 18 mm showing no variations among the eight dif-
ferent runs. The average execution time for the 18 contours
in total is shown on Table 6.
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Fig. 12 Image intersections
computed for hypothesis testing.
Areas for stack S03 correspond
to column a, S15 to column b,
and S28 to column c. Row 1
represents the contours obtained
by the algorithm, row 3 the
contours manually delineated by
the specialist, and row 2 the
intersection between both. As
indicated by the legend, TPR,
FPR, and PPV values were
computed assuming red
represents the false positives
(FP), blue the false negatives
(FN), magenta the true positives
(TP), and gray the true negatives
(TN)

Discussion and Conclusions

We presented and evaluated a novel and fully automated
algorithm for the extraction of cavity features on images of
human vessels. Two phases were designed and efficiently
implemented in order to: (1) avoid major leakages to pix-
els of nearby tissue and (2) obtain a precise and consistent
contour even in the presence of the typical image artifacts
generated by calcium.

Hypothesis tests were performed between the contours
generated by the algorithm and the ones manually delin-
eated by a specialist (golden standard) obtaining a sensitiv-
ity of 98.39 %, false positive rate of 8.99 %, and PPV of
93.67 % after doing minor adjustments on the parameters of
the algorithm. Sensitivity showed that the areas marked by
the specialist that were not identified by the algorithm fell
under less than 2 % of the cases and showed small variations

among the test data overall. FPR and PPV showed a higher
rate of variability due to the specific effect of partial volume
on smaller diameters. The algorithm showed no variations
in diameter computations against well-established dimen-
sions of a synthetic image set when selecting eight different
centerline axes, proving its stability.

Execution time did not exceed 2 ms/cm of centerline
length for the worst case which makes the algorithm more
than suitable for use on interactive applications. This was
demonstrated as part of a parameter adjustment and mea-
surement tool where minimum and maximum diameters are
automatically marked over a CPR rendering of the section
of the vessel. The length of the section and the stenosis ratio
are also automatically computed. Both the reference and the
stenosis marks can be manually adjusted along the selected
vessel section and the ratio is automatically recomputed on
the fly. These visual tools integrated with the parameter
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Fig. 13 Sensitivity (TPR), FPR, and PPV values using default and modified parameters for the algorithm. Left column (a, b, c, d, e): hypothesis
estimators computed using default algorithm values; Right column (f, g, h, i, j): hypothesis estimators computed after setting max partial volume
to 1 mm
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Fig. 14 Effects of partial
volume for small diameters: a
Original image slice. b Initial
algorithm estimation. c Manual
annotation. d Intersection of (b)
and (c). e Estimation after
increasing the minimum lumen
value. f and g Estimation after
reducing the maximum partial
volume size. h Intersection
between (c) and (g) shows the
best agreement

options allowed for quick an effective changes among the
different types of acquisitions studied.

Our algorithm presents a unique combination of some
of the principles of classic techniques while trying to avoid
its main drawbacks. For example, methods that employ
active contours rely on the definition of a constraint func-
tion which is normally difficult to establish and may lead
to instabilities of convergence and tend to be very sensi-
tive to initialization [1, 3, 20]. Region filling methods on
the other hand are less sensitive to initialization but very
few are adapted to geometrical constraints efficiently [22].

Our region filling approach acts as a brush that repulses

shape distortions while maintaining elliptical edges and at

the same time is not susceptible to initialization issues.

Additionally, since there are no convergence side effects

adjusting any of the parameters of the algorithm does not

significantly affect the speed of any recomputation.

Methods that rely on the application of multi-scale fil-

ters or the use of edge-based filters are applied globally and

can be time consuming. We developed our own local filter

which is applied only over potential leakage areas using an
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Table 5 Sensitivity, FPR, and PPV values after adjusting algorithm
parameters

Global S03 S15 S28

Sensitivityadjusted

Avg 0.9839 0.9806 0.9864 0.9984

Std 0.0054 0.0025 0.0033 0.0064

FPRadjusted

Avg 0.0899 0.0239 0.2100 0.1521

Std 0.0565 0.0094 0.0523 0.1372

PPVadjusted

Avg 0.9367 0.9206 0.8926 0.9270

Std 0.0202 0.0157 0.0257 0.0188

Table 6 Execution times in milliseconds for the synthetic image set

Hardware type Avg Max Std

Type I 4 0.10 0.000012

Type II 3 0.09 0.000011

effective pattern recognition approach that avoids the usual
time consuming effects of a large scale filter [15].

Most methods also require the initial point to be inside
the vessel; in our case, we require the point to be either
inside or in a neighborhood which means that our final seg-
mentation can be used to re-center a failed tracked centerline
point with respect to the lumen automatically.

For the particular set of studies tested, we demonstrated
that by doing minor adjustments on the parameters of the

Fig. 15 Synthetic image set
used for stability tests. Left side,
scheme of the theoretical
measures (length, outer, and
inner ellipse). Right side,
Multi-planar reconstruction
rendering of the cylinder from
sagittal, coronal, and axial
angles. The zoomed axial cut
shows the eight yellow points
traversed by the parallel
centerlines used for the test
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algorithm, we were able to extract the lumen properly cover-
ing a wide extent of diameters. However, for other types of
studies, a few runs of the algorithm may be required in order
to establish the optimal parameters. It was also shown with
the default set of parameters and presets defined that the
algorithm required some fine tuning with vessels between
2 and 6 mm. More tests with these type of vessels will be
done as the ellipse fit may be even skipped directly to Stage
II. Also tests with noisy images will be done to establish
performance impact on the fitting stage.

Currently, the algorithm takes a complete set of cen-
terline points as input, this was designed specifically to
focus on extracting a precise lumen contour regardless of
the centerline tracking implementation. An advantage of
this approach is that lumen extraction parameters can be
fine tuned without recomputing the centerline. However,
overall performance of the segmentation process can dras-
tically drop from a poor tracking implementation. Bringing
together a closer integration between these two task could
help to alleviate this situation.

Other tests that might be incorporated to further establish
the precision of our lumen estimation include: a comparison
between the stenosis ratios included in the parameter adjust-
ment and measurement tool versus a manual estimation of
this ratio by a specialist, the effects of tortuosity and the
addition of more observers. The algorithm can also benefit
from an automatic estimation of optimal default threshold
values for the threshold group shown in Fig. 9.

Although the edge list obtained on Stage I was only used
as the input for the specific set of steps performed on Stage
II, the micro-dilation and edge-walking concepts could also
be directly applied to the boundary mask in order to extract
and display an additional contour which approximates the
outer wall. Following this idea, a modified version of the
algorithm could also be implemented to target a more pre-
cise outer wall contour and integrate a more broad set of
tools as done in [28].

Also worth noting is that although the algorithm was
tested with specific image stacks that offered a steady range
of thresholds for segmentation, it can be easily adapted
to vessels of other areas of the anatomy as well as other
types of acquisitions protocols and modalities also popular
in vascular diagnosis such as magnetic resonance angiogra-
phy (MRA). This concept was demonstrated by providing
three groups of values called presets which can be expanded
to include vessel types using more thorough classifications
such as the one shown in [18] and could also be presented to
the user prior analyzing a vessel or even during the loading
of the image set.
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