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Abstract The conception and deployment of cost effective
Picture Archiving and Communication Systems (PACS) is a
concern for small to medium medical imaging facilities, re-
search environments, and developing countries’ healthcare
institutions. Financial constraints and the specificity of these
scenarios contribute to a low adoption rate of PACS in those
environments. Furthermore, with the advent of ubiquitous
computing and new initiatives to improve healthcare informa-
tion technologies and data sharing, such as IHE and XDS-i, a
PACS must adapt quickly to changes. This paper describes
Dicoogle, a software framework that enables developers and
researchers to quickly prototype and deploy new functionality
taking advantage of the embedded Digital Imaging and Com-
munications inMedicine (DICOM) services. This full-fledged
implementation of a PACS archive is very amenable to exten-
sion due to its plugin-based architecture and out-of-the-box
functionality, which enables the exploration of large DICOM
datasets and associated metadata. These characteristics make
the proposed solution very interesting for prototyping, exper-
imentation, and bridging functionality with deployed applica-
tions. Besides being an advanced mechanism for data discov-
ery and retrieval based on DICOM object indexing, it enables
the detection of inconsistencies in an institution’s data and
processes. Several use cases have benefited from this ap-
proach such as radiation dosage monitoring, Content-Based
Image Retrieval (CBIR), and the use of the framework as

support for classes targeting software engineering for clinical
contexts.

Keywords PACS . Digital Imaging and Communications in
Medicine (DICOM) . PACS implementation . PACS
integration . PACS service . Radiation dose . Software design

Background

Over the last two decades, medical imaging has evolved to
become a very valuable tool not only in clinical practice but
also in research. Nowadays, it is fundamental for providing
quality diagnosis and supporting practitioners’ decision-
making [1, 2]. Picture Archiving and Communication Sys-
tems (PACS), originally designed as a tool to provide conve-
nient means of storage and access to medical imaging data for
the radiology department, have evolved into hospital-wide
systems. Besides radiology, many other clinical areas have
adopted PACS in their daily routines, such as cardiology [3],
dentistry, and pathology [4]. To cope with this diversity, dis-
tinct approaches have been followed regarding PACS imple-
mentation in clinical and research institutions. Solutions range
from simple models, used in small laboratories, to enterprise
grade platforms, typically integrated with other healthcare in-
formation systems. The requirements and workflows for those
integrated solutions may vary widely, however.

Besides the common usage of a PACS as a mere image
repository, continuous technological evolution has led to the
emergence of other applications ranging from teleradiology to
computer-assisted diagnosis (CAD), content-based image re-
trieval (CBIR), and multidimensional imaging analysis. New
perspectives in both data storage and distribution have also
been brought forward due to the emergence of new paradigms,
such as GRID, peer-to-peer, and cloud computing. The
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application of these technologies is likely to further improve
PACS-based applications, increasing the service availability,
reliability, and speed, hence enhancing overall productivity
and improving patient care.

However, due to the need for market research and extensive
clinical validation, the development of commercial systems
lags behind the ever increasing demand for advanced process-
ing tools. Furthermore, there is limited room for exploration of
new avenues with a reasonable turnaround time that could
allow users to rapidly evaluate new features [5]. It also be-
comes hard to justify cater to niche use cases, as the profit
potential is low.

Besides the lengthy timespan required when bringing a tool
to market, the high cost and complex setup required by these
systems also limits severely the availability of these tools [1,
6]. This is a major constraint particularly in small medical
institutions and in some research centers. Cost reduction, the
ability to adapt software to particular workflows and perform
experiments, modifying, or creating new functionality are,
however, some of the reasons why open source and free soft-
ware are becoming adopted in the medical community [7].

In that regard, these are advantages provided by Dicoogle
[6], an open source PACS with a plugin-based architecture.
What makes Dicoogle unique is its mindset towards the ex-
ploration and application of innovative technological ap-
proaches while providing the robustness required of a PACS
for its daily operations. The software framework provides a
symbiotic environment where multiple concerns are separated
into self-contained units orchestrated and managed by the core
application. In this article, we describe its architecture and its
impact on our research and into the development processes of
PACS applications, with emphasis on some selected success
stories.

Picture Archiving and Communication System

The move towards digital support for radiological images gave
rise to a set of challenges that led to several implementations of
what are commonly designated by the umbrella term of PACS
(see Fig. 1). This concept is the embodiment of distinct hard-
ware and software technologies comprising medical imaging
and data acquisition equipment, subsequent storage devices,
and display subsystems, all of which are integrated by digital
networks and end-user software [1]. Such systems are designed
to cope with the high storage needs and transmission require-
ments of an institution’s digital medical data.

The implementation of a PACS provides an overall boost
of productivity to an institution and decreases its operational
costs [8]. It also creates an excellent opportunity for
empowering healthcare practitioners with the capacity to work
remotely or perform telemedicine, providing collaborative
work environments and facilitating the access and sharing of
multimedia information.

PACS have become one of the most valuable tools
supporting the medical profession in both decision-making
and treatment procedures [1]. It is estimated that over 1 EB
of data pertaining to medical procedures will be produced in
2016 [9]. Due to the increasing demand for more flexible
PACS solutions, researchers are actively exploring state-of-
the-art paradigms and technologies such as distributed and
heterogeneous computing grids [10, 11], cloud computing
[12], peer-to-peer networks [6], and knowledge extraction
using indexing engines [13].

The core element of PACS is, typically, a central archive
server that stores images acquired by the modalities, along
with complementary information about patients and studies.
The archive data can be queried by a multitude of equipment,
such as CAD systems and display workstations. In Fig. 1, a
common disposition for the various PACS components is
depicted.

Protocols for Data Sharing in a PACS Environment

The evolution of information and communication technolo-
gies creates new opportunities but also imposes new chal-
lenges for PACS. For instance, professionals are demanding
new mobile Web-based access platforms to not only enhance
enterprise mobility, but also to promote Internet-based scenar-
ios for remote diagnostic and cooperative work [3, 14]. PACS
rely heavily on a set of standard definitions denominated as
Digital Imaging and Communications in Medicine (DICOM)
[15], which, by itself, represents a major contribution to the
exchange of structured medical imaging data.

The DICOMVersion 3 is a well-established standard in the
medical field that provides guidelines for communication and
data structures in these scenarios. The first versions of this
protocol were created circa 1983 by the National Electrical
Manufacturers Association (NEMA), when point-to-point
connections were the norm and PACS infrastructure was char-
acterized by being a semi-static organization. This protocol
stands now as one of the key pieces involved in medical im-
aging systems used by practically every acquisition gateway.

DICOM is an extensible object-oriented protocol and de-
fines several normalized services [16] that enable the commu-
nication between different PACS components. For instance, it
allows modalities to directly send acquired images to the
PACS archive, and their later retrieval by the practitioner’s
workstations for diagnostic purposes. Of great importance is
the fact that it defines how medical imaging data and respec-
tive metadata is to be stored, retrieved, and transmitted, thus
allowing interoperability between different modalities and ap-
plications. In DICOM, images are associated with a single
patient, their correspondent series and study, as well as their
respective metadata concerning patient demographics, clinical
staff, equipment, radiation dosages, and other useful informa-
tion. The data is organized hierarchically following DICOM
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Information Model (DIM) and respective levels (patient,
study, series, and object).

The networking specification of DICOM comprises an ap-
plication layer protocol that uses TCP/IP tomove data through
the network and an addressing mechanism based on applica-
tion entity (AE) [2]. Another DICOM part is Web Access to
DICOM Persistent Objects (WADO) [17]. WADO is an at-
tempt to bridge web technologies and the DICOM infrastruc-
ture by allowing RESTful HTTP access to persistent objects at
the image level. The lack of standard query and storage mech-
anisms in the original WADO has led to several extensions to
the base architecture [18, 19], and recently, to the adoption by
NEMA of the WADO using RESTful Services (WADO-RS),
Store Over the Web (STOW-RS), and Query based on ID for
DICOM Objects (QIDO-RS) as addends to the original pro-
tocol. These extensions allow, respectively, for the storage and
query of DICOM objects via HTTP. They are also useful for
cross-enterprise access to medical images since HTTP is often
allowed to traverse firewalls.

PACS Challenges and Trends

The PACS concept started to be broadly accepted two decades
ago. The advantages provided by these systems are well un-
derstood by the medical community, and the initial hurdles
related with display, storage, and transmission technology
have largely been overcome. For small institutions, the ques-
tion of using a PACS is commonly no longer phrased in terms
of Bif,^ but in terms of Bwhen^ or Bhow.^ For large medical
institutions, the initial investment in a PACS can be consider-
able, reaching many million dollars [9]. Moreover, they are
but a single piece of healthcare IT infrastructure, and

integration with other healthcare systems such as the Radiol-
ogy Information Systems (RIS) and Hospital Information Sys-
tems (HIS) was also an important issue in the last decade [4].
Far from stagnating, PACS have followed the ever-evolving
context of healthcare industry.

A distinct issue faced by healthcare IT is how to share data
between distinct institutions, efficiently and routinely. This
issue is not merely technological. Medical data exchange be-
tween different institutions poses legal and ethical challenges
[20]; hence, institutions are reluctant to exchange sensitive
data such as non-anonymousmedical images.Moreover, there
are also other issues such as data ownership, integrity and the
licensure, accreditation, and liability of the practitioners and
institutions. To overcome such issues, the Integrating
Healthcare Enterprise (IHE) defines integration profiles based
on existing protocols [21]. Among those profiles, one stands
out, the Cross-Enterprise Document Sharing (XDS) [22]. Par-
ticularly, XDS for imaging (XDS-i) [23] is a content profile
that takes into consideration the specifics of the medical im-
aging field, including the PACS in the XDS workflow. One of
the main challenges is to facilitate cross-institutional data
transfer in a transparent, efficient manner, while maintaining
the stringent privacy and confidentiality requirements of pa-
tient data [24].

A related issue to cross-institutional document sharing is
teleradiology which, in 2003, was reportedly used by 70 % of
Americanmedical institutions [25]. Today’s teleradiology sys-
tems provide a multitude of services for experts, allowing
them to request second opinions from colleagues, to work
remotely from home, or to provide radiology services to rural
areas where no radiologist is present [26]. The IHE profiles
are, however, not yet widely deployed and hence not

Fig. 1 A common workflow for
DICOM based PACS
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powering the current teleradiology solutions. And, while a
reality for several years now, its existence has not yet been
freed from all controversies. So, if 15 years ago the major
issues were image quality, transmission speed, and image
compression, nowadays the focus is on clinical governance,
legal issues, and quality assessment. Another issue to over-
come is the general inability to seamlessly integrate
teleradiology systems with other healthcare information sys-
tems [26, 27]. Most solutions proposed in literature rely on
custom software deployed under very particular conditions.

Dicoogle

Dicoogle is an open source PACS. Its implementation started
in 2007 and has since been tested on multiple contexts. Be-
sides supporting standard DICOM semantics, Dicoogle lever-
ages peer-to-peer communication models and document-
based indexing techniques within a DICOM network, diverg-
ing from the common architecture employing relational data-
bases [13]. This replacement has resulted in a paradigm
change since it has enabled much more information to be
extracted from medical imaging repositories contrasting
heavily with the standard DICOM query and retrieve services.
In turn, its P2P features have allowed Dicoogle to be used as
part of an inexpensive federated network of repositories.

Recently, the project has matured into a catalyst for re-
search and development of new PACS subsystems and appli-
cations. With the project growing organically, a number of
forks and branches were created providing distinct function-
ality. Dealing with multiple implementations [28–32] quickly
became unattainable and cumbersome to scale. The merge of
branched code with the stable branch has proven not to be free
of issues and led to minor and sometimes major duplication of
code having slightly different interfaces, to the need to adapt
existing functionality to changes introduced elsewhere in the
code, or even caused the introduction of race conditions. This
is a common problem faced bymany software developers, and
in our view, it stated the need for a more decoupled and mod-
ular architecture and a more integrated development culture.
Given the very active research effort in PACS systems, we felt
there is a need for an environment where an idea may quickly
be prototyped, tested, and validated. On the other hand, the
addition of a CBIR module supported by a separated indexing
engine [30] and plans to leverage cloud-based data storage
required us to re-evaluate our previous assumptions (such as
the internal interfaces to query and indexing based on
Lucene’s API). This led us to refactor the application’s archi-
tecture, with the goal of streamlining and easing third-party
development, a process that benefited from the field expertise
obtained from previous iterations and deployments of
Dicoogle.

The Dicoogle framework enables the development of
plugins that modify or enhance its core functionality. Plugin

communication, services, and lifetime are all managed by the
core application. A plugin-based approach maximizes the
decoupling between components, enabling orthogonal fea-
tures to be developed separately and deployed easily. Custom
builds are done by packing only the desired plugins, which
minimizes the area of impact of experimental components.

There are innumerous scenarios in healthcare institutions
and academia where clinical practitioners are working togeth-
er with computer scientists to develop innovative solutions to
improve the quality of services provided in medical imaging
field. However, the researching and developing of new soft-
ware pieces, for instance for CAD or image analysis, is very
difficult to perform in traditional PACS-DICOM solutions. By
facilitating the access to a fully fledged and extensible PACS
server, Dicoogle permits us to bridge the gap between state-of-
the-art investigation and integration with DICOM networks, a
complex and time-spending task. By leveraging its DICOM
and Web capabilities, Dicoogle has also been used to bridge
PACS with the cloud, third-party applications, and as a learn-
ing platform in the academia.

Methods

Dicoogle Framework

Our analysis of DICOM and PACS usage and trends coupled
with the field experience obtained from previous iterations of
the Dicoogle project have led us to separate and streamline the
functionalities provided into multiple categories: storage,
indexing, query, service, and presentation (as shown in
Fig. 2). Each category is associated with a particular interface,
the implementation of which is loaded at runtime, as a plugin.
It is up to the core application to orchestrate the operations
provided by the various plugins.

Although the various plugin categories embody an orthog-
onal semantic context often, in practice, there is a strong de-
gree of intermingling that needs to be explored in order to
provide a fast and robust solution. For instance, an indexing
plugin using Lucene as backend will likely have a counterpart
in terms of a query plugin accessing the same database. As
such, the entry point for the plugin framework is a class
representing a set of plugins, PluginSet. This data structure
aggregates plugins from multiple categories into a functional-
ly consistent unit simplifying both development and
deployment.

The plugin’s life cycle is managed by the Dicoogle core
allowing each module to be enabled or disabled per user re-
quest. During the application startup, the plugin directory is
scanned and identified plugins are loaded according to their
configuration file.

From the application’s core point of view, the various
plugins within a set are independent of each other, accessed
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only via the respective interfaces. However, internally, com-
plex plugins may need to have their state shared. These types
of dependencies are easily solved inside the PluginSet con-
structor which has the opportunity to properly instantiate its
child plugins and share any data structure required to achieve
communication between its internal components. From the
external user point of view, functionality is accessible through
the DICOM protocol, the exported web services, an RMI in-
terface, or the Web frontend, depending on purpose and con-
figuration (as show in Fig. 3).

In order to facilitate plugin development by third parties,
Dicoogle provides an Software Development Kit (SDK). By
using this SDK, a plugin may be created and distributed as a
.jar. If it requires external dependencies (for instance, the
jfreechar library used for data visualization for the CBIR val-
idation plugin), they may be also included in the jar.

The SDK provides common functionalities to unify and
ease the development of various plugins. For instance, a set-
tings management system and a logging interface are both
supported by Dicoogle and exposed to the developer. The
SDK further provides a message-based inter-plugin commu-
nication infrastructure and exposes an interface to the applica-
tion task manager allowing plugins to dispatch asynchronous
tasks without having to deal with boilerplate code. Conve-
nience methods to handle DICOM objects and access indexed
data are also provided.

Storage Plugins

A crucial part of any PACS is the persistency ofmedical image
studies. A standard Dicoogle deployment relies on the local
file-system as the backend of choice to store persistent
DICOM objects. However, with the coming of age of cloud
storage technologies, peer-to-peer distribution mechanisms
and grid networks, a distinct set of storage policies comes into
play. Data may not, and needs not, in all cases to be locally
available to the system. The distinct types of storage policies
are fertile ground for investigation and need to be normalized
in the context of an application if we are to provide storage
functionality in a consistent manner regardless of the under-
lying technology.

In Dicoogle, we need access to DICOM data when
responding to services and when extracting information
for fast querying and indexing (see Figs. 4 and 5). Hence,
we need to unambiguously identify each file so that a re-
lation may be established between separate indexed data
and the actual physical location of the DICOM object.
Moreover, given the wide array of potential technologies
that may be employed for storage, we do not particularly
care where the files are stored, as long as we can retrieve
them on demand.

The solution adopted by Dicoogle employs storage plugins
to provide the persistency mechanisms, and universal resource

Fig. 2 Class diagram of the SDK’s main interfaces
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locators (URL) to uniquely identify a resource, i.e., DICOM
file, and the means to retrieve it, i.e., a storage plugin that
knows how to decode and retrieve the specified data. For
instance: Bcloud:///dicomsrv1/file1.dcmBor Bfile:///var/repo/
1.2.12345.dcm.^ A storage Plugin must implement a store
method that takes either a DICOM object or stream and return
a URI for the stored resource.

The converse operation must also be supported. Given an
URL, the underling resources must be delivered. This is
achieved by defining the method Bat(URL).^ URLs may refer
to collections of resources; accordingly, this method returns an
iterator into a set of StorageInputStream objects allowing ac-
cess to the raw DICOM data. Specializations of this class are

used to provide data prefetching and caching in a transparent
manner to the core.

Indexing and Query Plugins

Besides acting as a PACS, a goal of Dicoogle is to provide to a
practitioner access to as much information as it might be re-
quired for decision support or statistical analysis. To do so, we
initially relied on the extraction of metadata present in the
objects of DICOM repositories and its respective indexation
in a Lucene database [13]. This proved a successful approach,
validated on the field, where it provided insights efficiency
and service quality [28] and on the radiology dosage variation

Fig. 3 Dicoogle framework—
full stack architecture

Fig. 4 DICOM C-STORE operation—the sequence diagram explaining the interaction with the plugins
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[33]. Our foray into new strategies for information retrieval,
such as CBIR, required us to come up with new abstractions
that, while allowing us to maintain all previous functionality,
are more amenable to extension.

Indexing plugins are the components responsible for orga-
nizing data in a format that allows quick access to the stored
information, while query plugins mediate access to that infor-
mation. This solution harmonizes the processes of extracting,
storing, and retrieving information, hence allowing the explo-
ration of other data representation and information retrieval
mechanisms, such as query-by-example, and study of the scal-
ability and performance of distinct databases [34]. Due to the
variety of data that can be indexed (textual, visual, hierarchi-
cal), the indexing policy and information extraction mecha-
nisms are left entirely to the indexing plugin, which is free to
contain additional dependencies to specific databases or li-
braries not part of the core and to define its own internal data
representation. The indexer interface requires as input a
StorageInputStream which has the effect of decoupling the
indexing plugins from the DICOM storage policy. We could
have the same effect by passing a URL; however, this ap-
proach does not require the extra step to retrieve the URL,
an operation that would have to be repeated through each
index plugin.

The output of a set of operations is a report data structure
with a status, successful or not, and some additional informa-
tion. However, instead of directly returning a report, the plugin
must return a task. The reasons are twofold. Firstly, while the
indexing process is fairly quick when handling the textual
component of a DICOM file, the same is not true when
extracting image features (for instance, in CBIR plugins or
any kind of image analysis). Hence, we need to execute that
code asynchronously. We could do that by creating tasks in-
side Dicoogle’s core, however, that would leave us no guar-
antee that the method is thread safe. Requesting an explicit
task does not offer that guarantee as well; however, it gives the
programmer a very strong hint that the code will execute
asynchronously and not at the place of call. Each index meth-
od is scheduled for execution on new data as it arrives, inde-
pendently of its source, which may be a DICOM service or a
user-initiated action.

Query plugins are the natural counterpart to the indexing
plugins and provide the means for information to be retrieved.
They provide the bridge from an index’s internal data repre-
sentation into an object understood by Dicoogle’s frontend.
Typically, for each index plugin, we have at least a query
plugin that knows how to leverage the indexed data to provide
answers quickly to a user’s query.

Services

Dicoogle supports some of the most important DICOM ser-
vices, such as C-STORE, C-FIND and C-MOVE, and

WADO, and has some degree of support for other services
such as XDS-i [24], with plans to integrate QIDO-RS and
STOW-RS.

The DICOM storage and retrieve actions are fully support-
ed through the C-STORE command (also used in C-MOVE
operations). The DICOM C-STORE operations are typically
called when a modality (or any other entity) produces an im-
age or study and sends it to the PACS archive. In this process,
as shown in Fig. 3, C-STORE operations will invoke func-
tionality provided by the storage and indexing plugins.

The indexed information can be accessed programmatical-
ly using the SDK API, which has a query language similar to
Lucene, or through instantiated graphical plugins. Queries are
automatically performed whenever any DICOM service re-
quests them, such as DICOM query/retrieve (Fig. 5). This is
fully interoperable with workstations that support the DICOM
standard. Results returned by query plugins can be retrieved or
forwarded using the storage plugins.

REST Plugins

The usage of Dicoogle in clinical environments highlighted the
necessity of sharing information with external applications that
do not understand DICOM, and how cumbersome it is to rely
on the DICOM protocol to share data with mobile applications
and transverse firewalls. Nowadays, one of the best ways to
share information is through the use of web services. Motivated
by the good results obtained on a previous work [19], we de-
cided to place emphasis on the REST paradigm. This method-
ology has gained wide acceptance around the web as a simple,
resource-oriented alternative to SOAP and its companion the
Web Services Description Language (WSDL). The inherent
simplicity of accessing resources is the main reason it was cho-
sen to drive the interfaces. Another advantage of using it instead
of SOAP is the fact that it is simple to transmit binary data
where SOAP would require an inefficient base 64 encoding
and posterior decoding. These are likely the same reasons that
have led NEMA to base the new revisions of WADO (WADO-
RS, STOW-RS, and QIDO-RS) on RESTful web services.
Dicoogle’s WADO implementation is based on REST plugins
which are being used to drive zero footprint DICOM visualiza-
tion tools [35], and mobile applications [32].

To facilitate the development of new web services, an API,
based on RESTlet, is provided. The web services are enabled,
configured and orchestrated by Dicoogle’s control panel leav-
ing to the application only the semantics of the service.
Plugins loaded on demand and web services are no exception.

Having the functionality to view indexed DICOM files as
RESTful resources, we can make them available on demand
by performing a standard HTTP GET on the plugin-defined
URL. That is the basis of our WADO implementation. Using
HTTP content type negotiation mechanisms, besides various
representations for DICOM files (DCM, JPEG, PNG for
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image types, JSON or XML for the metadata), we can also
return the results of a query plugin, some of which perform
complex analysis to the indexed dataset.

Inter-plugin Communication

By design, a plugin has no direct access to any of Dicoogle’s
methods or classes outside the Platform SDK package. Direct
schemes of communication using object references are dis-
abled for plugins except when mediated by Dicoogle via a
proxy object. This also means that a plugin cannot directly
execute any of another plugin’s methods which forces the
plugins to be decoupled and insures that we have no illegal
accesses to plugins disabled by the user. There are situations,
however, where a plugin must have access to data provided by
other plugin. Such an example is the CBIR validation plugin
which must execute CBIR queries and at the same time access
DICOM data for result validation. While we could conceiv-
ably merge the validation functionality with CBIR plugin, in
the general case, we do require that plugins may communicate
with each other, meaning we must be able to handle depen-
dencies. We handle them by allowing each plugin to specify a
unique name, which is then used to resolve any dependency
during runtime. Plugins whose dependencies have not been
satisfied will be disabled.

For a plugin which dependencies have been successfully
resolved, we provide three inter-plugin communication
mechanisms.

& Interface request. If a plugin depends on another, it can use
a proxy object to request a reference to a plugin interface

by specifying the plugin name. Having the interface, it can
call the methods exposed in its own thread. This mecha-
nism makes the assumption of thread safety in the called
plugin.

& Message Passing. This is a non-blocking one-way com-
munication mechanism. A Plugin is instantiated with a
message queue that acts as a message pool. Thread safety
is guaranteed by Dicoogle, which routes the communica-
tion, places the messages in the message pool, and notifies
the receiver. A message contains the sender’s identifica-
tion, the message tag, and a payload. These messages can
be broadcast or routed to a specific plugin (using its name
or placing them using methods exposed on the Plugin
interface). Furthermore, Dicoogle core also issues some
messages on its own, for instance when an indexing oper-
ation is requested or a query is to be performed.

& RESTservices. If a plugin exposes a RESTful webservice,
another one can use it to request data. This has the advan-
tage of allowing to check if a plugin is currently instanti-
ated and allows for very high decoupling at the expense of
having to parse or handle the returned data.

User Interface and Graphical Plugins

Dicoogle has three modes of interface with the user. It can
operate as a stand-alone command line application where its
indexing, analysis, and querying functionality can be scripted.
For end-users, we provide a graphical user interface (GUI)
based on remote method invocation (RMI) that allows the
PACS server and data engine to run on a machine and the

Fig. 5 DICOM query and retrieve of medical images
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graphical frontend on another. The standard RMI user inter-
face sports the basic mechanisms for plugin control, configu-
ration, and data visualization. Graphical plugins further extend
Dicoogle’s functionality in a predefined manner. We provide
several hooks that may be used to attach custom graphical
components. In Fig. 6, it is shown the interface with the place-
holders for the graphical components highlighted.

Each plugin may request a panel which is provided to it by
the application and of which the plugin has unique ownership.
That panel will be placed as part of a tab panel available from
the main interface where it will be used for configuration or to
cope with use cases not handled by the core application’s user
interface, for instance, CBIR’s query-by-example.

Recently, web technologies have become ubiquitous due to
their ability to drive zero-install applications that run on any
browser and the fact that the protocols are often allowed to
transverse firewalls. The service-oriented architecture of
Dicoogle lends itself nicely to the development of web-
interfaces as shown in Fig. 7. The web interface allows a user
to index various repositories, perform queries, and control the
operations performed by Dicoogle.

Results

Nowadays, Dicoogle provides several key features to extract
metaimaging information for retrospective assessments,
which is useful for statistics, management, and reporting tasks.

It can be used for wide-ranging clinical studies requiring, for
example, dose metrics that are now increasingly available in
DICOM persistent objects created by recent models of digital
image equipment [36, 37]. By enabling multiple views over
the medical data repository in a flexible and efficient way, and
with the possibility of exporting data for further statistical
analysis, Dicoogle allows identification of inconsistencies in
data and processes. This platform can be used to audit PACS
information data and contribute to the improvement of radiol-
ogy department’s practices [28, 29, 33]. Dicoogle has been
also extended to support CBIR, using a profile-based ap-
proach. Currently, our research group has been using the plat-
form in several hospitals and more than 22 million of DICOM
images metadata have already been indexed, corresponding to
a population of 160 thousand patients, and more than 450
thousand studies. To better expose the extensibility and use-
fulness of Dicoogle software architecture, the next subsections
will present distinct use cases supported by plugin
implementations.

CBIR Engine

Content-based image retrieval methods have shown great
promise in helping practitioners sift through the large
amounts of data present in medical institutions. These
methods rely on the automatic extraction of content from
a source image to provide the query terms for a search. In
practical terms, CBIR systems allow practitioners to use

Fig. 6 RMI user interface. The areas highlighted in blue are extensible through graphical plugins. The main window is a tabbed interface. Its main tab,
displaying a tree of results, also has a context-specific menu which can be extended
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images from any study they are working on as query to
the image database, hence obtaining a set of results that,
in some sense, are similar to the original image. CBIR has
the potential to save a significant amount of time to prac-
titioners, enabling them to quickly move from a source
image to a set of similar ones, potentially containing di-
agnosis reports. These reports, when compared to the
original image, may strengthen the case for the diagnosis
or provide the practitioner with additional insight. Given
that radiologists often rely in second opinions in order to
validate their diagnosis and increase their confidence
levels, CBIR provides query mechanisms that are very
close to the way a practitioner operates. We will be ana-
lyzing the implementation of this mechanism as an exten-
sion for Dicoogle using the plugin system mentioned be-
fore. A detailed analysis of the strategies and algorithms
employed can be found in [30]. The objective of Dicoogle
CBIR plugin (Fig. 8) is to allow query-by-example in the
PACS archive using as query input DICOM images pro-
vided by the user. This plugin is implemented as a
PluginSet and makes use of the four types of plugin. It
extends the user interface by providing a manager that
allows a user to select query profiles and a context menu
in the result window that allows a user to select an image
and perform a query-by-example with it using the profile
defined in the CBIR manager.

The CBIR index plugin uses OpenCV to extract imaging
features fromDICOM objects and indexes them using Lucene
as the persistency backend. When a query is requested, the
CBIR query plugin accesses the Lucene database and returns a
list of candidate images sorted by relevancy to the query im-
age. Finally, we expose that functionality as a RESTful
webservice, that takes as arguments an image URI and a sim-
ilarity profile.

In order to perform the clinical validation of the retrieval
engine, we created a separate plugin that analyses the accuracy
and performance of the CBIR component. This plugin extends
only the graphical plugin. However, it makes extensive use of

the RESTful web services provided by CBIR to obtain simi-
larity results, validating them using as ground truth DICOM
data mined by the textual indexing engines.

Dose Information System

With a default Dicoogle distribution, it is possible to extract
and aggregate a plethora of information from the DICOM
headers that can be statistically analyzed or exported in tabular
format to be used by external tools, for instance, Excel or
SPSS. Several studies have been made using Dicoogle, main-
ly in radiation dosage monitoring and population studies [29,
38].

In order to monitor radiation dose in radiology depart-
ments, it was necessary to develop a Dicoogle plugin. The
developed dose information system is compliant with DICOM
standard and supports the IHE radiation dose profile. It is
integrated with Dicoogle repository and provides centralized
access and dose analysis for the patient, study and population
scopes. Two data sources were used to populate this system:
the DICOM metadata associated with radiation dose and the
dose reports stored in the pixel data. In order to extract them, a
new indexing plugin was also developed that extracts the
values using optical character recognition (OCR) and stores
them in a dose report (a new DICOM object).

Discussion

Open source software has been building momentum and
gaining acceptance in the medical arena. High-quality open
source software, such as OsiriX, has shown that it is possible
and practical to use these solutions effectively in certain con-
texts with reduced operational costs. Furthermore, the avail-
ability of source codemakes those solutions very attractive for
fast development of functionalities or even prototyping and
validation of new concepts. In [39], for instance, it is stated
that open source Bis particularly promising concerning

Fig. 7 Dicoogle’s web-based frontend
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advanced image display and analysis applications where the
rapid increase in demand cannot be matched by traditional
expensive commercial solutions.^ Those advantages are not
exclusive. As referenced in the BBackground^ section, there
are other examples where open source solutions can benefit
large segments of the medical healthcare industry, for in-
stance, when we need to test, evaluate, and deploy new
inter-institutional protocols, adapt solutions to new data
sources, and explore new venues on data storage and
management.

In spite of the before-mentioned advantages, some short-
comings apply to the open source development and distribu-
tion model. Lack of support is commonly pointed out in this
regard. This is an issue that is prevalent in the academia, where
providing commercial grade support for an end-user is often
not its focus. A related issue, documentation, is also an Achil-
les heel for many projects. Whether by being non-existent or
irrelevant, such as class diagrams and source documentation
for end-users of an application, failure to have proper docu-
mentation repels many potential users and contributors.

The availability of the source code, while encouraging the
development custom tailored solutions, often leads to forks
whose code does not find its way upstream to the main com-
munity. While the distribution model is not at fault here, it is
still a non-optimal situation which may lead other interested
parties into duplicating functionality, hence wasting time and
resources.

These issues can be ameliorated by having a vibrant com-
munity centered on the project as seen on successful projects

like the linux kernel or the Apache Software Foundation pro-
jects. Open source works best when distinct entities contribute
time and skills on the topics where they are strongest.

Probably the most well-known example of an open source
extensible platform operating in the medical arena is OsiriX
[5, 40]. This project provides a fully fleshed DICOM visual-
ization system to either mobile platforms or desktops as well.
This tool is widely used and, due to its open source nature, it
was extended and adapted beyond its initial scope [41]. If
OsiriX is mostly focused on DICOM data visualization,
Dicoogle is focused on being a multi-modal data repository
and DICOM services platform. The BResults^ section has pre-
sented two state-of-the-art extensions for Dicoogle: a CBIR
engine fully integrated with the PACS repository and
workflows, and a dose information system that extracts infor-
mation from DICOM headers metadata and pixel data. Many
other examples could be described to validate the Dicoogle
concept and its plugin-based architecture presented in this
article. For instance, we are finishing a plugin capable of
synthetizing DICOM studies and workflows. This module
will allow us to test other Dicoogle components (and associ-
ated technologies) in stress conditions or big data scenarios.

Proper design of the solution is crucial to the future devel-
opments in PACS. At the moment, there is replication of work
and there is a lack of extensible platforms capable of providing
high-functionality features to the developers, supplying trans-
parency to the developer. With Dicoogle, we intended to con-
nect the dots between clinical researchers and software engi-
neers. Researchers can easily test and validate their solutions

Fig. 8 CBIR interface and validation tool
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minimizing their concerns with DICOM environments, and
clinical researchers can take advantage of the developed algo-
rithms much faster and seamlessly, without drastic changes in
their workflow.

Conclusion

Dicoogle has been employed successfully in very distinct
use cases, both in production and research. For instance, it
is being used by third entities to support regional PACS,
as DICOM data-mining tool [28, 29, 38], and as an edu-
cational tool for students. Moreover, it is tackling other
challenges of relevancy to healthcare institutions such as
interfacing with XDS-i [24] or performing content-based
image retrieval [30].

This range of distinct application with very heterogeneous
requirements is only possible due to its software architecture.
The extension mechanisms have allowed us to leverage
existing DICOM functionality and explore new directions in
a non-intrusive manner. A stable platform where most proto-
cols are ready to use translates to faster development time due
to a lower barrier to entry and places the focus on the task at
hand whether it is an experimental feature or a data analysis
task. Developers can leverage the existing DICOM function-
ality to quickly develop, adapt, or prototype features for their
use cases.

Dicoogle presents advantages to both research institutes
and small to medium medical institutions. Its Open Source
nature, the low hardware requirements, and its facilitated de-
ployment make this software readily available. To cope with
the rapid pace of development in the PACS arena, the pro-
posed extensible plugin-based software is an important re-
quirement, as it allows for quick prototyping, experimenta-
tion, and validation while enabling a great deal of code and
functionality reuse.
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