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Abstract Stereology is a volume estimation method, typical-
ly applied to diagnostic imaging examinations in population
studies where planimetry is too time-consuming (Chapman
et al. Kidney Int 64:1035–1045, 2003), to obtain quantitative
measurements (Nyengaard J Am Soc Nephrol 10:1100–1123,
1999, Michel and Cruz-Orive J Microsc 150:117–136, 1988)
of certain structures or organs. However, true segmentation is
required in order to perform advanced analysis of the tissues.
This paper describes a novel method for segmentation of
region(s) of interest using stereology data as prior information.
The result is an efficient segmentation method for structures
that cannot be easily segmented using other methods.
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Introduction

Stereology is commonly used in medical imaging to estimate
volumetric information about organs or other three-
dimensional objects from a series of two-dimensional sections
[2–4]. Stereology is relatively quick to acquire compared to
planimetry; a typical image volume can be analyzed in 10–
20 min instead of 45–90 min for planimetry [5]. Stereology
yields unbiased, robust results [2, 3, 6, 7]. The main limitation
of stereology is that it only estimates information, like volume
or surface area, from labeled objects [2]. Stereology does not
segment these objects. Thus, traditional stereology cannot be
used for advanced image analysis.

In this report, we used data from imaging studies of patients
with autosomal dominant polycystic kidney disease
(ADPKD). ADPKD is a genetic disorder with prevalence of
approximately 1 in 1,000 representing a major cause of renal
failure [8, 9]. Clinical trials for ADPKD therapies began after
the NIH-sponsored Consortium for Radiologic Imaging Stud-
ies of Polycystic Kidney Disease (CRISP) showed total kid-
ney volume (TKV) correlates with disease progression, de-
tects change in individuals with normal lab values, and can do
so after as little as 12 months [10]. The current standard for
TKV measurements in ADPKD studies and clinical trials is
stereology [11]. The labeled stereology data consist of an
undersampled grid of points overlaid on each image in an
exam series, labeled by a trained user. The Cavalieri principle
[7, 12] allows calculation of the volume of labeled objects
from the stereology grid.

The purpose of this study is to evaluate the possibility of
obtaining fully segmented images from undersampled stere-
ology grid data. The method we developed aims to utilize
labeled stereology grids, routinely obtained in ADPKD imag-
ing studies like CRISP [11] and used to obtain the primary
volume outcome metric in clinical trials [13–15], to segment
volumes of interest. We hypothesize these stereology data will
provide a rich source of a priori information to supervise and
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constrain soft tissue segmentations and will test this using mag-
netic resonance imaging (MRI) series from polycystic kidneys.

Methods

MRI Data

Institutional Review Board approval was obtained for this
study. Twenty (20) MRI exams from patients with ADPKD
prior to renal failure were studied. The MR imaging series
used consisted of coronal T2-weighted single-shot fast spin
echo (SSFSE) fat-suppressed breath hold images, with matrix
size 256×256×Z with Z sufficient to contain the enlarged
polycystic kidneys in the field of view.

Planimetry

Manual segmentations of the right and left kidneys via
planimetry were obtained for each series from two separate
experts, to examine interobserver variability. The planimetry
experts were instructed to trace kidney parenchyma, including
cysts, but to exclude the renal pelvis and other hilar vascular
structures. One expert traced the set a second time, after a delay
of several months to eliminate potential memory, in order to
evaluate intraobserver variability. Thus, for each imaging series,
three sets of planimetry data were available. These three data
sets were combined using a simple voting scheme into a con-
sensus segmentation for each series. All planimetry data was
collected using the Analyze© 11 software package [16, 17].

Stereology Volume Estimates

Expert stereology data was acquired, independently of the
planimetry tracings, for each image in each MRI series. In-
structions for acquiring this experimental stereology data were
the same as for planimetry, and the left and right kidneys were
labeled. Comparing the expert stereology data to expert
planimetry data revealed small mismatches, averaging ap-
proximately 5 % of stereology grid points, due to partial
volume effects or reconstruction artifacts. Thus, the expert
stereology data were only used as independent volume esti-
mates to define a threshold in our algorithm. Experimental
stereology data was acquired and volume estimates obtained
using the Analyze© 11 software package [16, 17].

Simulated Stereology Data

While one would hope that the stereology points are 100 %
consistent with planimetry tracings, this was not generally true.
We observed cases where the stereology sample is near the edge
and might be “in” in the gold standard planimetry set but “out”
in the stereology set or vice versa. Such inconsistencies are

misleading to the algorithm. Therefore, we created simulated
stereology data that would be correct with respect to the
planimetry data as follows. Simulated stereology data was
generated from the planimetry consensus as the intersection of
an unlabeled stereology grid with the consensus planimetry left
or right kidney regions. The evaluation of our algorithm used
this simulated stereology data to approximate the consensus
planimetry segmentation as closely as possible.

Semiautomated Algorithm

The purpose of our algorithm is to segment volumes of
interest given stereology data. We note that we assume poly-
cystic kidneys represent solid, if irregular, volumes. The input
to our algorithm is the stereology data and the image data; no
other human input is passed.

Our algorithm begins by preprocessing the stereology grid
with mathematical morphology. Two sequential mathematical
morphology operations are performed: dilation and erosion,
also known together as morphological closing [18]. A 2D
circular structuring element was chosen for these operations,
because stereology data is available for every slice and the
voxel spacing is larger in the “Z” dimension. The radius of the
disk was the minimum necessary to fill between diagonally
adjacent stereology grid points in homogeneous regions. The
morphological preprocessing reduces the problem’s complex-
ity to a band containing the kidney border, or a shell in three-
dimensional space (see Fig. 1).

This band region is passed with the image volume to a
minimal spanning forest watershed algorithm for
semiautomated segmentation [19]. After this step, rough
edges may remain in regions with low intensity contrast due
to image noise (Fig. 1).

The final step is to execute a postprocessing cleanup on the
segmented data using fuzzy logic. The cleanup stepwas applied
separately to each labeled object, in this case the right and left
kidneys. The cleanup step fuzzified (converted a binary input
into a floating point output with degrees of truth as gray levels)
each segmented object by applying a fuzzy membership func-
tion to every labeled point in image space and summing the
result. In this work, the fuzzy membership function chosen was
a spherical Gaussian with sigma half the in-plane stereology
grid spacing. The fuzzy array is then defuzzified (returned to
binary form from floating point gray levels) using a threshold
chosen to minimize aggregate volume error, as measured by the
independent expert stereology volume estimates. The
defuzzified output is the final result of our algorithm (Fig. 1).

Evaluation Methods

The segmentation results from our algorithm were compared
to the consensus planimetry tracings by the Dice coefficient
and the Jaccard coefficient, which are set similarity
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measurements [20, 21]. Previous semiautomated ADPKD
segmentation efforts have focused on volume error alone
[22]. While it is important to minimize this quantity to elim-
inate systematic error, volume is insufficient to evaluate the
accuracy of a segmented set. Dice and Jaccard coefficients
provide a proper comparison to evaluate our calculated
segmentation.

In addition, we evaluated Dice and Jaccard coefficients
comparing intraobserver and interobserver variability. These com-
parisons also had N=20. Metrics used were volume error, Dice
coefficient, Jaccard coefficient, sensitivity, and specificity.

Results

Comparing our computed segmentations with the consensus
planimetry tracings, we observed a volume error of −0.27±

1.9 %, which was not significantly different from 0 % by two-
tailed t test (p=0.54). For this comparison, we also obtained
Dice coefficients of 0.969±0.007 ranging from 0.954 to 0.980
and Jaccard coefficients of 0.940±0.014 ranging from 0.912
to 0.961 (perfect match=1.0 for both coefficients). The sensi-
tivity was 97.0±0.9 % ranging from 95.1 to 98.5 %. The
specificity was 96.8±0.8 % ranging from 95.0 to 98.2 %.
All reported uncertainties are standard deviations.

We also calculated these metrics from two intermediate
steps in the algorithm: morphological preprocessing and raw
minimal forest watershed. These data quantify the relative
contributions of each step to the final result (see Fig. 2).

Finally, we evaluated the difference between our segmen-
tations and the consensus planimetry data. The salient com-
parison was against the expected intraobserver and interob-
server variability from human experts. The intraobserver var-
iability was found by comparing planimetry data from two

Fig. 1 Representative slices of coronal T2-weighted SSFSE fat-suppressed
MRI data from four different individuals (rows). Columns show original
image (1), simulated stereology data (2), morphological preprocessing (3),

raw segmentation (4), and final cleanup (5). Note that magnetic field
heterogeneity in row A did not affect the result, and left kidney parenchyma
was correctly segmented from adjacent spleen in rows B and D
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different experts, while the interobserver variability was ob-
tained from comparing two sets of planimetry data from the
same individual after a delay. For all comparisons, we com-
puted the volume error, Dice coefficient, sensitivity, and spec-
ificity. These comparisons are shown in Fig. 3. For these
comparisons, Jaccard coefficient tracked with the Dice coef-
ficient and was not included in Fig. 3 for compactness. Our
segmentation was significantly superior to interobserver var-
iability for all metrics (p<0.01) except volume error (p=0.88),
and our segmentation was not significantly different from
intraobserver variability for any metric (p>0.2).

Our algorithm was implemented in Python 2.7.5 [23] using
NumPy 1.6.3 [24], SciPy 0.12 [25], and Scikit-Image 0.8.2.
As currently implemented, it requires less than 7 seconds on
an Intel Xeon E5345 processor to fully segment both kidneys
in an image volume.

Discussion

Semiautomated kidney segmentation efforts using MR data,
particularly in ADPKD, have met with little success [22].
Atlas-based or automated methods fail because polycystic
kidneys vary widely in shape and size, or due to similar

intensity in the adjacent tissues (liver, spleen, gallbladder,
adrenal glands, or collecting system [22]). Magnetic field
heterogeneity also produces variations in signal intensity that
further increase the difficulty of segmentation, even for
semiautomated methods. We know of no prior efforts using
stereology data as a priori information for supervised
segmentation.

Our results are quantitatively very good for all metrics
calculated. As shown in Fig. 3, our segmentation is superior
to planimetry interobserver variation but not significantly
different from planimetry intraobserver variation. However,
large population-based studies employ many people for anal-
ysis, often spread across multiple sites, so the most realistic
comparison is interobserver variability. Our results indicate
that semiautomated segmentation using stereology data in-
creases accuracy over interobserver planimetry variation.
The relatively large volume uncertainty for interobserver var-
iation is likely due to disagreements between observers about
partial volumes and collecting system structures in the hilar
region. In addition, a workflow using stereology and then
semiautomated segmentation can be completed in a fraction
of the time required for planimetry: 10–20 min plus 7 s for
stereology followed by segmentation vs. 45–90 min for
planimetry.

Fig. 2 Comparison of individual algorithm steps for all 20 data sets. The
gray dashed lines represent the mean of the final result. Within each
metric, each stage is a significant improvement (p<0.001) except for

specificity. A decrease in specificity from morphology to raw segmenta-
tion was expected

Fig. 3 Metrics comparing interobserver variability (left, dark gray), our
algorithm (middle, black), and intraobserver variability (right, light gray).
For each metric except volume, the performance of our segmentation is
significantly better than interobserver variability (p<0.01) and not

significantly different from intraobserver variability (p>0.2). Considering
volume, our segmentation was not significantly different from either
intraobserver (p=0.39) or interobserver (p=0.88) variability by paired t
tests
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Limitations and Challenges

Like any algorithm accepting human input, our algorithm is
vulnerable to the “garbage in, garbage out” principle. The
result is highly dependent on the quality of the input baseline
stereology data. Also, even if the user is perfect, the stereology
grid may not sample features finer than the grid spacing. This
is a higher dimensional analog to the Nyquist frequency.
Choosing a denser grid spacing or operating on more regular
objects can minimize this undersampling effect. Figure 4
shows examples of this in our study, where occasionally small
exophytic cysts were not correctly segmented because the
simulated stereology grid missed them.

Fluid in cysts, vessels, and the collecting system appears
bright on T2-weighted images, but fat suppression can result
in minimal intensity contrast between normal kidney paren-
chyma and surrounding perirenal fatty tissue. This is of greater
concern in patients with a lower cyst burden, where large
portions of the kidney-tissue interface consist of similar-
intensity tissue. In these cases, intensity-based supervised
segmentation algorithms typically output rough borders due
to image noise. This is the reason for the fuzzy cleanup
postprocessing step. The cleanup step results in smoothed
edges, so discontinuities in object surfaces will be subtly
smoothed. However, the error introduced is only a few voxels,
the quantitative benefits outweigh them (Fig. 2), and smooth
regions of the segmented objects are unchanged. Choosing
objects with minimal discontinuities can mitigate this effect.
Despite their lobulated contours, polycystic kidneys exhibit
fewmathematical discontinuities at borders, so this smoothing
was not a large concern for ADPKD. The subtle effects of this
step are shown in Fig. 1, best observed comparing columns 4
vs. 5 for individuals B–D.

Finally, the current supervised segmentation algorithm step
[19] is primarily intensity-based, so borders must be visible
and defined. Infiltrating tumors or excessive partial volumes,
for example, would be poor choices for both stereology and

this algorithm. Edge contrast need not be global; the T2-
weighted scans of ADPKD kidneys in this study include
borders defined both by parenchyma (relatively dark) and
cysts (bright fluid) from which good results were obtained.

These limitations are acceptable for the problem of
ADPKD segmentation, but may be a challenge for readers
wishing to apply our technique to other problems. We expect
that this approach will return good results for any visually
defined object with local contrast between its border and
surrounding tissue, which the chosen stereology data samples
adequately.

Conclusion

Our algorithm delivered consistently excellent quantitative
results without any need for manual postprocessing or editing.
The only requirement is baseline stereology data, routinely
collected and retained in ADPKD imaging studies and other
clinical trials. We wish to note that the algorithm described
herein is not specific to ADPKD and could be applied to any
imaging study collecting stereology data for a solid object of
interest.

This work presents a novel algorithm to segment solid
objects from stereology data. It opens the door for new,
advanced biomarkers or textural feature analyses, which re-
quire segmentations to define volume(s) of interest, in large
population studies. In many large studies, planimetry is too
time-consuming and expensive to be feasible. Future studies
could acquire stereology data instead of planimetry, use our
algorithm to calculate segmentations, and realize significant
cost savings. Alternatively, this workflow would allow a
fixed-cost study to enroll more patients. We expect this algo-
rithm to enable the extraction of advanced image features in
future studies and also may be retrospectively applied to past
imaging studies, like CRISP, which retained stereology data.
This novel application of stereology data permits time-

Fig. 4 Examples where our algorithm missed small exophytic cysts (arrows). The stereology grid did not sample these small regions
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efficient segmentation of solid objects in large population
studies where planimetry was previously infeasible, enabling
advanced image analyses that may better predict individual
clinical prognosis and therapy requirements in ADPKD or
other disorders.
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