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Abstract Dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) is a well-established technique for
studying blood–brain barrier (BBB) permeability that allows
measurements to be made for a wide range of brain patholo-
gies, including multiple sclerosis and brain tumors (BT). This
latter application is particularly interesting, because high-
grade gliomas are characterized by increased microvascular
permeability and a loss of BBB function due to the structural
abnormalities of the endothelial layer. In this study, we com-
pared the extended Tofts-Kety (ETK) model and an extended
derivate class from phenomenological universalities called
EU1 in 30 adult patients with different BT grades. A total of
75 regions of interest were manually drawn on the MRI and
subsequently analyzed using the ETK and EU1 algorithms.
Significant linear correlations were found among the parame-
ters obtained by these two algorithms. The means of R2 ob-
tained using ETK and EU1 models for high-grade tumors
were 0.81 and 0.91, while those for low-grade tumors were
0.82 and 0.85, respectively; therefore, these two models are
equivalent. In conclusion, we can confirm that the application

of the EU1 model to the DCE-MRI experimental data might
be a useful alternative to pharmacokinetic models in the study
of BT, because the analytic results can be generated more
quickly and easily than with the ETK model.
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Introduction

Many pathologies relating to the central nervous system affect
the integrity of the blood–brain barrier (BBB). For instance,
inflammatory diseases, such as multiple sclerosis [1, 2],
chronic and acute cerebrovascular pathology [3, 4], and brain
tumors, induce BBB damage.

The BBB in patients with brain tumors is structurally and
functionally abnormal [5]; the tumor blood vessels are tortu-
ous, disorganized, and highly permeable because of abnormal-
ities in their endothelial walls [6]. For instance, glioblastoma
multiforme (GBM), which is one of the most common and
most aggressive vascular primary brain tumors in adults, is
characterized by increased microvascular permeability and a
loss of BBB function due to structural abnormalities of the
endothelial layer. In particular, these abnormalities exist as
open endothelial gaps (interendothelial junctions and
transendothelial channels), cytoplasmic vesicles (caveolae
and vesicular vacuolar organelles), and fenestrations [7].

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) is a well-established technique for studying
BBB permeability, and it is useful to study and monitor treat-
ment of the BBB’s integrity in patients with brain tumors. This
technique involves the serial acquisition of T1-weighted im-
ages before, during, and after the injection of a paramagnetic
contrast agent (CA) [8]. In DCE-MRI, kinetic parameters,
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such as the volume transfer constant between blood plasma
and extravascular extracellular space (EES) (Ktrans), the vol-
ume of EES per unit volume of tissue (ve), the blood plasma
volume per unit volume of tissue (vp), and the rate constant
between EES and the blood plasma (kep) can be assessed [9].

The standard Tofts-Kety (TK) model [9] and the extended
Tofts-Kety (ETK) model [10] are the theoretical models that
have been used the most in the past to study DCE-MRI data.
The ETK model is generally recommended for tumor charac-
terization; it makes it possible to obtain the essential perme-
ability parameters that correlate with immunohistochemical
markers of tumor angiogenesis, microvessel density, and tu-
mor grade [11]. With the ETK model, it is possible to assess
Ktrans, ve, and vp, while with the TK model, it is only possible
to evaluate Ktrans and ve; therefore, it can be used only in
tissues that are weakly vascularized. It is possible to use other
more complicated theoretical models for the DCE-MRI data,
such as the adiabatic approximation to the tissue homogeneity
model, the distributed capillary adiabatic tissue homogeneity
model, and the two-compartment exchange model. Different
problems in the evaluation of kinetic parameters can occur due
to these different models. Hence, it is very important to pay
attention to the algorithm used for the DCE-MRI data fitting
[12–14].

The DCE-MRI signal provides a relationship between the
measured signal time course S (t) and the concentration C (t)
of CA. However, the DCE-MRI signal cannot be used directly
for kinetic model fitting, because it does not proportionally
reflect the CA concentration in tissues. For this reason, the
implementation of the pharmacokinetic model typically re-
quires the knowledge of T1 pre-contrast values in the whole
brain and the arterial input function (AIF) estimation.

As an alternative to the models described above, empirical
functions can be used to fit DCE-MRI curves accurately, with-
out making assumptions about tumor physiology. Fan et al.
[15] used an empirical mathematical model for DCE-MRI in
order to differentiate between benign and malignant breast
tumors. Conversely, Gliozzi et al. [16] and Mazzetti et al.
[17] demonstrated that an empirical approach based on phe-
nomenological universalities (PUN) is able to fit DCE-MRI
experimental data on the spine and prostate tumors, respec-
tively. The PUN algorithm was used for the first time by
Castorina et al. [18] and Delsanto [19], and subsequently used
in a wide range of applications [20, 21].

In this study, we compared the ETK model and a derivate
class of PUN, called EU1 [16], applied to DCE-MRI data on
patients with different astrocytic tumors. We presented the
assessments and statistical correlations of different parameters
calculated by these two methods. We also evaluated the qual-
ity of the results’ fit by using standard R2 criteria. The EU1
algorithm works on theMR signal intensity and not on the CA
concentration. Provided that it does not need both the T1 pre-
contrast values in the brain and the estimation of AIF, its data

are easier and faster to analyze than those obtainedwhen using
the ETK model from a computing perspective.

Materials and Methods

Patients

We studied retrospectively 30 adult patients (16 females and
14 males; mean age±standard deviation=58.8±8.1 years; age
range=43–75 years) with different astrocytic tumors. The
World Health Organization’s (WHO) [22] classification was
used to determine the histological grades of each lesion. For
all patients recruited in this study, the diagnoses were con-
firmed by histopathology. In addition, patients were included
only if they were not receiving radiation, chemotherapy, or a
combination of both.

The tumors consisted of 20 glioblastomas multiforme
(GBM) (for a total of 56 ROIs) (WHO grade IV), three ana-
plastic astrocytomas (for a total of six ROIs) (WHO grade III),
and seven low-grade gliomas (for a total of 13 ROIs) (WHO
grade II).

A total of 75 regions of interest (ROIs) in the tumor regions
were manually drawn on the DCE-MRI by a radiologist. ROIs
were drawn using ImageJ software [http://imagej.nih.gov/ij/].
The tumor extension was evaluated mainly on the T1 contrast-
enhanced images (CE-T1) and on the T2 fluid attenuated in-
version recovery (FLAIR) for low-grade tumors. The CE-T1
and FLAIR images were coregistered to DCE-MRI by using
FLIRT, included in the FMRIB Software Library (FSL version
5.0.4) [23]. Multiple ROIs were drawn in order to avoid areas
of necrosis and large blood vessels and when the tumor ex-
tended onto more slices. We did not include satellite lesions.

This study was approved by our local IRB. The protocol
associated with this study meets all criteria from our IRB
regarding retrospective studies. Informed consent was obtain-
ed from each participating patient, and it included information
to the patient that an additional sequence with longer scanning
time and contrast agent would be utilized.

Imaging Protocol

MRI was performed using a 1.5-T clinical system (Siemens
Magnetom Avanto, Erlangen, Germany) with receive eight-
channel head coil. The following image sequences were ac-
quired: T2-weighted (TR/TE=3800/95 ms; acquisition ma-
trix=320×384; NEX=2; field of view=250×300 mm; slice
thickness=5 mm, flip angle=150°), FLAIR (TR/TE=9000/
119 ms; acquisition matrix=320×384; NEX=1; field of
view=250×300 mm; slice thickness=5 mm); and T1-
weighted (TR/TE=500/10 ms; acquisition matrix=320×
384; NEX=1; field of view=250×300 mm; slice thickness=
5 mm, flip angle=80°). In order to calculate the T1 pre-
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contrast values in the brain, fast low-angle shot (FLASH) axial
3D T1-weighted images (TR/TE=6.7/1.0 ms; acquisition ma-
trix=320×384; NEX=1; field of view=250×300 mm; slice
thickness=5 mm) were acquired with multiple flip angles (5,
10, 15, 20, and 30°) before the intravenous injection of CA.

The DCE-MRI sequence was started immediately after the
intravenous administration of a gadolinium-based CA (gado-
butrol 0.1 ml/kg) by a power injector (Spectris Solaris EP
Medrad) at a rate of 5 mL/s. Dynamic axial 3D T1-weighted
Turbo FLASH images (TR/TE=6.7/1.0 ms; acquisition ma-
trix=320×384; NEX=1; field of view=250×300 mm; slice
thickness=5 mm; flip angle=30°; number of slices=20)
were acquired for 30 time points (234 s). For the data
analysis, we removed the first and the last slices in
every patient.

Imaging Post-Processing

The ETK model can be described by an impulse response
formalism [24]:

Ct tð Þ ¼ vp tð Þ þ K trans ⋅ exp −kept
� �� �

⊗Ca tð Þ ð1Þ

whereCt (t) is the total tissue contrast concentration, andCa (t)
is the contrast concentration in the arterial whole blood. The
rate constant between EES and the blood plasma (kep) is equal
to Ktrans/ve, and the ⊗ symbol represents the convolution. In
calculating the convolution, Ct (t) becomes:

Ct tð Þ ¼ vpCp tð Þ þ K trans
Z

Cp τð Þexp −kep t−τð Þ� �
dτ ð2Þ

where Cp (t) is the tracer concentration in the blood plas-
ma (Cp (t)=Ca (t)/(1–Hct)). Hct is the hematocrit. We used
an Hct value of 0.45, because it is the mean value in large
vessels for adult human populations [14].

In order to obtain the tissue contrast concentration, we cal-
culated pixel-wise T1 pre-contrast maps by the least-square
fitting of the theoretical equation:

S tð Þ ¼
M0 1− exp −

TR

T1

� �� 	
sinα

1− cos α ⋅ exp −
TR

T1

� � ;TR>>T2* ð3Þ

where S (t) is theMRI signal, TR is the repetition time, α is the
flip angle, and M0 is a factor proportional to the equilibrium
magnetization. T1 pre-contrast maps were generated by fitting
the pixel-wise image intensities of Eq. (3) at the flip angles of

5, 10, 15, 20, and 30°. Subsequently, the T1 and S0 values were
used to estimate the voxel R1 time courses, or relaxation rates,
from the acquired signal intensity time courses by Eq. (4):

R1 tð Þ ¼ −
1

TR
ln

1−
S tð Þ−S 0ð Þ
S0 sinα

þ 1−m

1− m ⋅ cosαð Þ
� 	

1− cosα
S tð Þ−S 0ð Þ
S0 sinα

þ 1 −m

1− m ⋅ cosαð Þ
� 	

2

664

3

775

ð4Þ

where α is the flip angle of the DCE-MRI sequence (α=30°),
m=exp [−TR/T1], S (0) and S (t) are the signal intensities at
time t=0, and time t, respectively. Then we calculated theC (t)
by using:

R1 tð Þ ¼ R10 þ r1C tð Þ ð5Þ

where R10 is the relaxation rate before the tracer injec-
tion and r1 is the relaxivity of the CA (r1=4.3 mM−1 s−1) [25].
Therefore, fitting C (t) with Eq. (2), Ktrans, ve, vp, and subse-
quently kep can be obtained.

PUN formalism is an empirical tool which represents the
experimental data of any given dataset analytically, indepen-
dent of the application field. In the past few years, the PUN
theory has been applied to several studies of DCE-MRI data
[16, 26].

S tð Þ ¼ exp rtþ 1

β
a0−rð Þ exp βtð Þ−1ð Þ

� �
ð6Þ

With EU1 class (Eq. 6), it is possible to obtain the
following three kinetic parameters: a0, which controls
the steepness of the DCE-MRI curve at t=0, and there-
fore, during the wash-in phase (the first part of the
DCE-MRI curve); β, which is the inverse proportion
to the time the system takes to reach the knee of the
curve. The sign of r determines the behavior of the
second part of the curve, and its absolute value is linked
to the rapidity of the change. For r>0, one can observe a
further enhancement of the intensity of the signal, while for
r<0, there is a wash-out phase [16].

Arterial Input Functions and T1 Maps

Arterial input functions (AIFs) were assessed by fitting the
CA concentration on the superior sagittal sinus by using a
bi-exponential function for every patient, and T1 maps on
the whole brains were calculated using a variable flip angle
method with five different flip angles (see Imaging protocol).
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Results

DCE-MRI curves were analyzed using the ETKmodel (Eq. 2)
and the EU1 algorithm (Eq. 6). Moreover, in order to evaluate
the quality of the fit of the results, standard R2 criteria were
used. We calculated the means and standard deviations of the
permeability parameters inside different ROIs. All results are
expressed as mean±standard deviation.

We found a mean value of Ktrans in grade IV tumors of
0.22±0.11 min−1, a mean value of Ktrans in grade III
tumors of 0.18±0.07 min−1, and a mean value of Ktrans in
low-grade tumors of 0.033±0.018 min−1.

The mean values for a0 were 53.6±18.9, 38.4±17.3, and
22.3±11.0 min−1 for grade IV, grade III, and low-grade tu-
mors, respectively. A significant Pearson correlation was
found between Ktrans and a0 in a total of 75 ROIs (r=0.71,
p<0.0001; Fig. 1a).

We found a mean value of kep in grade IV tumors of
1.4±0.5 min−1, a mean value of kep in grade III tumors
of 1.2±0.5 min−1, and a mean value of kep in low-grade
tumors of 0.8±0.3 min−1. The mean values for r were
0.057±0.095, 0.108±0.052, and 0.086±0.051 min−1 for
grade IV, grade III, and low-grade tumors, respectively.
A significant correlation for kep and r was found in all
75 ROIs (r=−0.63, p<0.0001; Fig. 1b).

The mean values for ve were found to be 0.18±0.10
for grade IV tumors, 0.14±0.05 for grade III tumors,
and 0.04±0.03 for low-grade tumors, while the mean
values for β were instead found to be −12.9±9.1 min−1

for grade IV tumors, −12.5±7.2 min−1 for grade III tumors,
and −4.7±1.3 min−1 for low-grade tumors.

Figure 2 shows the distributions for Ktrans and kep calculat-
ed by the ETK model and for a0 and r calculated by the EU1
algorithm for both high- (grade IV and III) and low-grade

tumors. Both theoretical models show adequate differentiation
between low- and high-grade tumors, even if the ETK param-
eters seem to differentiate better than PUN indices. For low-
grade tumors, the EU1 model shows low values of a0 (about
a0<25 min−1) and r values that are almost all positive.
However, the differentiation between grade IV and III is not
adequate for both models. From this graph, it appears that the
best parameters, in terms of usefulness for discriminating be-
tween low- and high-grade tumors, are Ktrans for the DCE-
MRI technique and a0 for the EU1 algorithm.

The quality of fitting of results between the two methods
was assessed by standard R2 criterion: for the EKT model, we
obtained a mean R2=0.81 (SD=0.09) for high-grade tumors
and ameanR2=0.82 (SD=0.13) for low-grade tumors. For the
EU1 class, we obtained a mean R2=0.91 (SD=0.06) for high-
grade tumors and a mean R2=0.85 (SD=0.11) for low-grade
tumors. The total mean R2 values (for high- and low-grade
tumors) were 0.81 for the ETK model and 0.89 for the EU1
class, respectively. According to these R2 values, these two
models appear to be equivalent.

In Fig. 3, we present an example of fitting by using the
ETKmodel and the EU1 class, with their respective R2 values,
in a patient with glioblastoma multiforme (WHO grade IV).
The sensitivity and specificity of separating low- vs. high-
grade tumors for Ktrans were 98.0 and 92.0 %, respectively.
The sensitivity and specificity for a0 were 89.0 and 92.0 %,
respectively.

Discussion

In recent years, DCE-MRI has been used to study tumors in
the human body in order to differentiate between high- and
low-grade tumors [27–29]. Different methods have been

Fig. 1 Pearson correlations and their respective correlation coefficient, r
for different parameters: correlation between a Ktrans and a0 and b kep and
r. The range of r is between +1 and −1. Avalue of 0 indicates that there is

no association between the two variables. Avalue greater than 0 indicates
a positive association, while a value lower than 0 indicates a negative
association between the variables
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applied to analyze DCE-MRI experimental data [14]. By
using these models, it is possible to obtain different kinetic
parameters, such as Ktrans, kep, vp, and ve.

The robustness and reproducibility of quantitative DCE-
MRI studies rely on appropriately measuring AIF; in fact,
errors in AIF estimation can seriously affect estimates of per-
meability parameters. Different approaches can be used to
assess AIF. It is possible to use standard AIFs [30] or obtain
them by individual measurements using different theoretical
models, including mono-exponential [31] or bi-exponential
[32] functions. The estimation of high-quality AIF is, howev-
er, difficult because of factors such as patient motion, partial
volume effects, flow artifacts, limited temporal resolution, and
difficulties in quantifying the peak concentrations of CA.

Another key point in the DCE-MRI studies is the evalua-
tion of pre-contrast tissue T1 values, which can be achieved in

different ways. A pre-contrast T1 mapping is essential for
converting dynamic image signal intensity into CA concentra-
tion in tissue and plasma to accurately evaluate permeability
parameters.

On the other hand, phenomenological universalities (PUN)
represent a novel tool for experimental research. This ap-
proach was originally developed by Delsanto et al. in 2007
[19], and has been used subsequently in different fields, in-
cluding physics, engineering, social sciences, and medicine
[21, 33]. The EU1 class, derived from the extended PUN
description, is able to reproduce contrast uptake and wash-
out phase giving high R2 values in the DCE-MRI experimen-
tal data fitting. Gliozzi et al. in 2011 [16] compared this class,
the Weibull function [34] and the bi-exponential function in a
small group of patients with spine tumors, finding that the
EU1 results were very promising, obtaining high R2 values

Fig. 2 Feature distribution in the parametric planes for a the extended Tofts-Kety model (Ktrans and kep) and for b the EU1 class (a0 and r). This figure
shows grade IV tumors (squares), grade III tumors (triangles), and low-grade tumors (asterisks)

Fig. 3 An example of fitting of DCE-MRI experimental data by using
the extended Tofts-Kety model and the EU1 class, with their R2 values,
respectively, in a 46-year-old female patient with glioblastoma
multiforme (WHO grade IV). Empty circles represent experimental

data, continuous and dash lines are best fits obtained by Eq. (2) (for
ETK model, dash line) and Eq. (6) (for EU1 class, continuous line). For
this example, the R2 value is better in the EU1 class than in the ETK
model
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in the DCE-MRI data fitting. Subsequently, Mazzetti et al. in
2012 [17] compared the EU1 class and the EKT model in 28
patients with prostate tumors.

After reviewing Mazzetti et al.’s work, we decided to com-
pare the ETK model and the EU1 algorithm in 30 adult pa-
tients with astrocytic tumors. We decided to employ this algo-
rithm because there have been no studies that used the EU1
algorithm to study the brain tumors. Most importantly, we also
chose to use these two functions because they are character-
ized by the same number of fitting parameters (namely, three).
We analyzed 56 ROIs in grade IV tumors, six ROIs in grade
III tumors, and 13 ROIs in low-grade tumors. Pearson corre-
lations were assessed for different kinetic parameters. In our
study, we utilized a ROI-based analysis that has the advan-
tages of speed and ease of use.

Significant linear correlations were found when we com-
pared the main fitting parameters obtained by the two models.
The Pearson coefficient produced a significant correlation be-
tween Ktrans and a0 for all 75 ROIs. A similar correlation was
found between kep and r (p<0.0001). Ktrans and a0 are related
to the steepness of the DCE-MRI during the wash-in phase,
while kep and r determine the behavior in the wash-out phase
of the DCE-MRI curve.

The differentiation between high- and low-grade tumors is
shown in Fig. 2, where it is possible to see that lower values of
Ktrans and a0 are related to low-grade tumors. Therefore, our
results show that, in general, both Ktrans and a0 are useful for
differentiating high- from low-grade tumors. However, these
parameters are not useful for differentiating between grades
IVand III. In addition, we calculated the quality of data fitting
by R2, obtaining higher R2 values in the EU1 class than in the
ETK model.

The limitations of this study were the low number of pa-
tients with low-grade and grade III tumors, and the fact that
there was no assessment made of repeatability/reproducibility.
Probably, the differentiation between low- and high-grade tu-
mors would be more difficult should more grade III gliomas
be included in the study. Moreover, due to patients’ health
conditions, we were not able to follow the CA contrast for a
long time; therefore, the ve values may not be accurate in all
patients. In this study, we also did not explore the use of
denoising in the DCE-MRI fitting. There are several algo-
rithms that allow attenuation of denoising in data of this type.
For instance, Gal et al. [34] presented the DNLM algorithm
that permits a good attenuation of noise in the DCE-MRI
analysis.

Conclusions

In conclusion, the results showed that both models are equally
capable of differentiating high- from low-grade gliomas with a
relatively good correlation; hence, we can confirm that the

application of an empirical model to the DCE-MRI experi-
mental data, in this case, the EU1 class, could be a useful
alternative to pharmacokinetic models. The main limitation
of the EU1 class is that it only allows us to estimate the per-
meability parameters from DCE-MRI data, thus giving partial
information with respect to the ETKmodel, which also allows
us to quantify tumor blood volume with the derived parameter
vp. Conversely, its strength is that, using this algorithm, the
data analysis is more easily performed than with the ETK
model, because it does not need an AIF assessment and a
pre-contrast T1 map calculation. Moreover, since the EU1
class works on DCE-MRI signal intensity, its analysis is faster
than with the ETK algorithm. Even if our results are not gen-
eralizable, our preliminary data suggest that the EU1 class can
be used to assess tumor grade in astrocytic tumors as well as a
pharmacokinetic model. In the future, the EU1 class could be
utilized to define threshold values to differentiate high- from
low-grade tumors.
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