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Abstract Excessive cephalocaudal anatomic (Z-axis) cover-
age can lead to unnecessary radiation exposure to a patient. In
this study, an automated computing model was developed for
identifying instances of potentially excessive Z-axis coverage
with abdomen-pelvis examinations. Eight patient and imaging
attributes including patient gender, age, height, weight, vol-
ume CT dose index (CTDIvol), dose length product (DLP),
maximum abdomen width, and maximum abdomen thickness
were used to build a feedforward neural network model to
predict a target Z-axis coverage whether it is an excessive or
non-excessive Z-axis coverage scans. 264 CT abdomen-pelvis
exams were used to develop the model which is validated
using 10-fold cross validation. The result showed that 244 out
of 264 exams (92.4 %) correctly predicted Z-axis excessive
coverage. The promising results indicate that this tool has the
potential to be used for CT exams of the chest and colon,
urography, and other site-specified CT studies having defined
limited length.
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Background

Computer-aided tomography (CT) is undergoing an intensive

refinement of x-ray radiation dose administration controls
with the goal of markedly lowering the patient dose [1]. A
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number of advanced technologies and practice changes are
now used to lower radiation dose with CT, such as automatic
tube current modulation (ATCM) [2], a variety of de-noising
techniques enabling reduced patient exposure [3], reducing
kVp for smaller patient size [4], and reducing the number of
contrast phase acquisitions [5]. One additional source of po-
tential unnecessary exposure to a patient can occur due to
excessive Z-axis coverage. Z-axis coverage (extent of CT x-
ray exposure to the patient in the cephalocaudal direction)
primarily depends upon the patient size and the specific exam
being performed (i.e., the CT protocol). For the abdomen-
pelvis exam, the most frequently encountered body CT use, it
also depends on (1) the movement of the diaphragm during
breathing, (2) the possibility of actual patient movement on
the table, (3) the need to always fully include all the required
anatomy, and (4) the CT scanner software controls for refine-
ment of the extent of Z-axis coverage (indicated by the defined
scan range) in comparison to the actual radiation-exposed
anatomy (overscan compensation). Some clinical sites stan-
dardize the anatomical features to be selected by the technol-
ogists when positioning the defined scan range acquisition
box. Technologists recognize any “missed anatomy” results
in the need to acquire a second acquisition—thereby causing
added (overlapped) exposure to the patient and a second
acquisition to be merged with the CT exam for interpretation.
A second scan to acquire a few added centimeters of anatomy
not only results in overlapped radiation being given to “im-
aged” tissue but also includes added overlapped radiation due
to “overscan”—the term used to make note that the radiation
field is larger than the Z-axis detector coverage in order to
fully expose the detectors. As a result, to be fully confident
that complete coverage occurs the first time, it is possible that
an overly generous setting of defined scan range is chosen—
one which may well result in greater Z-axis coverage than is
needed. Some recent studies note that as much as 98 % of
body CT scans exceeds the predefined anatomic boundaries of
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their respective scan protocols [2, 6]. Therefore, a meth-
od that is able to automatically detect excessive Z-axis
coverage may provide a helpful quality assurance (QA)
tool for potentially reducing this source of unnecessary
patient exposure.

Methods
Excessive Z-Axis Coverage

There is no agreement or standardized definition of excessive
Z-axis coverage of CT exam in the literature for the routine
abdomen-pelvis examination. A reason for this may be that
this type of exam is a breath hold acquisition, so inpatients or
respiratory-compromised patients may be found to have gen-
erous Z-axis coverage that is appropriate due to their condi-
tion. Based on a sample of the normal variation observed with
the outpatient population by the radiologists in our
hospital, 2 cm was chosen to determine the acceptable
start and stop positions. To aid in the specification of
appropriate versus excessive Z-axis coverage, Z-axis
coverage for the abdomen-pelvis CT examination are
defined as follows:

“Ideal” start position  The location of the superior most
aspect of left or right hemidiaphragm,
whichever is most superior (red
circled in Fig. 1).

A location less than or equal to 2 cm
superior to the location of the superior
most aspect of the left or right

hemidiaphragm. The technologists

Acceptable start
position

“Ideal” Start Position

ideally start scanning no more than
1 cm superior to the ideal start
position, but it is acceptable to start
up to 2 cm.

Threshold of excessive A location greater than 2 cm superior

start position

Ideal stop position

Acceptable stop
position

Threshold excessive
stop position

Ideal Z-axis coverage

Acceptable Z-axis
coverage

to the location of the superior most
aspect of the left or right
hemidiaphragm, whichever is more
superior.

The location of the inferior most
aspect of left or right ischial
tuberosity, whichever is more inferior
(red circled in Fig. 2).

A location less than or equal to 2 cm
inferior to the location of the inferior
most aspect of the left or right ischial
tuberosity, whichever is more
inferior.

A location greater than 2 cm inferior
to the location of the inferior most
aspect of the left or right ischial
tuberosity, whichever is more
inferior.

A scan length equal to the
absolute value of the difference
between the ideal start and stop
positions as shown in Fig. 3a. (A
Z-axis coverage may be ideal per
this definition, but the start and
stop positions may not.)

A scan length less than or equal to the
absolute value of the difference
between the acceptable start and stop

“Ideal” Stop Position

Fig. 1 Ideal start position of CT abdominal scan. Slice location of first
image with subdiaphragmatic tissue (eft or right) is defined as ideal start
position of CT scan

Fig. 2 Ideal stop position of CT abdominal scan. Slice location of last
image with ischial tuberosity bone (left or right) is defined as ideal stop
position of CT abdominal scan
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Fig. 3 Different situations of Z-
axis coverages. Transparent
boxes are the defined scan ranges
for Z-axis coverage. a Ideal Z-axis
coverage. b Acceptable Z-axis
coverage. ¢ Excessive Z-axis
coverage

positions but greater than the ideal Z-
axis coverage as shown in Fig. 3b. (A
Z-axis coverage may be acceptable
per this definition, but the start and
stop positions may not be.)

A scan length greater than the
absolute value of the difference
between the acceptable start and stop
positions as shown in Fig. 3c.

Excessive Z-axis
coverage

In this study, the actual Z-axis coverages are calculated
manually as the distance of first axial image slice to the last
axial image slice which is based on actual patient CT and
anatomical data from picture archiving and communication
system (PACS).

For newer CT devices, the actual Z-axis coverage informa-
tion is provided in enhanced Digital Imaging and Communi-
cations in Medicine Structured Report (DICOM SR) object.
The start and stop positions are available in the DICOM
header (TAG: 0008,0104) of Radiation Dose Structure Report
(RDSR) as shown in Table 1. Therefore, the actual Z-axis
coverage can be obtained by calculating the distance between
the top Z location and the bottom Z location of the
scanning length. For those scanners not having RDSR,
Z-axis coverage can be either measured manually by
PACS or measured automatically by using image pro-
cessing techniques [13, 14]. At this time, the anatomical
landmarks of the patient that correspond to an irradia-
tion event are not available in DICOM and thus no
reference to patient coverage can be directly obtained.

Table 1
RDSR

Z-axis coverage information from new DICOM standard of

(0008,0104)—Code meaning [LO][34][1]: top Z location of scanning
length

(0008,0104)—Code meaning [LO][36][1]: bottom Z location of scanning
length

@ Springer

We specify that should our measured Z-axis coverage is
greater than and/or equal to ideal Z-axis coverage and less than
and/or equal to acceptable Z-axis coverage, it is not
excessive Z-axis coverage. Greater values of coverage
are defined as excessive Z-axis coverage and should be
detectable when using a QA tool. The real patient
examples are shown in Fig. 4.

Data Collection and Features Selection

This institutional review board and HIPAA compliant study
included 264 patients having routine abdominal studies be-
tween year 2012 and year 2014. The age of the patients in this
study ranges from 19 to 93 and the gender distribution in-
cludes 140 females and 124 males.

In abdominal exams, six patient physical features,
including age, gender, height, weight, lateral-
anteroposterior abdominal dimension (thickness), and
posteroanterior-mediolateral abdominal dimension
(width) of the patient, and two radiation dose features,
volume CT dose index (CTDIvol) and dose length
product (DLP), were used. As a result, eight features
can be collected for the predictive model development.
DICOM Index Tracker (DIT) [7] was used to obtain
patient gender, age, height, weight, CTDIvol, and DLP
data. GE Centricity (our PACS) provided values of
maximum abdominal width and maximum abdominal
thickness information as individually measured using a
measurement tool. Examples of these measurements are
given in Figs. 5 and 6. Note that our use of patient
“width” as a feature for the statistical approach may be
a source of error as this measurement is computed for a
plane at isocenter, while a patient’s projected image size
depends upon the source to object distance and may
differ from isocenter. Here we used the measured width
as an estimation to approximate the real abdominal
width of the patient in developing the model. It is our
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Fig. 4 Real patient Z-axis
coverages. a Not excessive Z-axis
coverage. b Excessive Z-axis
coverage

intention to study the impact of the estimation on model
performance as a future work.

To validate the model, the ideal Z-axis coverage and
acceptable Z-axis coverage were manually measured.
Thus those exams found having excessive Z-axis cover-
age were formally identified for model building and
training purposes.

Imbalanced Data Resampling

In this study, among 264 cases, it is observed that 237 out of
264 patients do not have excessive Z-axis coverage resulting
in the dataset being imbalanced. When imbalanced data sets
are presented, most data learning algorithms may fail to pro-
vide favorable accuracies to determine the classes (e.g., ex-
cessive Z-axis coverage vs. non-excessive Z-axis coverage)
and the data [8]. To handle the imbalanced classification, a
statistically appropriate way is to use resampling methodology
in which data from the minority class is randomly repeated

Maximum Abdominal Width

Fig. 5 Maximum abdominal width measurement. Width is measured as
the widest skin to skin horizontal dimension below the diaphragm but
above the iliac crests

and oversampled while the data from majority class is ran-
domly eliminated and downsampled. This results in the num-
ber of instances from minority class being reasonably similar
to the number of instances from majority class. After resam-
pling process, the class distribution is balanced and
uniformed.

Feedforward Neural Networks

Artificial neural network (ANN) model simulates biological
neural networks of human brain for decision-making (super-
vised learning algorithm) as a type of supervised learning. The
type of ANN used in this study was feedforward neural
network with back-propagation learning algorithm [9].
Feedforward neural network is composed of three different
layers: input layer, hidden layers, and output layer, and there is
no feedback between layers (thus “feedforward”). The input
layer is formed of attributes of input data; the hidden layer
extracts important features contained in the input data, while

Maximum Abdominal Thickness

Fig. 6 Maximum abdominal thickness measurement. Thickness is
measured as the thickest skin to skin horizontal dimension below the
diaphragm but above the iliac crests
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® —Excessive

® -Not Excessive

Fig. 7 Diagram of feedforward neural network model with five hidden
units and two outputs

the output classes form the output layer. The number of hidden
layers and number of hidden units were determined following
the rules in [10]. The neural network model in final use is
given in Fig. 7.

Experimental Results

First, the eight features of input data were standardized (data
was subtracted by their mean and divided by their standard
deviation) for the purpose of improvement of model perfor-
mance. Next, the resampling method was performed as we
stated above. After standardization and resampling, 10-fold
cross validation was used in which data was equally divided
into 10 folds. In each experiment, onefold data was used for
testing while the other ninefold data were used as training
data. A total of 10 experiments were conducted. Results from
each experiment were accumulated and summarized as
final result.

The ANN model available from WEKA [10] is used. For
the parameter settings of neural networks, the logistic sigmoid
function was chosen as transfer function; the learning rate is
set to be 0.2, while the momentum is set to be 0.1 after tuning.

Table 2  Detection result on 264 CT abdominal exams

The maximum number of epochs is set to 600 when the model
is not converging.

As shown in Table 2, true positive rate (TP rate), false
positive rate (FP rate), precision, and recall were used as
metrics to evaluate the performance of ANN model on the
data. For excessive class, the TP rate is 0.942, which means
that 94.2 % of true positive excessive Z-axis scanners can be
retrieved and identified by our model. That is very important
to quality assurance of radiation dose. In our test data set, it
shows that 244 instances out of 264 are classified correctly
whereas only 20 of them are misclassified. The results show
that this model is very promising and 92.42 % of the data was
classified correctly.

Discussion

Ideally, a tool that could automate a correct Z-axis
coverage for each CT scanner with a minimum of op-
erator interaction would be very helpful. This tool
would require some landmarking of the patient on the
patient support system. If not available a priori an
acquisition, a tool that is accurate and available for
use as a background review and process QA of a
clinically used CT scanner can provide an opportunity
for radiation dose reduction [11, 12]. Its help will be to
elevate awareness and improve technologist selection of
defined scan range and Z-axis coverage for the
abdomen-pelvis CT exam. This approach can be applied
to protocol-specific measurement of Z-axis coverage
including CT brain exams and CT chest exams which
have clearly defined boundaries. However, potential lim-
itations may exist with the ANN predicting Z-axis cov-
erage in pediatric patients, since size is quite variable
among pediatric patients. It remains to be seen if the
tissue contrast is sufficient to provide actionable results.

In this study, the maximum width and maximum
thickness of abdomen were determined manually using
the PACS measurement tool. However, this process
could be automated by using an image processing tech-
nique that includes the consideration of the effect of
magnification of the CT radiograph [13, 14]. While
eight attributes were used and were shown to be

Class TP rate FP rate Precision Recall F measure ROC area
Excessive 0.942 0.091 0.898 0.942 0919 0.905
Not excessive 0.909 0.058 0.949 0.909 0.929 0.905

Correctly classified instances 244 of 264, percentage 92.4242 %. Incorrectly classified instances 20 of 264, percentage 7.5758 %
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reasonably predictive of instances of truly excessive (as
defined) Z-axis coverage, other feature sets could be use
or more could be added to further improve the predic-
tive accuracy.

Conclusion

This study indicates that a model using eight attributes can
provide high performance for routine monitoring of Z-axis
anatomical coverage with abdomen-pelvis CT exams. An
abdomen-pelvis exam identified by this tool as potentially
having “excessive” Z-axis coverage is correctly identified
about 92.4 % of the time. This quality assurance tool can be
used with CT exams of the chest and colon, urography, and
other site-specified CT studies having defined limited length.
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