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Abstract Real-time mining of large research trial datasets
enables development of case-based clinical decision support
tools. Several applicable research datasets exist including the
National Lung Screening Trial (NLST), a dataset unparalleled
in size and scope for studying population-based lung cancer
screening. Using these data, a clinical decision support tool
was developed which matches patient demographics and lung
nodule characteristics to a cohort of similar patients. The
NLST dataset was converted into Structured Query Language
(SQL) tables hosted on a web server, and a web-based
JavaScript application was developed which performs real-
time queries. JavaScript is used for both the server-side and
client-side language, allowing for rapid development of a
robust client interface and server-side data layer. Real-time
data mining of user-specified patient cohorts achieved a rapid
return of cohort cancer statistics and lung nodule distribution
information. This system demonstrates the potential of
individualized real-time data mining using large high-
quality clinical trial datasets to drive evidence-based
clinical decision-making.
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Introduction

Cancers of the lung and bronchus have the highest age adjust-
ed mortality of all cancers in the USA. In 2013, there were an
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estimated 159,480 deaths from lung cancer, accounting for
almost a third of all cancer-related mortality [1]. Prognosis is
poor, with a survival rate of only 16 % at 5 years [2]. With a
high relative incidence and poor outcome, lung cancer pre-
sents a large target for cancer prevention, diagnosis, and
treatment efforts.

As with all cancer, early detection and intervention are
crucial to improving long-term outcomes. Indeterminate pul-
monary nodules have long posed a diagnostic dilemma, par-
ticularly in low-risk patients, as a considerable overlap exists
in the imaging appearance of both benign and malignant
etiologies. Recent research efforts such as the National Lung
Screening Trial (NLST) have focused on the efficacy of lung
cancer screening programs in high-risk populations. Enrolling
53,451 asymptomatic patients, the NLST demonstrated a rel-
ative reduction in lung cancer mortality of 20 % in patients
between 55 and 74 years of age with at least 30 pack-years of
smoking history who were screened using low-dose CT [3]. In
response to this evidence, the US Preventative Services Task
Force released new recommendations in favor of annual low-
dose CT screening of high-risk patients based upon age and
smoking history [4]. Despite the recommendation, the com-
bined cost of imaging, diagnostic, and surgical interventions
required to diagnose and treat a single cancer presents a
challenge to the widespread implementation of screening pro-
grams [5]. Intelligent decision support tools go beyond a one-
size-fits-all approach to pulmonary nodules by leveraging
additional patient and nodule characteristics from a large
cohort clinical dataset such as the NLST to tailor the recom-
mendations for each patient. These tools can help mitigate
diagnostic and treatment costs through identifying the most
appropriate screening population, optimizing follow-up imag-
ing and intervention, and increasing adherence to evidence-
based practice.

Evidence-based medicine is exemplified by clinical
decision-making that integrates clinical experience with best
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available scientific literature, clinical trial results, and data
analysis [6]. Real-time clinical decision support tools can
incorporate the latest validated research and resources to indi-
vidualize screening, diagnosis, and treatment of lung cancer
while optimizing utilization of limited healthcare resources
such as CT. Several types of artificial intelligence techniques
have been used in clinical decision support systems including
rule-based reasoning, Bayesian networks, neural networks,
and case-based approaches. Previous research has shown that
clinical decision support tools are accurate in qualitative diag-
nosis and forecasting malignant probability of pulmonary
nodules [7]. After lung cancer diagnosis, Sesen et al. demon-
strated the use of a Bayesian network decision support system
for personalized survival estimates and treatment selection
recommendations in lung cancer [8]. While not directly com-
parable to lung nodule screening, evidence-based clinical
decision support tools have also been effective in decreasing
the overutilization of CT while increasing yield of the studies
performed for CT pulmonary angiography [9].

We developed a clinical decision support application that
allows users to define a clinical case and find matching pul-
monary nodules in NLST patients. The follow-up interval and
outcome information from the matched cohort may then be
used to tailor individual patient management. Real-time
data mining of high-quality clinical research datasets
like the NLST enables a more sophisticated approach
to evaluating individual risk and determining follow-up
for a given pulmonary nodule.

Materials and Methods

The NLST dataset is available through the Cancer Data Ac-
cess System (CDAS) run by the National Cancer Institute/
National Institutes of Health. After registration with CDAS, a
project proposal was submitted, approved, and a data transfer
agreement was signed between the authors and the National
Cancer Institute (NCI). The standard agreement permits ac-
cess to the dataset for use solely in the proposed research plan,
including access to the chest radiograph and low-dose com-
puted tomography (LDCT) images. Personally identifiable
health information was not provided for any patient in accor-
dance with the Health Information Portability and Account-
ability Act (HIPAA), and researchers are restricted from
attempting to identify participants. The NCI retains ownership
of the data, and an acknowledgment is required in each
publication resulting from the use of the data as well as the
submission of a description of each publication on the CDAS
website. The data transfer agreement allows access for 3 years,
beyond which a new agreement or amendment is required.
Four tables from the dataset provide the source material for
the nodule queries. Specifically, a “Participant” data table
contains a unique identifier for each patient along with all

associated patient demographic information. The second ta-
ble, describing the “Spiral CT Abnormalities,” provides infor-
mation on every pulmonary nodule identified on spiral CT for
each screening year. For nodules greater than 4 mm, the data
table includes nodule size (longitudinal diameter and longest
perpendicular diameter) and descriptors of margins, opacity,
and lobe location. Additional information on follow-up rec-
ommendations and nodule changes between screening exam-
inations are available in the “Spiral CT Comparison Read
Abnormalities” and “Spiral CT Screening” tables.

A cloud-based virtual private server was created from an
internet hosting service (DigitalOcean, Inc., NY, USA) con-
taining a 20 GB solid state drive, 512 MB memory, and Ubuntu
12.04 LTS Linux to host the application [10, 11]. The applica-
tion was produced using Node.js, a highly scalable software
platform supporting both server and client-side JavaScript de-
velopment; MySQL, a widely used open-source relational
database management system (RDBMS) loaded with the
NLST data; and NGINX, an open-source HTTP server used
to route client traffic to our application [12—14]. JavaScript was
chosen as the development language for its cross-platform
compatibility, ease of rapid development, and minimum of
overhead. Communication between Node.js and MySQL was
possible through a third-party plug-in library permitting dy-
namic queries of the NLST data tables [15].

The browser client and user interface were developed using
a combination of Bootstrap, AngularJS, and jQuery. Bootstrap
is an open-source collection of HTML and cascading style
sheet (CSS) tools for rapidly producing an organized, visually
clean, and responsive user interface [16]. This ensures that the
application interface is usable and consistent across different
web browsers and user platforms (e.g., PC, Mac, Tablet,
Smartphone). AngularJS provides a framework that automates
binding and synchronization of data elements between the
HTMLS user controls and the client-side JavaScript data
processing [17]. The jQuery library was used to further sim-
plify the client-side script building through the use of several
sub-components: jQuery UI for user interface elements such
as slider bars, jQuery UI Touch Punch for compatibility with
gesture-based devices such as smartphones and tablets, and
jqPlot for graphical output [18]. The software components
were chosen for their wide availability, extensive developer
community support, and free- and open-source (FOSS) licens-
ing models. Testing was performed using the following web
browsers: Chrome 31.0.1650.63 (Google, Inc. CA, USA),
Safari 7.0.1 (Apple, Inc. CA, USA), and Safari for iOS 6
and 7 (Apple, Inc., CA, USA).

The client-side interface is divided into a search builder and
a result display. The search builder consists of range-select
sliders, radio buttons, hyperlinks, and checkboxes allowing a
user to select patient characteristics and nodule descriptors to
reflect a clinical case. Specifically, these input elements in-
clude patient age, gender, smoking history in years or pack-
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years, nodule size, nodule density, nodule margins, and lobe
location (Fig. 1). Once the user input is complete, a search is
initiated by clicking the “Find Nodules™ button beneath the
search builder interface. A client-side data array containing
each of the user selections is then sent asynchronously to the
Representational State Transfer (REST) Application Program-
ming Interface (API) exposed by the server.

The server-side application listens for client search re-
quests. When a search request is received, the user-defined
data array is parsed, and a Structured Query Language (SQL)
command is built specifying which patients and nodules to
select from the data tables. Utilizing the efficiency of RDBMS
data processing techniques, a single SQL query is able to unite
the four data tables and extract the desired information. The
query results are returned in a JavaScript Object Notation
(JSON) format enabling simplified server-side data process-
ing. Each element in the returned data structure represents a
unique nodule and contains a patient identifier, year in which
lung cancer was diagnosed, longest nodule diameter, and
nodule lobe location. Additional server-side data processing
is performed to produce the descriptive statistics including
number of nodules matching the specified criteria, number
of lung cancers associated with the selected nodule cohort,
mean time to lung cancer diagnosis (of those nodules found to

Fig. 1 Using the query builder
interface above, users can select a
patient cohort by specifying a

Patient Characteristics:

be malignant during the study period), distribution of
matching nodules by pulmonary lobe, and Fleischner recom-
mendations by size categories. The processed data is then
returned to the client and displayed on screen in textual,
tabular, and chart formats (Fig. 2).

During development, our initial search query re-
sponse times were on the order of seconds to minutes,
resulting in a sluggish user experience. This was found
to be the result of performing mathematical set opera-
tions on the non-indexed SQL tables. Optimizing SQL
table operations was achieved by defining a unique
identifier in the data tables, known as a primary key
index (in this case the patient identification number).
We also tested a nested SQL query syntax where a
child query is performed first, and the larger parent
query is performed on the result of the child query.

Search return time performance using the described
queries was tested by automating 100 queries against
the cloud server hosting our data. Input parameters were
randomized within the ranges specified by our user
interface to simulate the potential query conditions.
These randomized queries were performed using the
nested and non-nested SQL query syntaxes, with and
without a primary key index.

Nodule Characteristics:

Size: 1 - 30 mm Lobe Location:

range of patient and nodule Age:iss =79
characteristics to search through All| None
the NLST data tables. Once the Inf;lude & Right Upper
variables have been chosen, the O Micronodules o i i
user then clicks the “Find ' & Right Middle
Nodules” button to execute the Male Margins: o Right Lower
query Eaifials All | None o Left Upper
® Al  Spiculated (Stellate) ¥ Lingula
) Smooth o Left Lower
Smoking Years: ) Poorly defined « Other (Crosses
10=68 ) Undetermined Boundaries)
Opacity:
Smoking Pack Years: All | None
15 - 567 ~ Soft tissue
_J Ground glass
Mixed
| Fluid/water
) Fat
Other
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Fig. 2 The result display is

N . Results returned in 0.407 seconds
generated in real time from the
query results determined by the
input parameters selected in the Stats
query builder
Patient/Nodule Matches: 2345
Number of cancers in this subset: 452 (19% of nodules)
Mean follow up till cancer diagnosis: 1 years +/- 1.4 years (Range: 0 to 6 years)
Distribution
Total Nodules (Age: 55 - 75): 2345
845
533
376
306
193
88
RUL RML RLL LuL LIN LLL
Nodules by Lobe
Fleischner Criteria
Category Nodules Fleischner Recs Cancers
<=4mm 230 Followup CT at 12 months; if unchanged, no 9
further follow-up
4-6mm 538 Initial followup CT at 6-12 months then at 36
18-24 mo if no change
6-8mm 412 Initial followup CT at 3-6 months then at 9- 59
12 and 24 mo if no change
>8 mm 1165 Followup CT at around 3, 9, and 24 mo, 348
dynamic contrast-enhanced CT, PET, and/or
biopsy
Results (with 155,287 unique combinations) and four nodule attri-

Through the described interface, a user can interact with data
from 26,721 patients randomized to the spiral CT screening
arm of the NLST. A total of 58,589 pulmonary nodules are
searchable: 33,816 nodules measuring greater than or equal to
4 mm, and 24,773 micronodules measuring less than 4 mm.
The nodules measuring greater than or equal to 4 mm in the
greatest dimension contain information on lobe location, mar-
gins, and opacity. Descriptive data was not recorded for
micronodules; however, information on patient lung cancer
outcome was documented. Confirmed lung cancers were di-
agnosed in 3,240 patients (12 %).

Depending on user selections, the application performs
searches using all or a subset of four participant attributes

butes (with 301 unique combinations) combining for a total
of 7.3x10"® query possibilities. The open-ended nature of the
search input presented a challenge to real-time data mining as
result return times vary depending on the number and range of
criteria entered.

The non-nested syntax without a primary key index pro-
vided the slowest response times with a mean of 2.8 s (St. Dev.
3.7 s,range 0.41-21.2 s). This was slightly improved by using
the nested syntax, which gave a mean response time of 1.6 s
(St Dev. 3.2 s, range 0.4-24.3 s). After adding a primary key
index, response times improved markedly with the non-nested
syntax, with a mean of 0.4 s (St. Dev. 0.1 s, range 0.2—1.3 s).
Mean response times did not change for the nested syntax
after adding the primary key index (1.6 s); however, the
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standard deviation did decrease (3.2 s without index; 2.2 s
with index) (Table 1).

Initially, a single search request generated multiple
SQL queries, one for each type of output. For further
simplification and performance optimization, these in-
dividual queries were refactored into a single query,
thereby removing unnecessary overhead and increasing
overall response times. The application currently uses
a single query with non-nested syntax, as its linear
query logic is simpler to understand and implement
while providing the best performance after the addition
of a primary key index. Using this optimized, non-
nested, indexed query structure, 100 randomized
queries were performed resulting in a mean query time
of 0.3 s (St. Dev. 0.06 s, range 0.3-0.5), an overall
improvement of 89 % in mean query response time
compared to our original non-nested, non-indexed mul-
tiple query implementation.

Discussion

The system described above represents a case-based reasoning
approach to clinical decision support utilizing the NLST data
as the pre-defined set of example cases [19]. The effectiveness
of similar case-based clinical decision support systems has
previously been shown for both vertebral compression
fractures and breast MRI using smaller collections of
comparison cases and example images to assist in prog-
nosis and treatment [20, 21].

To the best of our knowledge, this is the first case-
based decision support system to use a dataset
repurposed from a large clinical research trial to tailor
results to individual patient and disease-specific factors.
The end goal of most clinical research trials is to affect
best practices and patient care, usually through scientific
paper publications. Large, high-quality clinical datasets
have the added potential to inform clinical decision
support systems. Additional sources of large, high-
quality data exist, opening the potential for clinical
applications similar to one the described above. Through

Table 1 Query response times by SQL syntax

Number Nested/non-nested Primary Query time
of queries key index (seconds)
Multiple Non No 2.8+£3.7
Multiple Non-nested No 1.6+£3.2
Multiple Non Yes 0.4+0.1
Multiple Non-nested Yes 1.6+£2.2
Single Non-nested Yes 0.3+£0.06
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this model, research data becomes directly applicable to
practitioners and their patients, making available person-
alized, evidence-based diagnostic recommendations.

There are several limitations to the current application. In
general, data mining is constrained by the type and amount of
data contained in a dataset. The NLST dataset contains 16
tables of data of which the described application only uses a
subset—the 4 tables describing the pulmonary nodules on CT.
Within the four data tables that are searched, we are again
using only a subset of available data. There are 6 nodule
attributes and almost 200 participant attributes (including
personal demographics, work history, medical and family
histories, etc.). Utilizing these additional data points and tables
could permit further individualization of the descriptive
queries; however, the specificity comes at a cost. As
the search parameters become more personalized, the
size of the returned patient cohorts can become smaller,
which may present misleading data.

Additional limitations are inherent to the dataset. The
NLST tracks the development of lung cancer by lobe. When
multiple nodules are present in a lobe that eventually develops
cancer, each one of those nodules are assigned a cancer
prognosis. A cancer diagnosis cannot be directly matched to
a specific nodule of origin. Similarly, individual nodules can-
not easily be followed longitudinally through the years of the
study, particularly when multiple nodules exist in the same
lobe. Each nodule is given an identifier that is only unique for
a given year. The following year, if the nodule persists, it is
again given a unique identifier, but not necessarily the
same identifier as the year prior. As such, the data is
restricted to describing change between single study
years. The source imaging studies are available making
it possible to retrospectively assess all the described
nodules and address these deficiencies.

Future directions for this work include the develop-
ment of an on-the-fly regression model or machine
learning algorithm to overcome the limitations of small-
er cohort samples with highly specific queries. In its
current state, the application simply displays a descrip-
tive analysis of the NLST data. The application of
additional statistical analysis would provide additional
confidence information about the query results. Current-
ly, unused data within the remaining tables contains
information on the staging of diagnosed lung cancers
and the interventions performed. Descriptive and statis-
tical analysis based on this more detailed information
may enhance prognostic and clinical decision support
capabilities. Finally, the server-side application utilizes
a REST API that allows for easy integration into appli-
cations other than our web-based client interface. Opti-
mally, the query search and return could be integrated
into a PACS client or reporting system, avoiding the
need to enter the patient and nodule data manually.
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Conclusion

Clinical decision support systems are poised to play a central
role in evidence-based medical practice and meaningful use of
imaging resources. Our application repurposes data from a
large, high-quality clinical study to form the core of a clinical
decision support engine. Utilization of publicly available data
and open-source technologies lowers the barriers to develop-
ment of such tools and promotes patient care through the re-
use of research data.
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