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Abstract Breast cancer is the second most common type
of cancer in the world. Several computer-aided detection
and diagnosis systems have been used to assist health
experts and to indicate suspect areas that would be difficult
to perceive by the human eye; this approach has aided in
the detection and diagnosis of cancer. The present work
proposes a method for the automatic detection of masses in
digital mammograms by using quality threshold (QT), a cor-
relogram function, and the support vector machine (SVM).
This methodology comprises the following steps: The first
step is to perform preprocessing with a low-pass filter,
which increases the scale of the contrast, and the next step is
to use an enhancement to the wavelet transform with a lin-
ear function. After the preprocessing is segmentation using
QT; then, we perform post-processing, which involves the
selection of the best mass candidates. This step is performed
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by analyzing the shape descriptors through the SVM. For
the stage that involves the extraction of texture features, we
used Haralick descriptors and a correlogram function. In
the classification stage, the SVM was again used for train-
ing, validation, and final test. The results were as follows:
sensitivity 92.31 %, specificity 82.2 %, accuracy 83.53 %,
mean rate of false positives per image 1.12, and area under
the receiver operating characteristic (ROC) curve 0.8033.
Breast cancer is notable for presenting the highest mortality
rate in addition to one of the smallest survival rates after
diagnosis. An early diagnosis means a considerable increase
in the survival chance of the patients. The methodology
proposed herein contributes to the early diagnosis and sur-
vival rate and, thus, proves to be a useful tool for specialists
who attempt to anticipate the detection of masses.

Keywords Medical image · Breast cancer ·
Computer-aided detection · Mass detection · Quality
threshold

Introduction

Breast cancer is the most frequent type of cancer in the
female population [32]. According to Parkin et al. [25], it is
also the type of cancer that kills women most often. Early
diagnosis of this disease is the main form of fighting it.

A mammogram is radiography of the breast, which
allows the early detection of breast cancer because it
is capable of displaying lesions at their initial stages,
having sizes in the range of millimeters. It is obtained
through an appropriate X-ray device, called the mam-
mographer. The precision of the mammogram depends
on several factors, such as the size and location of the
lesion, the density of the breast tissue and the quality

mailto:ari@dee.ufma.br
mailto:joberth1@yahoo.com.br
mailto:antoniooseas@gmail.com
mailto:paiva@deinf.ufma.br
mailto:mgattass@tecgraf.puc-rio.br


324 J Digit Imaging (2015) 28:323–337

of the technical resources used. In addition, the task of
carefully interpreting a large number of cases demands
time and an elevated degree of attention from a specialist
physician.

In recent decades, computational techniques have been
developed with the purpose of automatically detecting
structures that might be associated with lesions in the
mammography exams, with the objective of improving
the rate of early detection of structures that are con-
nected with breast cancer [8]. These schemes are known
as computer-aided detection (CAD) and computer-aided
diagnosis (CADx) systems, and they are already present
in many image-based diagnosing centers, mainly in devel-
oped countries such as the USA and some countries in
Europe [10, 30]. CAD and CADx systems provide a sec-
ond opinion, helping the radiologist in the interpretation of
results that, in many cases, become difficult due to distor-
tions that are suffered by the image during the acquisition
process.

In this study, we propose a new methodology for the
automatic detection of masses in digital mammograms, i.e.,
a CAD system. The procedure consists of preprocessing
for image enhancement with a low-pass filter, an increase
in the contrast scale, and a wavelet transform. Afterward,
the clustering is performed by means of a quality threshold
(QT), after which occurs post-processing, whose purpose
is the reduction of false positives based on shape and tex-
ture measurements. These measurements will be used in the
classification that is performed by a support vector machine
(SVM).

The main contribution of this study is the detection of
regions that are suspicious for having breast cancer based
on digital mammograms using QT for the segmentation of
regions of interest and a correlogram function for the extrac-
tion of texture from the mammograms. The use of both
techniques contributes to CAD methodologies and to stud-
ies in this area. Furthermore, the relevant results achieved
in this work allow the methodology to be used by spe-
cialist physicians in the analysis of mammograms because
this approach does not suffer from the human variabil-
ity that results from individual perceptions and decision
making.

This paper is organized as follows: In the
“Related Works” section, related studies are presented. The
“Materials and Methods” section presents all of the steps
of the automatic segmentation of masses, explaining in
detail the use of techniques such as the QT algorithm and
the extraction of shape and texture features from the mass
candidates, which compose the proposed methodology.
In the “Results and Discussion” section, we analyze all
of the results that were achieved with the application of
the methodology. Finally, in the “Conclusion” section, we
present the final remarks about this study.

Related Works

In the literature, there are acknowledged studies that con-
cern the same problem that is addressed by the methodology
proposed herein, i.e., a methodology that helps specialists in
the detection of masses in digital mammograms

Oliveira Martins et al. [24] present a methodology that
uses Moran’s indexes and Geary’s coefficients as measure-
ments to be extracted from suspect regions of the mam-
mograms, with the objective of discriminating them into
normal and abnormal categories. Both of these techniques
have proven to be very promising. They achieved an accu-
racy of 96.04 % and an area under the receiver operating
characteristic curve (AUC ROC) of 0.946 with the Geary’s
coefficient. With the Moran’s index, they achieved an accu-
racy of 99.39 % and an AUC ROC of 1 in the classification
of tissues in mammograms as either normal or abnormal.
The methodology also achieved an accuracy of 88.31 %
and an AUC ROC of 0.804 with Moran’s index in the
classification of tissues as either benign or malignant.

Oliveira Martins et al. [23] introduced a methodology
that uses a growing neural gas (GNG) to segment the
lesion candidates, and the SVM was pooled with Ripley’s
K-function for the detection of masses. In that methodol-
ogy, they used 997 images from the Digital Database for
Screening Mammography (DDSM), with 436 images used
for testing and 561 used in the evaluation of the process of
detecting the masses. The results were 89.30 % sensitivity,
with 0.93 false positives per image and 0.02 false negatives
per image.

Oliveira Martins et al. [19] also introduced a method-
ology for the detection of masses in digital mammograms
using the K-means algorithm for the segmentation of the
images and a co-occurrence matrix to describe the tex-
tures of the segmented structures. The classification of these
structures is performed by the SVM, which classifies them
into masses and non-masses. This methodology achieved an
85 % accuracy.

Nunes et al. [21] proposed a methodology for the detec-
tion of masses using the K-means algorithm and template
matching for the segmentation of suspect regions. This
research used 650 images from the DDSM database for
tests. The segmentation of regions of interest found 92.77 %
of the masses and also selected 2076 non-masses. After-
ward, geometry and texture features were extracted from
each of these regions, with texture being described through
Simpson’s diversity index to reduce the number of false
positives. Finally, the data were submitted to an SVM for
the classification of suspect regions into mass and non-
mass categories. The results were a mean accuracy of
83.94 %, sensitivity of 83.24 %, specificity of 84.14 %,
0.55 false positives per image, and 0.17 false negatives
per image.
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Bajger et al. [4] presented an automatic method for the
detection of masses in mammograms that used the segmen-
tation of the region of interest by statistical fusion and linear
discriminant analysis. The performance of this methodology
was evaluated with 36 images selected from a proprietary
mammogram database and with 48 images from the DDSM
database. The AUC for the classification of each region was
0.90 for the proprietary images and 0.96 for the DDSM
database.

Liu et al. [18] presented a system for the automatic
detection of masses in mammographic images. This sys-
tem combined the techniques of multiple concentric layers,
narrow range regions with active contours, full binary local
patterns, and SVMs. The resulting method was evaluated
with a set of 231 images that contained 245 masses. From
those images, 125 (containing 133 masses) were used to
train the SVM. The remaining images were used for per-
formance testing. The investigators achieved a rate of 1.36
false positives per image and a sensitivity of 76.8 %.

Abdalla et al. [2] detected masses in digital mammo-
grams by means of second-order statistics. The extraction
of features from the segmented region of interest was per-
formed by means of gray level co-occurrence matrices
(GLCM). The results showed that the GLCM had a sensi-
tivity and specificity of 91.67 and 84.17 %, respectively.

Abdalla et al. [1] propose a methodology for the auto-
matic classification of masses in digital mammograms. This
methodology uses Haralick’s descriptors derived from the
gray-level co-occurrence matrix for the extraction of tex-
ture features. The methodology achieved an accuracy of
95.85 %.

A new approach was presented by Mini [20] for the clas-
sification of digital mammograms into normal and abnormal
classes for the detection of breast cancer. First, the structures
in the mammogram produced by normal glandular tissue of
varying density are eliminated by using a wavelet transform
and a probabilistic neural network for classification. The
results show a sensitivity of 58 % and an accuracy of 60 %
for normal cases and a sensitivity of 91 % and an accuracy
of 94.2 % for abnormal cases.

AbuBaker [3] proposed a method for the detection of
masses through wavelet transform decomposition and SVM.
The Mammographic Image Analysis Society (MIAS) image
database was used. The results generated a rate of 0.05 false
positives per image and an accuracy of 94 %.

Hussain et al. [13] proposed the representation of textural
features of mammograms using the Weber local descriptor
(WLD). The WLD was used to represent the statistical prop-
erties of the masses and to reduce the rate of false positives
and false negatives per image. The WLD builds statistical
data on protuberant micro-patterns together with the gradi-
ent orientation of the present pixel. The SVM was employed
for the classification of suspect regions into mass and

non-mass categories. The accuracy of the proposed system
was 98.8 % using DDSM.

The Gabor filter banks, which allow the manipulation of
several parameters such as frequency, orientation, eccentric-
ity and symmetry, were used by Hussain et al. [14] to extract
the local spatial textures from the properties of the masses
that are present in the mammograms, at different scales
and in different directions. By using this feature-extraction
resource and SVM with cross-validation, an accuracy of
99.5 % was achieved.

de Carvalho et al. [6] presented an application of the QT
algorithm for the segmentation of structures that resemble
a lung nodule. That work showed that the QT was able to
detect up to 95 % of the lung nodules in the exam database
that was used. In addition, the easy setup and use were the
main advantages of the algorithm. On the other hand, it was
shown that the processing time demanded by the QT is too
high.

The studies described above prove that the methodolo-
gies for the computer-based detection of masses in mam-
mograms are prominent. Another important point is the use
of the public image database, DDSM, which deserves atten-
tion due to the number of studies that have used it. It can be
noted as well that the use of SVMs as classifiers presents
excellent performance with regard to the generalization of
the results.

In general, we can enumerate certain problems that
have been found in some of the studies cited above to
exemplify noise that was left in the stage of the mam-
mogram background removal, a large number of mass-
candidate regions after segmentation, and a high rate of
false positives.

Materials and Methods

In this section, we explain the techniques that were used
in this work for the detection of masses in mammographic
images. The methodology comprises the following stages:
image acquisition, preprocessing, segmentation of regions
of interest, and reduction of false positives. This scheme can
be observed in Fig. 1.

Image Acquisition

The images used in this work were obtained from the
DDSM digital image database, which contains 2620 cases
acquired in the Massachusetts General Hospital, Wake
Forest University, and Washington University School of
Medicine in St. Louis [12]. Each case has four images (left
and right breast in craniocaudal and mediolateral view).
The DDSM database contains descriptions of lesions in
the mammograms according to the American College of
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Fig. 1 Stages of the proposed
methodology

Radiology in addition to information about the images
themselves (e.g., the type of film and digitizer used, number
of pixels, and number of bits per pixel).

In this study, we used 599 images from the DDSM, all
of them randomly chosen, among which 517 images present
at least one mass and the remaining 82 are normal; in other
words, they have no mass.

Preprocessing

The preprocessing stage involves image resizing, noise
reduction, and the segmentation of the breasts. Each pair
of images to be used in the methodology has its dimen-
sion reduced by a factor of 4 to reduce the processing time.
We ran tests with the image in its original size (approxi-
mately 5000 × 5000 pixels), with reduction factors of 2, 3,
4, and 5. For the original image, the processing time was
too high. The reductions with factors from 2 to 4 had very
close results. This finding can be explained by the fact that
there are no masses that have very small dimensions in the
DDSM. If there were such masses, the reduction by a fac-
tor of 4 would make the mass less visible in the image. This
problem occurred when the image was reduced using a fac-
tor of 5, which hindered the correct identification of some
of the masses. For these reasons, we chose the reduction by
a factor of 4.

The images underwent a noise reduction process. In this
study, the noise reduction was performed through the appli-
cation of the 5 × 5 median filter to the whole image. We ran
tests in which the kernel of the median filter was size 3 × 3,
but in many images, the noise was not completely removed.
Thus, we tested the filter with size 5×5 and obtained excel-
lent results. The noise was removed in virtually all of the
images. For this reason, we chose this size.

Mammogram images usually present a series of ele-
ments (called artifacts) that lie on the background region and
contain information about the exam (e.g., labels, data about

the film used). These artifacts could interfere in the image
segmentation and, therefore, must be preferably removed.
The segmentation of the breast region is intended to remove
artifacts and reduce the regions scanned by the algorithms,
increasing the speed and precision of the operations that will
be performed on the images. In this study, we used a method
that was proposed in [27].

Selective Contrast Increase

In this stage, we attempted to make the ROIs more per-
ceptible by applying a selective contrast increase. Through
an empirical analysis of the several mammograms used in
this study, we realized that the masses have minimum and
maximum gray-level values that are between 70 and 235.
The pixels in this interval were scaled to gray-level values
in the range of 0 to 255. The other pixels were mapped to
zero. By taking this step, we emphasize the regions that will

Fig. 2 Application of selective contrast increase: a reduced and
improved image and b image with selective contrast increase
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eventually be classified as masses. In Fig. 2, we can see the
increase in the contrast applied to the image processing in
the previous stage.

Enhancement with Wavelet Transform

For the finalization of the preprocessing stage, we applied
an enhancement with the Daubechies 4 wavelet transform
(DWTB4) [31] to make the mass-candidate regions more
evident. After decomposing the image into its coefficient
groups, we applied a linear function (1) to each coefficient
to map them to other coefficients and enhance the image
after the application of the reverse DWTB4. After some
empirical tests, the best value for K in the linear equation
was

√
2. The result of the application of enhancement with

DWTB4 to the image with selective contrast increase can be
seen in Fig. 3.

Wouti,j = K × Wini,j (1)

where i and j are the indexes that indicate the position of
the coefficients in the sub-bands, Wini,j are the wavelet
components of the original image, Wouti,j are the enhanced
DWTB4 coefficients, and K is the parameter responsible for
the adjustment of the method (which is in the dependence
of the decomposition level, in this case, the gain itself). The
value of this parameter decreases to a rate of K0.5 with the
wavelet decomposition level.

Fig. 3 Mammogram enhanced with DWTB4

Segmentation

To perform segmentation of the regions of interest, we
used the QT clustering algorithm [15, 17]. The QT algo-
rithm was first proposed for clustering genes of the human
chromosome. Its operation does not depend on the prede-
termination of the number of clusters, always returning the
global minimum of the solution.

This model results in a more precise clustering because
a suitable number of clusters is allocated for each case. The
computational cost of the model, on the other hand, is signif-
icantly higher than the K-means and C-means models [33].

QT requires only one parameter for its execution, which
is called the quality threshold or diameter threshold. This
parameter is responsible for delimiting the area of each
cluster. We will call this threshold the maximum diameter.

In our implementation, in addition to the maximum diam-
eter of the original algorithm, we will use a minimum
diameter. This minimum diameter has the goal of avoid-
ing the formation of clusters that have too-small diameters
because we found that by means of observations in various
mammograms of the DDSM, diameters that were smaller
did not correspond to masses. In this way, we minimize
the prejudicial effects (increased processing time, poorly
formed shapes, and a small area for computing the texture)
that are caused by structures with diameters of below 15 in
the subsequent steps of the methodology. We defined empir-
ically the values 15 and 100 for the minimum and maximum
diameter, respectively. At the formation of the cluster, to
determine whether a randomly chosen pixel belongs to a
candidate cluster or not, we consider the following crite-
rion: if the value that is computed through Eq. 2, between
the random pixel and the reference pixels of this cluster is
at most the maximum diameter, then the pixel belongs to
a candidate cluster. This process is called the formation of
candidate clusters.

C =
√

(i − i′) + (j − j ′) + (pixel − pixel′) (2)

where i and j are the indexes of a reference pixel of the can-
didate cluster, i′ and j ′ are the indexes of the pixel that was
randomly chosen, and pixel and pixel′ are the gray levels
of the reference pixels of the candidate clusters and of the
randomly chosen pixels, respectively.

In this way, the candidate that possesses the highest num-
ber of points associated with it will be chosen as the true
cluster. Thus, all of the points that belong to this candi-
date will be removed from the main sample, and the process
is repeated until all of the points are located in their ideal
clusters.

In Fig. 4, we have an example of a mammogram that was
segmented using the QT algorithm. This figure illustrates in
five stages the process of the formation of clusters.
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Fig. 4 Process of formation of clusters by the QT: a cluster 1, b clusters 1 and 2, c clusters 1 to 5, d clusters 1 to 18, and e all clusters

Reduction of False Positives

The result of the previous stages yields several clusters that
are not masses; these are considered to be false positives.
This stage of the methodology is intended to reduce, as
much as possible, the number of false positives by using
shape and texture descriptors combined with the SVM [9].

The SVM is a powerful state-of-the-art algorithm that
has a strong theoretical foundation based on the Vapnik-
Chervonenkis theory. The SVM has strong regulariza-
tion properties. Regularization refers to the generalization
of the model to new data. This attribute was the main

reason for choosing this classifier in our work. The accu-
racy of an SVM model is highly dependent on the selection
of kernel parameters such as C and λ for a radial basis
function (RBF). We used the LibSVM software [7] to esti-
mate both of these parameters. The values estimated for C

and λ were, respectively, 512 and 0.00712343 for the first
false-positive reduction by using shape descriptors, and 512
and 0.00832342 for a second false-positive reduction with
texture descriptors.

The segmentation performed by the QT uses spatial val-
ues to delimit the clusters. Thus, these clusters can produce
the following cases:
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1. Cluster with high texture variation (characteristic of a
mass)

2. Cluster with low texture variation (characteristic of a
non-mass)

3. Cluster with round shape (characteristic of a mass)
4. Cluster with irregular shape (characteristic of a non-

mass)
5. Cluster with high texture variation (characteristic of a

mass), but with irregular shape (characteristic of a non-
mass)

6. Cluster with low texture variation (characteristic of a
non-mass), but with a round shape (characteristic of a
mass)

During the tests, we observed that the production of
the cluster of the cases 4 and 5 had very expressive
numbers. This fact jeopardized the performance of the
SVM in the reduction of false positives when the texture
and shape descriptors were combined because the clas-
sifier was unable to determine a pattern for mass and
non-mass categories.

To solve this problem, we adopted the strategy of reduc-
ing the false positives into two stages. In the first stage, we
used the shape descriptors and the SVM, and in the second
stage, we used texture descriptors and the SVM. Thus, we
made a significant improvement in the reduction of false
positives.

Shape Descriptors

After the clustering stage with QT, we observed that some
mass-candidate clusters presented “elongated,” “twisted,”
or “hollow” shapes, as seen in Fig. 5, not matching the
expected shape of a mass, which is closer to “circular” [26].

Fig. 5 Clusters with inappropriate shapes

Such clusters were eliminated after the analysis of the
eccentricity, circularity, compactness [22], and circular
density shape descriptors [29] and were classified by the
SVM algorithm. Thus, several clusters with these charac-
teristics were eliminated, which resulted in a significant
reduction in false positives for the subsequent processing
stages.

Texture Descriptors

The next stage in the methodology is the extraction of fea-
tures, which is intended to cause a deeper reduction in false
positives. For the extraction of texture features, we used
Haralick’s descriptors based on the co-occurrence matrix
and the correlogram function.

Haralick’s Descriptors

Haralick et al. [11] proposed a method for the extrac-
tion of textural features based on the spatial relation that
exists between the gray levels of the image, computing
so-called co-occurrence matrices (GLCM) and, based on
these matrices, determining 14 statistical parameters that
describe texture. Due to its simplicity and efficiency, this
method became very popular in the classification of tex-
tures. According to [5], among the 14 statistics originally
proposed, only 6 have a higher relevance: the second angu-
lar momentum, contrast, correlation, entropy, variance, and
homogeneity. These six features are used here in the present
study.

First, we compute the GLCM for each cluster. In the com-
putation of these matrices, we adopted distance three; in
other words, the reference pixel is related to three neighbor-
ing subsequent pixels in a certain direction. This distance
was adopted because after some empirical tests with it, Har-
alick’s texture measurements that were extracted were those
that best characterized the clusters, which led to better clas-
sification. The four directions that were adopted were 0◦,
45◦, 90◦, and 135◦, with respect to the horizontal plane.
Thus, for each distance/direction combination, there is a
GLCM; thus, we obtained 12 co-occurrence matrices for
each cluster. In turn, for each co-occurrence matrix, we
computed the six descriptors that are cited above, which led
to a total of 72 features per cluster.

Correlogram Function

In addition to Haralick’s descriptors, the correlogram func-
tion (correlogram) was used in the extraction of features
from the clusters. The correlogram is the normalized ver-
sion of the covariance function. The correlation coefficients
range from −1 to 1. The correlation is expected to be higher
for the units that are close to each other (correlation = 1 for
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distance zero), and it tends to zero as the distance between
the units increases [28].

The correlation is defined by

ρ(h) = C(h)

σ−hσ+h

(3)

where σ−h is the standard deviation of the values of the vec-
tor origins, and σ+h is the standard deviation of the values
of the vector targets. These parameters are defined by the
following:

σ−h =
√√√√ 1

N(h)

N(h)∑
i=1

x2
i − m2−h (4)

σ+h =
√√√√ 1

N(h)

N(h)∑
i=1

y2
i − m2+h (5)

C(h) is defined by

C(h) = 1

N(h)

N(h)∑
i=1

xiyi − m−hm+h (6)

where xi e yi are the starting and target pixels, respectively,
h is the distance between the pixel at the origin and the pixel

at the extremity, N(h) is the number of pairs within the dis-
tance h, m−h is the mean of the values of the pixels at the
origin, and m+h is the mean of the target pixels.

Based on the diameter of the clusters found in the seg-
mentation stage, for as many as 100 pixels, we assigned
values of h that ranged from 1 to 85 pixels to this function.
Thus, with this configuration of the function, we started
having texture measurements that were capable of provid-
ing a good specification of the clusters because they result
from the relationship among almost all of the pixels of the
segmented regions.

Results and Discussion

In this section, we present the results that were
achieved with the methodology that was developed. We
analyze the behavior of the stages described in the
“Materials and Methods” section. The results are examined
at two distinct moments: the first moment is the training
and validation of the SVM model and the second moment
concerns the test of the process of the detection of masses.
In this test, new mammograms are used, which are ver-
ified in their measurements of true positive (TP), false

Fig. 6 Results analysis flow
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positive (FP), true negative (TN), false negative (FN), sen-
sitivity (Se), specificity (Sp), accuracy (Ac), false positives
rate per image (FPI), ROC, and free-response ROC curve
(FROC) [16]. We also study five cases of the detection of
masses and make a comparison with the results obtained by
the methods referred to in the “Related Works” section.

To analyze and validate the proposed methodology, we
used 599 mammograms, among which 517 presented at
least one mass and 82 were normal (without masses). From
these 599 mammograms, 499 (458 with masses and 41 nor-
mal) were used for the training and validation of the SVM
model, and the remaining 100 (59 with masses and 41 nor-
mal) were used to examine the process of finding masses in
the mammograms.

An overall scheme with the flow of the analysis of the
results can be seen in Fig. 6.

Training and Validation of the SVM Model

In this stage, we used 499 mammogram images (458 with
masses and 41 normal). In 33 (6 %) images, no masses were
segmented. Thus, from the total of 458 images that con-
tain masses, only 425 will be used for the next stages, i.e.,
training and validation.

For training the SVM, the sample was defined in the pro-
portion of one mass for each two non-masses. This division
comes from the fact that there is a larger number of non-
mass clusters. Thus, from all of the clusters found in the 425
mammograms, we randomly chose 1396 mass clusters and
2792 non-mass clusters, totaling 4188 clusters.

Selection of the Best Mass Candidates Based on Shape
Features

From the 4188 initial clusters, we chose those that best rep-
resent the mass and non-mass classes according to their
shape features, to train and validate the SVM model with
shape descriptors for selecting the best mass candidates.
Thus, we chose 1167 out of the 4188 clusters that best
represent the masses and non-masses. These clusters were
distributed according to Table 1.

With this configuration, the validation of the SVM model
achieved the results that are observed in Table 2. Having
this model generated and validated, from the 4188 clusters,
only 2033 (704 mass clusters and 1329 non-mass ones) were

Table 1 Configuration of the mass and non-mass clusters according to
the shape measurements for training and validation of the SVM model

Stages Mass clusters Non-mass clusters

Train 380 (80 %) 554 (80 %)

Validation 95 (20 %) 138 (20 %)

Table 2 Results of the validation of the SVM model according to the
shape descriptors

TP FP TN FN Se (%) Sp (%) Ac (%)

81 19 116 17 82.65 85.92 84.54

selected as the best mass candidates; then, we proceeded to
the next stage.

hypertargetsec:6

Selection of the Best Mass Candidates Based on Texture
Features

The clusters that resulted from the previous stages have their
texture features extracted to be used in the new training and
validation of the generated SVM models. The new base is
formed from 2033 clusters that result from post-processing,
where 704 are mass clusters and 1329 are non-mass clusters.

The distribution of clusters for training the classifier and
for validation of the SVM model was performed in three
different manners: first, we used 30 % (610 clusters, com-
posed of 211 masses and 399 non-masses) for training the
classifier and 70 % (1423 clusters, composed of 493 masses
and 930 non-masses) for validation of the SVM model;
then, we adopted 50 % (1016 clusters, composed of 352
masses and 664 non-masses) for training the classifier and
50 % (1017 clusters, composed of 352 masses and 665
non-masses) to validate the SVM model; and finally, we
assigned 70 % (1423 clusters, composed of 493 masses and
930 non-masses) for training the classifier and 30 % (610
clusters, 211 masses and 399 non-masses) for validation of
the SVM model.

Each configuration was randomly executed five times,
and then, we obtained the values for sensitivity, speci-
ficity, and accuracy. The highest means serve as a basis
for choosing the best configuration. Next, using the best
configuration, we chose the best model. In our work, the
configuration (70/30) presented the highest mean for the
sensitivity (72.49 %), specificity (85.13 %), and accuracy
(81.08 %). Then, for this configuration, we checked which
of the five classifications presented the highest values for
sensitivity, specificity, and accuracy. As seen in Table 3,
the best model achieved 73.96, 86.81, and 82.76 % for the
sensitivity, specificity, and accuracy, respectively.

Test Model

In this section, we check the overall efficiency of the
proposed methodology. For this step, we used 100 new
mammograms, from which 59 have at least one mass and
the remaining 41 are normal (present no masses).
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Table 3 Results achieved with the configurations for training and
validation of the SVM model with texture measurements (Haralick and
correlogram)

Training/Validation TP FP TN FN Se (%) Sp (%) Ac (%)

342 132 786 163 67.72 85.62 79.27

346 135 800 142 71 85.56 80.53

30/70 339 114 808 162 67.66 87.64 80.6

357 144 791 131 73.16 84.6 80.67

353 152 781 137 72.04 83.71 80

Mean 70.31 85.42 80.21

258 127 556 75 77.78 81 80.12

255 99 559 103 71.23 84.95 80.12

50/50 233 93 582 108 68.33 86.22 80.22

244 86 590 96 71.76 87.28 82.08

248 108 554 106 70.06 83.69 79

Mean 71.83 84.62 80.3

154 58 332 65 70.32 85.13 80.8

167 84 314 44 79.15 78.89 79.14

70/30 155 54 344 56 73.46 86.43 82.26

139 46 351 73 65.57 88.41 80.46

142 55 362 50 73.96 86.81 82.76

Mean 72.49 85.13 81.08

The clustering process through QT segmented the masses
in 54 of the 59 mammograms that contained masses. This
finding means that there was an accuracy of 91.52 % in
the segmentation of the masses. This segmentation also
generated 192 mass clusters and 1214 non-mass clusters.

The results achieved by the proposed method for the
final test using the best SVM model generated in the
training and validation stage (“Selection of the Best Mass
Candidates Based on the Shape Features” section) can be
observed in Table 4.

Case Studies

In this stage, we checked all of the steps of the proposed
methodology in three cases that have different degrees of
complexity. In the first case, the methodology was success-
ful in the detection of the mass. In the second case, the
methodology detected the mass and other regions that are

Table 4 Test results

Masses Non- TP FP TN FN Se Sp Ac FPI FROC

masses (%) (%) (%)

91 601 84 107 494 7 92.31 82.2 83.53 1.12 0.8033

non-masses. Finally, in the third case, a normal mammo-
gram was analyzed, and the mammogram was successful,
not detecting any mass.

First Case

The steps for the detection of masses in mammograms can
be seen in Fig. 7. The mammogram used in this case was
the A 1306 1.LEFT MLO, from the benign volume 02 in
the DDSM database. Figure 7 displays the lesion, which is
marked by the specialist with a red contour. In the first step
of preprocessing, the undesired objects are removed for pro-
cessing. These objects are not part of the breast itself and
include side edges, chest muscle, and labels placed by the
specialist. The result is seen in Fig. 7b.

At the second moment, still in preprocessing, the mam-
mogram undergoes an improvement of the internal struc-
tures by the combined action of a low-pass filter, a selective
contrast increase, and an enhancement with WT. The result
can be seen in Fig. 7c. In the next stage, the mammogram
is segmented (Fig. 7d) through the QT clustering algorithm
using maximum and minimum diameters of 100 and 15
pixels, respectively.

Observing the mammogram resulting from the segmen-
tation with QT, we note that the shape of certain clusters is
not compatible with the shape of the masses because they
are elongated or too distorted. Thus, in the next stage, these
clusters will be eliminated, which causes the selection of
the best mass candidates through the analysis of geometric
features proposed by the SVM model. Figure 7e shows the
eliminated clusters according to their shapes (in white).

In this way, only clusters that are judged as masses in the
previous stage have their texture features extracted by Haral-
ick’s descriptors and by the correlogram function. Using the
SVM model, the clusters that are considered to be masses
are indicated, which ends the detection process. In Fig. 7f,
we see the successful detection with the mass circled inside
the radiologist’s indication.

Second Case

The mammogram used in the analysis was the
B 3387 1.RIGHT CC, from the cancer volume 15, in the
DDSM database, which is represented in Fig. 8a, where the
mass is identified by a specialist with a circle. Again, in the
preprocessing stage, the image background and unwanted
objects are removed (Fig. 8b), and we enhance the internal
structures of the breast through the same techniques used
for the first case. The result can be seen in Fig. 8c. For seg-
mentation, QT was used again, with the same parameters
cited earlier (Fig. 8d). The post-processing with reduction
of mass candidates also occurred through the analysis of
geometric features by the SVM classifier. The result can be



J Digit Imaging (2015) 28:323–337 333

Fig. 7 First case: a
mammogram with lesion marked
by the specialist, b mammogram
after background removal, c
enhanced mammogram, d
mammogram segmented by QT,
e mammogram with removed
clusters painted in white, and f
mammogram with correct
detection of the mass

seen in Fig. 8e, where the clusters that are not considered to
be masses by this stage are shown in white.

The mass clusters of the previous stage have their tex-
ture features extracted by Haralick’s descriptors and the
correlogram function, to be classified by the SVM. The
result of this classification indicates the clusters that most
resemble a mass. In Fig. 8f, we show mass clusters tangled
by a convex lace.

In this case, we note that the methodology could detect
the mass that was indicated by the specialist, but it mis-
takenly determined another structure to be a mass. In this
situation, we observe that the region that was erroneously
detected as a mass passed the stage of reduction of mass
candidates (post-processing) because it has a “round” shape
that is typical of masses. Thus, the failure is not in this
stage. In addition to having an acceptable shape, the struc-
ture has gray levels that are close to those of real masses
detected by the methodology. Thus, the error occurred in the
classification because the SVM model used by the classifier
was unable see that this cluster was not a mass.

Third Case

In the third case, the methodology had good performance
and did not detect any masses, as expected, because we used
an image of a normal breast. The mammogram used for this
case was A 0255 1.RIGHT CC, from normal volume 02, in
the DDSM database, which is seen circled in Fig. 9a, where
a lesion is indicated by a specialist.

Again, by means of the preprocessing, the image passes
through a process of removal of undesired objects (Fig. 9b)
and an enhancement of the structures inside the breast
(Fig. 9c) using the already mentioned techniques. The seg-
mentation is performed by the QT algorithm again (Fig. 9d).
The best mass-candidate clusters were selected by using
shape measurements together with the SVM classifier. The
clusters eliminated in this stage are painted in white in
Fig. 9e.

The clusters that result from the previous stage have their
texture features extracted by Haralick’s descriptors and a
correlogram function. Then, the features are classified by
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Fig. 8 Second case: a
mammogram with lesion marked
by the specialist, b mammogram
with background removed, c
enhanced mammogram, d
mammogram segmented by QT,
e mammogram with removed
clusters painted in white, and f
mammogram with correct
detection of mass and another
one mistakenly detected

the SVM. The result of the detection can be seen in Fig. 9f,
where no mass was detected in the original DDSM image,
as expected for this case.

Results Comparison with Other Related Studies

In Table 5, we make a comparison between the proposed
methodology and the studies listed in the “Related Works”
section to show the quality of this work. We must empha-
size that for a reliable comparison, it would be necessary to
use the same database, the same resolution, and the same
amount of data for training, validation of the SVM, and
testing.

Some of the methodologies cited in Table 5 use sensi-
tivity as a metric for the detection performance, and the
proposed methodology achieved good sensitivity, 92.31 %;
it can be observed that this outcome is the highest sensi-
tivity among the listed studies. This metric is important for
measuring how capable the system is in detecting masses.

Only a few methodologies used specificity as a metric
for validating the performance, which represents an obstacle
in knowing the ability of such methodologies in correctly
detecting non-masses. In the proposed methodology, the
specificity achieved was 82.2 %, which can be considered
to be acceptable.

With respect to the accuracy of 83.53 %, although it
was one of the smallest accuracies, outperforming only that
obtained by [20], this outcome is considered to be satis-
factory if we consider that the image database used in the
methodology contained only 59 images with masses and
41 normal images. Thus, with the large number of nor-
mal images in the test, it is acceptable to have a large
number of non-mass clusters, which causes the TPI to
increase. This result causes the diminution of the speci-
ficity and, consequently, accuracy. Still concerning the
number of normal images used in the tests, a rate of FPI
of 1.12 is considered to be compatible with the other
studies.



J Digit Imaging (2015) 28:323–337 335

Fig. 9 Third case: a Normal
image, b image with background
removed, c enhanced image, d
image segmented by QT, e
image with removed clusters
painted in white, and f normal
image with no mass detected

None of the other methodologies used the area under the
FROC curve, which achieved 0.8033 in the present work.

Discussion

We evaluated the proposed methodology by applying it to
a set of exams from the DDSM database. The experimental
results led to the following conclusions:

1. The main contribution of this methodology is the QT
algorithm, which has the goal of performing the seg-
mentation of structures that are similar to masses. We
are not aware of any other use of this technique for this
application. In most of the cases, the QT could seg-
ment the mass without altering its shape or joining other
structures of the breast. In addition to those factors, the
QT is fast and easy to use, which makes the use of the
methodology easy.

2. Another contribution, the use of a correlogram function
combined with other texture and shape measurements,
led to a significant reduction in the number of false

positives. We believe that this index had good perfor-
mance for discriminating mass from non-mass cate-
gories.

3. In some of the cases, the methodology failed. Ana-
lyzing those cases, we note the following situations:
(a) Classification between mass and non-mass based
on texture—In this case, the values of the gray lev-
els are very close to the values for the non-mass. As
a result, the SVM failed. Most of the cases corre-
spond to exams that were classified in DDSM as dense
breasts—(b) Classification between mass and non-mass
based on shape: In this case, the shape of the mass is
very similar to the non-mass. We believe that at the
moment of the segmentation, the QT combined close
structures (with the same intensity and inside the same
maximum diameter) and altered the shape of the mass;
(c) Incorrect segmentation—In this case, the mass was
combined with other structures of the breast. This prob-
lem occurred mainly due to masses and other structures
that have very close pixel values and reduced sizes.
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Table 5 Comparison between
the results of proposed
methodology and those of the
methodologies listed in the
“Related Works” section

Work Database Se (%) Sp (%) Ac (%) ROC FPI FROC

Oliveira Martins et al.Oliveira-Martins:2007fk DDSM – – 99.39 1 – –

Oliveira Martins et al. [23] DDSM 89.30 – – – 0.93 –

de Oliveira Martins et al. [19] DDSM – – 85 – – –

Nunes et al. [21] DDSM 83.24 84.14 83.94 – 0.55 –

Bajger et al. [4] Proprietary – – – 0.9 – –

Liu et al. [18] DDSM 76.8 – – – 1.36 –

Abdalla et al. [2] DDSM 91.67 84.17 – – – –

Abdalla et al. [1] DDSM – – 95.85 – – –

Mini [20] MIAS 58 – 60 – – –

AbuBaker [3] MIAS – – 94 – 0.05 -

Hussain et al. [13] DDSM – – 98.8 – – -

Hussain et al. [14] DDSM – – 99.5 – – –

Proposed method DDSM 92.31 82.2 83.53 – 1.12 0.8033

4. The time spent for the whole method appears to be
promising because it takes an average of 0.3 s to pro-
cess one image. We highlight the performance of the
QT algorithm, which performs segmentation in a rela-
tively short time, considering the amount of information
to be processed. This run time could vary (increase or
decrease) depending on the threshold.

5. One of the difficulties encountered in the process of
segmentation with QT is the choice of the maximum
diameter to form the cluster because only after vari-
ous tests that we found the diameter that best suits the
various sizes of the masses.

6. With respect to the related studies (Table 5), we had the
best sensitivity percentage. Overall, these results show
that the methodology finds a large number of masses
in exams. However, we had a low accuracy and a high
FPI rate. It is important to stress that our testing base is
much larger than that of the mentioned studies, and for
this reason, those indexes are not very good. However,
in general, the methodology had good performance.

7. Although we consider the results of the methodology
to be acceptable, some of the aspects can be improved,
which enables more suggestive results. One of these
aspects concerns the segmentation performed by the
QT, where the choice of the diameter that is used to
form the cluster is sometimes unsuitable; sometimes, it
is too small and does not cover the whole mass, and
sometimes, it is too large and forms clusters that cover
the mass and other lesions. An improvement would be
to develop a dynamic diameter that would, somehow,
adapt to the size of the segmented region or to use some
other property of the image as a clustering parameter.

8. Another aspect that could be improved concerns post-
processing with shape measures together with SVM to
reduce false positives because we note that some “dis-
torted” clusters end up passing to the next stage instead
of being eliminated. Edge descriptors, such as curves
and deformation energy, could be used together with
shape descriptors.

Conclusion

In the present paper, we have developed a methodology
for the automatic detection of breast masses. The results
achieved in this study point to an acceptable performance
of the developed methodology. A configuration of 1423
clusters for training the SVM (70 %) and 610 clusters for
validation (30 %) led to the most suitable SVM model for
testing new exams. In the testing stage with 100 new exams,
59 with masses and 41 normal, we achieved a sensitivity of
92.31 %, a specificity of 82.2 %, an FPI rate of 1.12, and a
FROC of 0.8033.

Based on the results, we believe that such measures pro-
vide significant support for a more detailed clinical investi-
gation, and the outcomes were very encouraging when the
nodules were classified with the support vector machine,
nearest mean classifier, and linear classifier based on a nor-
mal density. Nevertheless, it is necessary to perform tests
with a larger database and more complex cases to obtain a
more precise behavior pattern.
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