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Abstract Breast cancer screening is central to early breast
cancer detection. Identifying and monitoring process mea-
sures for screening is a focus of the National Cancer
Institute’s Population-based Research Optimizing Screening
through Personalized Regimens (PROSPR) initiative, which
requires participating centers to report structured data across
the cancer screening continuum. We evaluate the accuracy of
automated information extraction of imaging findings from
radiology reports, which are available as unstructured text. We
present prevalence estimates of imaging findings for breast
imaging received by women who obtained care in a primary
care network participating in PROSPR (n=139,953 radiology
reports) and compared automatically extracted data elements
to a “gold standard” based on manual review for a validation
sample of 941 randomly selected radiology reports, including
mammograms, digital breast tomosynthesis, ultrasound, and
magnetic resonance imaging (MRI). The prevalence of imag-
ing findings vary by data element and modality (e.g., suspi-
cious calcification noted in 2.6 % of screening mammograms,

12.1 % of diagnostic mammograms, and 9.4 % of
tomosynthesis exams). In the validation sample, the accuracy
of identifying imaging findings, including suspicious calcifi-
cations, masses, and architectural distortion (on mammogram
and tomosynthesis); masses, cysts, non-mass enhancement,
and enhancing foci (on MRI); and masses and cysts (on
ultrasound), range from 0.8 to1.0 for recall, precision, and F-
measure. Information extraction tools can be used for accurate
documentation of imaging findings as structured data ele-
ments from text reports for a variety of breast imaging modal-
ities. These data can be used to populate screening registries to
help elucidate more effective breast cancer screening
processes.
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Introduction

Breast cancer screening continues to be the mainstay for early
breast cancer detection, with 54 % of women above 40 years
of age receiving annual mammograms [1]. While breast can-
cer mortality has decreased, in part because of the use of
mammography, this decline has not been shared equally
among all women in part because of variations in the use of
screening and subsequent diagnostic evaluation [2, 3].
Identifying, evaluating, and monitoring process measures in
screening is a focus of the National Cancer Institute’s
Population-based Research Optimizing Screening through
Personalized Regimens (PROSPR) initiative, in which partic-
ipating centers report structured data on the processes of
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cancer screening, diagnosis, and management. Increasingly,
scientific evidence indicates that breast cancer is not a single
disease [4]; tumors with different genetic “signatures” differ in
prognosis [5], and they perhaps differ in likelihood of early
detection through screening [6]. By identifying and evaluating
process and outcome measures across the cancer screening
continuum, PROSPR aims to provide generalizable evidence
for a risk-based model of breast cancer screening.

Currently, data exist in electronic health records (EHRs)
and cancer registries that allow patient, facility, and
population-level collection of clinical data to enable optimal
breast cancer screening. However, much critical information
still remains as unstructured text from clinical reports such as
clinical notes, pathology, and radiology reports. Natural lan-
guage processing and automatic information extraction can be
utilized to optimize the screening process by facilitating iden-
tification of screening-eligible patients and timely evaluation
of any abnormalities from these clinical text reports [7, 8].

Several quality improvement and research initiatives utiliz-
ing automatic information extraction from clinical text reports
have been published [9–13]. For breast imaging reports, infor-
mation extraction of Breast Imaging-Reporting and Data
System (BI-RADS) assessment categories and breast tissue
composition categories has been successfully completed [14,
15]. To our knowledge, the use of information extraction to
identify specific imaging findings for a variety of breast imaging
modalities has not been evaluated. Beyond BI-RADS assess-
ment categories, specific findings reported in the text report, like
breast masses, suspicious calcifications, and architectural distor-
tion, may differentially influence radiologists’ final assessment
and recommendations for additional evaluation, including addi-
tional imaging and/or biopsy [16, 17]. Defining imaging find-
ings for modalities beyond mammography (i.e., breast molecu-
lar imaging for focal asymmetry) [18]; analyzing findings pres-
ent in relevant subgroups of patients with breast cancer (i.e.,
findings that are more frequently observed in younger women
with breast cancer or womenwithmissed breast cancer), and the
potential of relating these specific imaging findings with mo-
lecular phenotypes of breast cancer further emphasize the need
to extract specific findings from textual reports [19–23].
Moreover, these imaging findings may enhance BI-RADS as-
sessment for classifying risk within classes (e.g., BI-RADS 3
with microcalcifications) [24], and for predicting histopatholog-
ic characteristics that portend poor survival [25, 26].

We describe and evaluate a systematic approach to
extracting data elements from breast imaging reports that are
essential components of a breast cancer screening registry
[27]. We present the prevalence of each data element from
breast imaging reports used for capturing data for the
PROSPR Research Center registry, and validate automatically
extracted imaging findings compared to a “gold standard”
using manually extracted data from randomly selected
reports.

Materials and Methods

Study Setting and Data Sources

This project was approved by the Partners Healthcare
Institutional Review Board with waiver of informed consent
and conducted in compliance with the Health Insurance
Portability and Accountability Act guidelines. For this analy-
sis, we included breast imaging reports for women with at
least one primary care visit in the Brigham and Women’s
Primary Care Practice Network from January 1, 2011 to
June 30, 2013. Breast imaging tests included five modalities:
screening mammography, diagnostic mammography, digital
tomosynthesis, breast magnetic resonance imaging (MRI),
and breast ultrasound (US). Automated extraction of defined
data elements was performed for these breast imaging modal-
ities for eligible women. To evaluate the accuracy of this
extraction, we performed a manual review of randomly se-
lected “validation samples,” described below.

Semantic Variant Identification

Specific findings relevant to breast cancer screening were
identified for each imaging modality, and include the presence
or absence of suspicious calcification, mass, implant, asym-
metry, and architectural distortion, as well as breast density
and BI-RADS categories for screening mammograms, diag-
nostic mammograms, and digital tomosynthesis. The presence
or absence of mass, cysts, implants, non-mass enhancement
(NME), and focus, as well as BI-RADS category were iden-
tified for breastMRI. Finally, the presence or absence of mass,
cysts, and architectural distortion, as well as BI-RADS cate-
gory were identified for breast ultrasound (shown in Table 1).

These data elements are available as free text in radiology
reports. Thus, we used two standard terminologies to map the
data elements and to identify semantic variants of each term to
facilitate identification and retrieval from reports—the
National Cancer Institute Thesaurus (NCIT) and the
Radiology Lexicon (RadLex) [28, 29]. Lexical and semantic
variants of each term are shown in Table 1. Lexical variants
refer to different forms of a word or phrase (e.g., singular and
plural forms, variations in capitalization) [30]. Semantic var-
iants refer to different terms with the same meaning [31].
NCIT is a widely recognized standard for coding biomedical
terms and provides definitions, synonyms, and other informa-
tion on nearly 10,000 cancers and related diseases. It is pub-
lished regularly by the NCI and has over 200,000 unique
concepts [32]. RadLex is a lexicon for standardized indexing
and retrieval of radiology information resources with over 60,
000 terms [29]. It was originally developed by the
Radiological Society of North America (RSNA), and is sup-
ported by the National Institute of Biomedical Imaging and
Bioengineering (NIBIB) and by the cancer Biomedical
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Informatics Grid (caBIG) project. Initially, semantic variants
were included in the search term list for each data element.
However, we found no increase in retrieval accuracy for any
data element; we therefore used an expert-derived search term
list (shown in Table 1).

Automated Cohort Identification

An automated toolkit, Information from Searching Content with
an Ontology-Utilizing Toolkit (iSCOUT), was utilized to extract
report-specific data elements. iSCOUT is a publicly available
software comprised of a core set of tools, utilized in series, to
enable a query from an unstructured narrative text report [33,
34]. iSCOUT was able to perform information extraction using
rule-based classification for several findings. The algorithm in-
cluded (1) finding query terms (and corresponding lexical and
semantic variants) within radiology reports; (2) excluding reports
that contained findings that were negated using a rule-based
algorithm similar to one described previously [35]; (3) extracting
the laterality of each imaging finding within radiology reports
that contained them by finding the nearest word referring to
sidedness (i.e., “left”, “right,” or “bilateral”) in the same sentence
as the imaging finding. If a word(s) corresponding to sidedness
(i.e., “left”, “right,” or “bilateral”) was not stated in the same
sentence, the sidedness that was closest to the finding in preced-
ing sentences was noted, where distance was defined as the
number of words separating the finding from the sidedness.
The sidedness is recorded each time a finding is mentioned,
which informed whether a finding is reported in the left, right,
or bilateral breasts. Finally, the last step included (4) Bi-RADS
identification by matching the closest “Bi-RADS” query term
(i.e., birads, category) to the number stated for each breast and
laterality, as previously described [14]. An example of calcifica-
tions in the right breast is shown in the example below:

“Right Breast Findings:
The breast is heterogeneously dense (51–75 %
fibroglandular). This may lower the sensitivity of mam-
mography. Magnification views were obtained showing
two groups of amorphous calcifications in the upper
outer quadrant.”

The nearest sidedness that was present in preceding
sentences is “right breast.” Thus, the presence of calcification
in the right breast was inferred. In addition, extracting a Bi-
RADS finding is demonstrated in the following text examples:

“LEFT BREAST: Category 1”
“BIRADS for Right Breast remains category 1,
negative.”

In the first example, Bi-RADS 1 was assigned to the left
breast. In the second example, Bi-RADS 1was assigned to the
right breast.

BI-RADS Final Assessment Evaluation

For the purposes of this validation, because final assessments of
category 4 and 5 are uncommon, we dichotomized BI-RADS
final assessment categories into positive and negative, based on
howmedical audits are performed for breast imaging. A positive
final assessment is defined as BI-RADS categories 0, 3, 4, or 5
on screening and BI-RADS categories 4 or 5 on diagnostic
workup, on either one or both breasts in a single report [17,
36]. This allows measurement of precision and recall for each
report based on the gold standard, as described below.

Validation Sample

Using standardized terms identified from NCIT and RadLex,
two reviewers (a radiologist [IG] and a medical student [AK])
manually reviewed radiology reports and annotated relevant
data elements defined previously. Both reviewers were blinded
from automatically extracted results during the manual review
process. We selected random samples of 200 radiology reports
each from ultrasound, screening, and diagnostic mammography
reports finalized in 2012, 200 digital tomosynthesis reports
finalized in 2013, and all 145 breast MRI reports that were
finalized during the first 6 months of 2012. Digital
tomosynthesis was only available in this setting beginning in
2013. The manual review determined the “gold standard” for
evaluating the accuracy of the automated data element retrieval.

To determine that two human annotators can agree on the
data elements, each annotator independently performed a
manual review of all of the sampled radiology reports. Initial
percentage agreement and kappa for each data element were
measured, which is standard practice for human review [37,
38]. For cases when annotators disagreed, both annotators met
to agree upon a final adjudication for the “gold standard.”

Statistical Analysis

We report the prevalence (expressed as a percentage) of each
imaging finding for each imaging modality based on the larger
sample of breast imaging reports (i.e., the prevalence sample).
In addition, we report accuracy measures for automatically
extracted imaging findings based on the previously described
manually derived gold standard. The adequacy of the sample
size was determined based on the F-measure of accuracy, for
which we estimated that 200 reports per modality would yield
a 95 % confidence interval half-width of 0.116 for a preva-
lence of 0.1 based on an asymptotic approximation of the
standard error. Accuracymeasures, including precision, recall,
and F-measure were calculated for the automatically extracted
data elements [34, 38]. Precision is defined as the proportion
of true positive reports to the total number of reports that are
automatically identified as positive (i.e., having the imaging
finding), and is similar to the positive predictive value. Recall
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is defined as the proportion of true positive reports to all
reports that should have been identified as positive from all
reports, and is similar to test sensitivity. F-measure is the
harmonic mean of precision and recall. We report 95 % con-
fidence intervals for precision and recall.

Results

Prevalence Sample

To estimate the prevalence of these imaging findings in a
larger population, we used 139,953 unique breast imaging
reports from 59,434 unique women. Table 2 includes the
prevalence of each finding for each breast, for each imaging
modality. Findings are also summarized to the patient level

(i.e., if a finding was noted in either breast, it was considered
present at the level of the patient). For screening mammogra-
phy, 10.6 % of women received a report that noted positive
BI-RADS. Suspicious calcification was noted in the reports of
2.6 % of women, and masses and asymmetry were each noted
for about 2.0 % of women. For diagnostic mammograms,
10.5 % of women received a positive BI-RADS report.
Suspicious calcification was noted in 12.1 % of these reports,
masses in 10.0 %, and asymmetry in about 5.7 % of reports.
Of the 1,133 digital tomosynthesis exams, 12.4 % of reports
noted a positive BI-RADS finding, compared to 12.2 % of the
2675MRI exams and 14.9 % of the 10,031 ultrasound exams.

Validation Sample

A total of 941 radiology reports were manually reviewed by
two reviewers: 200 diagnostic mammograms, 197 screening

Table 2 Total number of automatically extracted data elements for eligible women (prevalence sample)

Imaging Finding Left breast Right breast Patient levela

Screening mammography (n=94,861) Calcification 1761 (1.9) 1743 (1.8) 2493 (2.6)

Mass 929 (1.0) 830 (0.9) 1491 (1.6)

Implants 254 (0.3) 240 (0.3) 255 (0.3)

Asymmetry 1136 (1.2) 953 (1.0) 1819 (1.9)

Architectural distortion 170 (0.2) 185 (0.2) 330 (0.3)

Positive BI-RADSb 5990 (6.3) 5411 (5.7) 10,021 (10.6)

Diagnostic mammography (n=26,841) Calcification 2215 (8.3) 2074 (7.7) 3222 (12.1)

Mass 1690 (6.3) 1572 (5.9) 2707 (10.0)

Implants 118 (0.4) 108 (0.4) 147 (0.5)

Asymmetry 929 (3.5) 775 (2.9) 1519 (5.7)

Architectural distortion 387 (1.4) 443 (1.7) 796 (3.0)

Positive BI-RADSb 1534 (5.7) 1376 (5.1) 2817 (10.5)

Digital tomosynthesis (n=1133) Calcification 69 (6.1) 74 (6.5) 107 (9.4)

Mass 102 (9.0) 104 (9.2) 159 (14.0)

Implants 3 (0.3) 3 (0.3) 3 (0.3)

Asymmetry 57 (5.0) 48 (4.2) 97 (8.6)

Architectural distortion 29 (2.6) 28 (2.5) 51 (4.5)

Positive BI-RADSb 79 (7.0) 73 (6.4) 141 (12.4)

Breast magnetic resonance imaging (n=2675) Mass 212 (7.9) 210 (7.9) 277 (10.4)

Cysts 300 (11.2) 298 (11.1) 397 (14.8)

Implants 70 (2.6) 61 (2.3) 85 (3.2)

NME 46 (1.7) 40 (1.5) 73 (2.7)

Focus 220 (8.2) 227 (8.5) 333 (12.4)

Positive BI-RADSb 184 (6.9) 177 (6.6) 327 (12.2)

Ultrasound (n=10,031) Mass 883 (8.8) 887 (8.8) 1487 (14.8)

Cysts 746 (7.4) 694 (6.9) 1194 (11.9)

Architectural distortion 89 (0.9) 27 (0.3) 116 (1.2)

Positive BI-RADSb 789 (7.9) 769 (7.7) 1497 (14.9)

a Patient level means that the finding was present in either the right or left breast
b A positive final assessment is defined as BI-RADS categories 0, 3, 4, or 5 on screening mammogram and BI-RADS categories 4 or 5 on diagnostic
workup
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Table 3 Accuracy of automatically extracted imaging findings compared to manual gold standard review (validation sample)

Imaging Finding Prevalence (%) Precision (95 % CI) Recall (95 % CI) F-measure

Screening mammography n=197 Positive BI-RADSa 16/197 1.0 1.0 (0.8, 1.0) 1.0
(8.1) (0.8, 1.0)

Calcification 16/197 0.93 0.9 0.9
(8.1) (0.7, 1.0) (0.6, 1.0)

Mass 9/197 1.0 0.7 0.8
(4.6) (0.5, 1.0) (0.3, 0.9)

Implants 1/197 0.50 1.0 0.7
(0.5) (0.0, 1.0) (0.0, 1.0)

Architectural distortion 0/197 – – –
(0.0)

Asymmetry 7/196 0.9 1.0 0.9
(3.6) (0.5, 1.0) (0.6, 1.0)

Diagnostic mammography n=200 Positive BI-RADSa 75/198 1.0 1.0 1.0
(37.9) (0.9, 1.0) (0.9, 1.0)

Calcification 64/200 1.0 1.0 1.0
(32.0) (0.9, 1.0) (0.9, 1.0)

Mass 49/200 0.9 0.9 0.9
(24.5) (0.8, 1.0) (0.8, 1.0)

Implants 7/200 1.0 1.0 1.0
(3.5) (0.6, 1.0) (0.6, 1.0)

Architectural distortion 18/200 0.9 0.9 0.9
(9.0) (0.6, 1.0) (0.6, 1.0)

Asymmetry 25/200 0.6 0.8 0.7
(12.5) (0.4, 0.8) (0.6, 0.9)

Digital tomosynthesis n=200 Positive BI-RADSa 24/200 1.0 1.0 1.0
(12.0) (0.9, 1.0) (0.9, 1.0)

Calcification 16/200 0.9 0.9 0.9
(8.0) (0.6, 1.0) (0.7, 1.0)

Mass 30/200 1.0 1.0 1.0
(15.0) (0.8, 1.0) (0 .8, 1.0)

Implants 3/200 1.0 1.0 1.0
(1.5) (0.3, 1.0) (0.3, 1.0)

Architectural distortion 11/200 0.8 0.8 0.8
(5.5) (0.5,1.0) (0.5, 1.0)

Asymmetry 10/200 0.6 1.0 0.8
(5.0) (0.4, 0.8) (0.7, 1.0)

Breast magnetic resonance imaging n=145 Positive BI-RADSa 31/132 1.0 0.9 1.0
(23.5) (0.9, 1.0) (0.8, 1.0)

Mass 35/141 0.9 0.9 0.9
(24.8) (0.7, 1.0) (0.7, 1.0)

Cysts 31/141 0.9 1.0 0.9
(22.0) (0.7, 1.0) (0.9, 1.0)

Implants 12/141 0.9 1.0 1.0
(8.5) (0.6, 1.0) (0.7, 1.0)

NME 18/141 0.8 1.0 0.9
(12.8) (0.6, 0.9) (0.8, 1.0)

Focus 29/141 0.9 1.0 1.0
(20.6) (0.8, 1.0) (0.9, 1.0)

Breast ultrasound n=199 Positive BI-RADSa 69/197 1.0 1.0 1.0
(35.0) (0.9, 1.0) (0.9, 1.0)

Mass 50/198 0.8 1.0 0.9
(25.3) (0.6, 0.8) (0.9, 1.0)

Cysts 49/199 0.9 0.9 0.9
(24.6) (0.8, 1.0) (0.8, 1.0)
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mammograms, 200 digital tomosynthesis, 199 breast ultra-
sounds, and 145 breast MRIs. Three screening mammograms
and one ultrasound were excluded from the 200 sampled
because the reports were duplicates (i.e., mammograms and
ultrasounds done on the same day are included in one report
and were counted twice). Of note, the initial agreement be-
tween the two manual reviewers was almost perfect except for
the findings of masses (Kappa 0.64) and asymmetry (Kappa
0.80) on diagnostic mammograms, and masses (Kappa 0.76)
on screening mammograms. Several disagreements between
manual annotators resulted from text ambiguity or human
error. Disagreements resulting from text ambiguity are dem-
onstrated in the following text example:

“Right Breast: An area of focal asymmetry vs. obscured
mass is present in the upper outer quadrant posteriorly.”

The presence of “focal asymmetry vs. obscured mass” is a
source of disagreements between manual annotators because of
uncertainty in how these two findings are reported. Human error
also contributes to disagreements. Addenda to reports contribute
to human error in extracting Bi-RADS, as shown in the text
example below. One annotator missed the revised Bi-RADS in
the addendum, which another annotator was able to recognize.

“RIGHT BREAST - CATEGORY 3
Addendum by XXX on XXXXXX
Comparison is made to bilateral mammograms from
XXX Hospital dated XXX and XXX.
Right Breast- Category 2”

Several specific data elements are not recorded manually and
are not included in the “gold standard” (e.g., one missing asym-
metry value on screening mammogram, two missing BI-RADS
values on diagnostic mammogram) because they were not men-
tioned in the report (e.g., no BI-RADS were recorded) or the
textual data was corrupted (i.e., numbers and words that were
concatenated in the text report during data processing), making it
difficult for the reviewers to agree on a gold standard for that
element. Accuracymeasures for extracted data elements for each
of five imaging modalities and the prevalence of each data
element in the validation sample are shown in Table 3.
Disregarding data elements with prevalence of 5 % or less
(shown in Table 3), the range for F-measure for screening

mammograms is 0.9–1.0, for diagnostic mammograms is 0.7–
1.0, for digital tomosynthesis is 0.8–1.0, for breast MRI is 0.9–
1.0, and for breast ultrasound is 0.9–1.0. There is no architectural
distortion noted in any of the screening mammogram or breast
ultrasound reports. Thus, it is not possible to obtain an accuracy
measure for this finding in these two imagingmodalities. Several
other data elements had prevalence of 5 % or less in several
modalities (e.g., implants and asymmetry in screening mammo-
grams). Thus, although the precision for implants in screening
mammogram is 0.5 and the recall is 1.0, the confidence intervals
are both 0.0 to 1.0.

Discussion

We identified specific imaging findings for five breast imaging
modalities that are relevant to the evaluation of breast cancer
screening practices and which are data elements collected as
part of the PROSPR breast cancer screening registry. To our
knowledge, this is one of the first papers to examine the validity
of automatically extracting a broader array of imaging findings
from breast imaging modalities beyond mammography. In par-
ticular, BI-RADS final assessment categories were acquired for
each breast, for each imagingmodality. Additionally, we includ-
ed data elements from diagnostic and screening mammograms,
including suspicious calcifications, masses, implants, asymme-
try, and architectural distortion. Masses were further subdivided
into cysts, for ultrasound, and other masses (including nodules
and lumps), for breast MRI and ultrasound. The distinction is
important since these advanced imaging modalities are able to
more accurately distinguish cystic from non-cystic masses [39].
Our validation sample showed that overall precision and recall
of data extraction are high and comparable to the previously
reported accuracy of iSCOUT [34]. As choice of imaging
modality for breast cancer screening becomes increasingly de-
fined by risk and individual characteristics, it is important to
ascertain coded data elements from all of these modalities for a
broader range of imaging findings.

We were able to identify positive BI-RADS categories for
final assessment of both left and right breasts for 10.6 % of all
screening mammography reports and 10.5 % of all diagnostic
mammography reports. A greater number of screening

Table 3 (continued)

Imaging Finding Prevalence (%) Precision (95 % CI) Recall (95 % CI) F-measure

Architectural distortion 0/199 – – –
(0.0)

a A positive final assessment is defined as BI-RADS categories 0, 3, 4, or 5 on screening mammogram and BI-RADS categories 4 or 5 on diagnostic
workup
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mammograms reported positive BI-RADS, especially since BI-
RADS 0 are only noted in screening mammograms, which are
confirmed with more definitive imaging (e.g., diagnostic mam-
mogram). Precision and recall for bothmodalities were both 1.0.
Identifying asymmetry in diagnostic mammograms resulted in
low precision at 0.6. Asymmetry, however, was also one of only
two data elements wherein reviewers had less than near-perfect
agreement. When human reviewers are unable to agree on the
presence/absence of a data element, it is not difficult to assume
that an automated system will likewise fare poorly. In this
particular case, the number of search terms corresponding to
asymmetry was one of the largest, with nine expertly derived
search terms. This was second only to the number of search
terms for masses, with 11 search terms. Not surprisingly, there
was also less than near-perfect agreement between annotators
for finding masses in mammograms. Precision and recall for
identifying masses in diagnostic mammograms, however,
remained at 0.9. The greater number of search terms for masses
may have led to decreased agreement between annotators.

Some breast lesions have low prevalence in selected imag-
ing modalities. For instance, radiology reports that contain
masses and asymmetry were infrequently seen in screening
mammograms but were reported in diagnostic mammograms
and breast US. This was expected because we perform breast
ultrasound and diagnostic mammograms to further workup
abnormalities seen on screening. On the other hand, breast
implants were not commonly reported in any of the five
imaging modalities, yet are important to document as they
may obscure visualization of breast lesions [40, 41]. When
prevalence of lesions are low, accuracy rates have very wide
confidence intervals. Further work should evaluate the accu-
racy of these tools in broader samples in other institutions as
documentation practices may vary in imaging reports.

This work has several limitations. While our validation
sample included over 900 records, our ability to estimate the
validity of low prevalence findings for a specific imaging
modality was limited. We evaluated information extraction
from radiology reports obtained from affiliated breast imaging
centers affiliated with a single network, which may not gen-
eralize to other institutions. These extraction algorithms
should be validated in other settings. Documented imaging
findings were extracted from radiology reports and included in
a broader set of data elements for a breast cancer screening
registry. Also, we did not examine the accuracy of radiolo-
gists’ interpretation of imaging findings or perceptual varia-
tion in assessing specific imaging findings among radiolo-
gists. Finally, it remains unclear whether capturing these data
elements from radiology reports will actually perform any
better than capturing BI-RADS for population health manage-
ment but it may potentially help enhance BI-RADS assess-
ment by developing models with these imaging findings and
other biomarkers. However, such an analysis is beyond the
scope of our study.

Conclusion

Information extraction tools can accurately document struc-
tured data elements from text reports for a variety of breast
imaging modalities. These data can be used to populate
screening registries, which in turn may ultimately help eluci-
date more effective breast cancer screening processes.
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