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Abstract Performing accurate and fully automated lung seg-
mentation of high-resolution computed tomography (HRCT)
images affected by dense abnormalities is a challenging prob-
lem. This paper presents a novel algorithm for automated seg-
mentation of lungs based on modified convex hull algorithm
and mathematical morphology techniques. Sixty randomly
selected lung HRCT scans with different abnormalities are
used to test the proposed algorithm, and experimental results
show that the proposed approach can accurately segment the
lungs even in the presence of disease patterns, with some
limitations in the apices and bases of lungs. The algorithm
demonstrates a high segmentation accuracy (dice similarity
coefficient = 98.62 and shape differentiation metrics
dmean=1.39 mm, and drms=2.76 mm). Therefore, the devel-
oped automated lung segmentation algorithm is a good candi-
date for the first stage of a computer-aided diagnosis system
for diffuse lung diseases.
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Introduction

In the estimate of the World Health Organization, 600 million
people have chronic obstructive pulmonary disease (COPD)
worldwide [1]. Lung cancer is one of the most serious cancers
in the world. In fact, the number of deaths caused by lung
cancer is greater than the sum of the deaths due to breast,
prostate, and colorectal cancers. It is expected that the number
of annual cancer cases will rise from its 14 million in 2012 to
22 million within the next two decades [2]. However, early
detection and treatment of lung cancer can improve the sur-
vival rates and prognosis of the patient [3]. As high-resolution
computed tomography (HRCT) is the key protocol for the
evaluation characterization of diffuse parenchyma lung dis-
eases, often characterized by non-uniform distribution in the
lung volume. But, it also leads to high unpredictability in
interobserver and intraobserver interpretations, mainly due to
the lack of standardized criteria and the burden of reviewing a
large amount of data [4–6]. Computer-aided detection/
diagnosis (CAD) is considered to be the promising tool to
aid the radiologist in automatically detecting and analyzing
the disease patterns. In order to realize such a CAD system,
it is prerequisite to segment the principal human organ regions
and human structures from computed tomography (CT) im-
ages. In chest CT scans, the principal region is the lung and its
structure built by bronchus, lung vessels, and fissures is very
important for the diagnosis of diseases related to lungs. In a
lung CAD system, prior to the detection of lung lesions, the
segmentation of lung parenchyma from thoracic images [7–9]
has to be conducted in order to reduce the amount of compu-
tation to minimize the computation time. Good lung
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segmentation can improve the efficiency of the entire CAD
system and reduce misdiagnosis. Hence, the lung parenchyma
segmentation is a key procedure of a CAD system for lung
diseases and pulmonary function assessment [10], which will
affect the accuracy of the whole lung CAD system.

A large amount of research has been devoted to the topic of
lung segmentation in 3D CT scans. Most of the methods are
based on the observation that, for normal lung parenchyma,
there is a large difference in attenuation between the lung
parenchyma and the surrounding tissue. These conventional
methods perform well on scans that do not contain dense
abnormalities. However, dense pulmonary or subpleural ab-
normality areas are not included in the lung segmentation of
these algorithms which is shown in Fig. 1. Other methods are
specifically designed to handle such abnormalities but are too
slow or too specialized to be used in clinical practice.

In practice, there is a trade-off between required computa-
tion time and quality of the segmentation results; the results
should be as precise as possible and available in as short time
as possible. As a result, most available automatic chest CT
analysis systems rely on conventional, threshold-based seg-
mentation since this is much less time consuming than, for
example, a registration-based approach (several minutes vs.
several hours) and produces effective results in a large number
of scans. However, this method may not prove well and omit-
ted segmentation errors when scans contain (substantial) path-
ologic abnormalities and theywould require clinicians to com-
pute the result manually.

Considering the above problems in lung segmentation, an
attempt is made in this paper to present a fully automatic lung
segmentation algorithm that can even tackle CTscans affected
by diffuse parenchymal lung diseases. The proposed algo-
rithm has four main steps viz., (1) initial region segmentation
of chest CT images, (2) elimination of airways in each CT

slice, (3) extraction of the lung regions, and (4) repairing the
boundary based on modified convexity algorithm and mathe-
matical morphology techniques. The algorithm can effectively
segment lungs with severe interstitial lung disease (ILD) in
thoracic HRCT scans. The algorithm is evaluated on a set of
CT cases spanning over a range of diffused parenchymal lung
diseases including honeycombing, reticular pattern, ground
glass opacity, pleural plaques, and emphysema. The accuracy
of the algorithm is assessed by comparing with ground truth
images provided by an expert radiologist. Furthermore, the
improvement brought about by using the combination ofmod-
ified convex algorithm and morphology techniques is ana-
lyzed and compared with the results of conventional methods.

Previous Work

In recent years, scholars from various strata of the globe have
put forward a series of lung segmentation methods. These
methods can be generally divided into the following four ma-
jor categories: threshold method [11–18], deformable bound-
ary models [19–24], edge-based methods [25–28], and
registration-based method [29, 30]. Lungs appear as dark re-
gions in CT scans, since they are essentially bags full of air
inside the body. In addition, image intensities of the lung and
surrounding tissues are clearly contrasted. This fact has en-
couraged many scholars to search for an optimum threshold
which separates the lungs from all other tissues. They com-
puted a threshold to get an initial lung region. The initial
segmentation was then refined by gray-level thresholding
[11], histogram thresholding [12], multiple 2D thresholding
[13], and iterative 3D thresholding [14, 15]. In case of lung-
edge affecting pathologies, all these methods are found to be
ineffective. This is because of the change of image intensities

Fig. 1 The performance of a
traditional lung segmentation
method based on gray-value
thresholding. The top row shows
two slices from normal lungs; the
first original slice is followed by
the lung segmentation result
overlaid. The bottom row shows
two slices containing pathologic
abnormalities. The traditional
method fails on this type of scan
because of the higher densities of
the abnormalities compared to the
density of normal lung
parenchyma
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in pathological regions as well as gray levels coming closer to
muscle, fat, or bone [16]. To solve these problems,
thresholding methods are combined with other techniques
based on mathematical morphology [12] or rolling ball oper-
ation [16], region growing, and anatomical knowledge [17,
18]. The accuracy of threshold-based segmentation is the ma-
jor problem which is affected by many factors, such as image
acquisition protocol, scanner type, etc. Moreover, densities (in
Hounsfield Units (HU)) of some pulmonary structures, such
as vessels, bronchi, and bronchioles, are very close to densities
of the chest tissues. Because of this, the threshold-based seg-
mentation may not be accurate for the whole lung region. It
needs further intensive postprocessing steps to overcome the
non-homogeneity of densities in the lung region.

An active contour or the deformable boundary model starts
from some initial position and shape. It functions under spe-
cific internal and external guiding forces to fit into the shape of
one or more desired objects. A region of interest (ROI) or
locate an object boundary can be extracted by active contours.
Extract the lung region with a 2D parametric deformable mod-
el using the lung borders as an external force. The deformable
model starts from an initial segmentation which was obtained
by a threshold estimated from CT data. The segmentation
results were used as an initial step to classify abnormal areas
within each lung field [19]. A 2D geometric active contour
was initialized along the boundary of the chest region, which
was then automatically split into two regions representing the
left and right lungs in [20]. The critical drawbacks of the
deformable model-based segmentation include the excessive
sensitivity to initialization and the inability of traditional ex-
ternal forces to capture natural in-homogeneity in the lung
regions. Consequently, it is hard to provide an adequate guid-
ance to the deformable model to achieve the accurate segmen-
tation. The shape-based techniques add prior information
about the lung shape to image signals, for improving the seg-
mentation accuracy. Integrating a prior shape term [21], with a
term describing edge feature points and a term representing
region-based data statistics in a variation energy framework
for lung segmentation, is calculated as described in [22]. In
order to segment the lung fields from posterior-anterior (PA)
chest X-ray images, the formulated energywas used to guide a
level set deformable model. The segmentation of the lung
fields was iteratively refined by the iterative conditional mode
(ICM) relaxation that maximizes a Markov-Gibbs random
field (MGRF) energy which accounts for the first-order visual
appearance model and the spatial interactions between the
image voxels. Further, they enlarged their work by applying
their iterative MGRF-based segmentation framework on dif-
ferent scale spaces [23, 24].

The edge-based lung segmentation is performed using spa-
tial edge detector filters or wavelet transforms. A preprocess-
ing outline of lung borders was identified by using the first
derivative of Gaussian filters taken at various orientations.

Then, an edge tracking procedure using the Laplacian of
Gaussian (LoG) operator at different scales was used to find
a continuous external lung contour that was further integrated
with the initial outline to produce the final lung segmentation
from PA chest radiographs [25]. The ROIs from PA chest
radiographs are rectangular areas which surround each lung
field as closely as possible through an iterative procedure.
Edge points, such as the mediastinal, costal, top, and bottom
edge points, were detected using spatial edge-detector filters
(SED) and combined to define a closed contour for the lung
borders [26]. To highlight lung borders in a stack of 2D im-
ages, a 2D wavelet transform is used [27]. An optimal thresh-
old, selected by the minimum error criterion [28], was applied
to the wavelet-processed 3D stacks to segment lung volumes.

For the automated segmentation of the pathological lung in
CT, the segmentation-by-registration scheme (SRS) was pro-
posed by [29] where a scanwith normal lungs is registered to a
scan containing pathology. When the resulting transformation
is applied to a mask of the normal lungs, segmentation is
found for the pathological lungs [30]. Refined registration-
based segmentation approaches, which yield significant accu-
racy improvements compared to a standard SRS approach,
however, fail in speed efficiency due to the registration and
classification processes. Similarly, 3Dmorphological process-
ing was further performed to refine the final segmentation.

Proposed Method

The schematic of the different stages of the proposed algo-
rithm is given in Fig. 2.

Coarse Segmentation of Lungs

The original CT scan includes the examination bed, fat, ribs,
lung parenchyma, main trachea, etc. As the air noise in the
scans may lead to many small contours, Gaussian smoothing
is used to eliminate the air noise. Otherwise, these small con-
tours may be incorrectly segmented as lung border. In our
implementation, the CT images are convolved with a 3D
Gaussian kernel that has a standard deviation of 1.0 mm.

In CT images, the intensities of ribs, examination bed, and
fat is generally above −100 HU and the tissue of the lung is in
the range of −400 to −600 HU. We have used iterative
thresholding to segment the lung regions. The process of
obtaining the threshold is as follows:

1. Set the initial background gray scale Fb, object grayscale
Fo, and the initial threshold value is

T0 ¼ Fb þ Fo

2
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2. Calculate the average gray level of the background region
and object region Gb and Go.

3. Set T1¼ Gb þ Go
2 , and the new threshold is T1.

4. Iteration termination condition is T1≈T0, that is, the dif-
ference between T1 and T0 is less

5. Otherwise, assign T1 values to T0 and go back to step (2).

Figure 3b presents the results of iterative thresholding. To
remove the non-lung regions left after iterative thresholding,
we have applied 2D flooding. This operation is applied slice
by slice using the pixels along the image borders as flooding
seeds.

Elimination of Trachea and Bronchi

As shown in Fig. 3d, the trachea and bronchi will be preserved
even after the coarse segmentation. We have used 3D-
connected component labeling and 3D region growing to
eliminate the trachea and bronchi. As trachea and bronchi
are filled with air, they have very low CT values, approximate-
ly −1000 HU. A threshold of −900 HU is employed to seg-
ment trachea and bronchi such that the pixels having CT
values less than −900 HU are taken as air component pixels.

3D-connected component labeling is applied to the first 30
slices with a view to identify and retain the largest volume of air
component pixels. Now, these pixels represent the upper part of
the trachea. The remaining small connected components are

Fig. 2 Flow chart of the proposed method

Fig. 3 a The original thoracic CT
image. b Segmented image by
iterative threshold. c Inverted
image. d Initial mask after
removing background

510 J Digit Imaging (2016) 29:507–519



dismissed as noise. Later on, the identified trachea is used as a
seed for the region growing technique, which resulted in tracing
the entire airways from an upper slice to a lower one through the
CT scan. Provided an air-component pixel is adjacent to an air-
way pixel in the previous slice, it will be added as the air com-
ponent pixel to the airway. A morphological opening and 3D-
connected component labeling are used to isolate the airways
from unwanted regions. The segmented airways are eliminated
from theCT images to prevent interference in lung segmentation,
the white curves in Fig. 4 represent the airways in the upper slice,
the middle slice, and the lower slice of a CT scan.

From Fig. 4, it can be concluded that the coarse segmentation
methods perform well on healthy scans. However, Fig. 5 reveals
that if the scans are having abnormalities, then coarse segmenta-
tion methods fail to include the areas of abnormalities. As the
gray level characteristics of these abnormalities are similar to that
of the surrounding lung tissue, they will be wiped off during
coarse segmentation that results to a concave region on the cor-
responding lung border. This will lead to misdiagnosis as they
are important for lung disease CAD system. Other methods [29,
30] which are specifically designed to handle such abnormalities
in lung segmentation framework are too slow or too specialized
to be used in clinical practice. In this work, we address this
challenge using a lung parenchyma repairing method based on
modified convexity algorithm and mathematical morphology.

Modified Convexity Algorithm

Convexity of a planar point set S is the intersection of the
entire half-planes containing S [31]. The shape of convexity
is a convex polygon whose vertices belong to S. For an edge
pq, all convexity points lie on one side of the line running
through p and q. Generally, in convex algorithms, the given
image is scanned and a non-self-intersecting polygon is ex-
tracted, or a convex hull is extracted from the polygon by
checking the convexity of the polygon [32]. These algorithms
have high complexities of time and space. To meet this issue,
we have used monotonicity characteristic to design convex
hull algorithm for binary image.

The proposed modified convexity algorithm first extracts
eight extreme points on the boundary of the binary image and
then partitions the image into four regions by using these
extreme points. While computing the vertex, only these ex-
treme points in the four regions are processed. By orderly
scanning, the ad hoc convexity is extracted. The entire con-
vexity is finally obtained by continuously updating the ad hoc
convexity. Since the scanned areas are few and only the ver-
tices of ad hoc convexity require storage, the proposed algo-
rithm has low complexities of time and space.

Finding the Extreme Points

Let P={p1, p2, …, pM} be a planar point set. In the subset
whose points x-coordinate are maximal among P, PXY, and PXy
denote the points with maximal and minimal y-coordinate,
respectively. In the subset whose points x-coordinate are min-
imal among P, PxY, and Pxy represent the points with maximal
and minimal y-coordinate, respectively. Similarly, in the sub-
set whose points y-coordinate are maximal among P, PYX, and
PYx denote the points with maximal and minimal x-coordinate,
respectively. In the subset whose points y-coordinate are min-
imal among P, PyX, and Pyx represent the points with maximal
and minimal x-coordinate, respectively. In the subscript of

Fig. 4 The segmentation of
airways in upper, middle, and
lower slices in a CT scan
respectively

Fig. 5 a The CT of a patient with severe interstitial lung disease (ILD)
and severe interstitial lung disease. It is proved that the thresholding fails
to identify the severe ILD pattern since it suffers from poor segmentation
of the initial lung (b)
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variables, the first denotes the extremum of coordinate and the
second subscript denotes the extremum of the other coordinate
under the first coordinate. Subscripts of capitalization and mi-
nuscule mean maximum and minimum, respectively. These
extreme points in the planar point set P are the convex hull
vertices. The process scanning from outside to inner is applied
to extract the extreme points as shown in Fig. 6. The detailed
steps are as follows.

1. Starting at the top left corner, scan the image from top to
bottom until the image boundary is encountered. Each
row scan starts from left to right. Let the leftmost and
rightmost boundary points be PYx and PYX, respectively.
Thus, two top extreme points on the image boundary PYx
and PYX are obtained.

2. In the second step, starting at the top row running through
PYX and PYx, scan the image from right to left in every
column, from top to bottom, until the topmost and bot-
tommost boundary points of the image are encountered.
Thus, two right extreme points on the image boundary
PXY and PXy are obtained.

3. In the third step, at the rightmost column running through
rightmost extreme points, scan the image from bottom to
top until the image boundary is encountered. Each row
scan starts from right to left. Let the rightmost and left-
most boundary points be PyX and Pyx, respectively. Thus,
two bottom extreme points on the image boundary PyX
and Pyx are obtained.

4. In the final step, scan the image from left to right from
bottom to top in between bottom row running through PyX
and Pyx, and top row running through PYx and PYX until the
topmost and bottommost boundary pixels, respectively,
are encountered. Thus two left extreme points on the im-
age boundary PyX and Pyx are obtained.

Monotone Segment

Since the extreme points are convex hull vertices, the convex
hull can be obtained by determining the vertices on the mono-
tone segments between each pair of extreme points.

Let P={pm, pm+1,…, pn} (n>m) be the vertices of a mono-
tone segment of a specific convex hull, and the coordinate of
pi and q be (xi, yi) and (x, y), respectively, P′={q}∪P and
min{yn−1,yn}< y<max{yn−1, yn}. If q and pk (k<n) are both
the points in a specific monotone segment of P′, then pm, pm +

1… pk, q, pn are all vertices on the monotone segment as
shown in Fig. 7.

Finding the Scanned Regions and Convex Hull

By the above steps, we obtain eight extreme points. From the
lines connecting adjacent extreme points, we obtain four re-
gions that are APyXPYx, BPYXPXY, CPXyPyx, and DPyxPxy.
Beginning from the APyXPYx region, scan the region horizon-
tally from left to right (Fig. 6). Each column in the region is
scanned vertically from top to bottom. If there is no boundary
pixel on the scanned line, then scan the next column until a
boundary point Bq^ is encountered on the scanned line. Then,
q is a vertex of temporary convex hull in the scanned image.
Compute the monotone increasing top segment of the tempo-
rary convex hull. These processes continue in the remaining
regions to obtain the convex hulls of the image.

Then, the convex hull for an image can be obtained as
follows:

1. Scan the image and compute the eight extreme points, Pxy,
PxY, PXy, PXY, Pyx, PyX, PYx, and PYX.

Fig. 6 Extreme points of image convex hull and scanned regions of
image

Fig. 7 Monotone segment
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2. Use these eight extreme points to determine the four re-
gions (APyXPYx, BPYXPXY, CPXyPyx, and DPyxPxy) where
the convex hull vertices may exist.

3. Scan the four regions dynamically and obtain convex hull
vertices on each monotone segment, respectively.

4. Extract convex hull vertices on each monotone segment
according to the following order: PxY→PYx, PYX→PXY,
PXy→PyX, Pyx→Pxy. Each extreme point is extracted on-
ly once.

Then, the convex hull is obtained.

Morphological Image Analysis

After applying modified convex hull algorithm, finally, the
following postprocessing techniques based on mathemati-
cal morphology are used to obtain the final lung segmen-
tation. Firstly, the coarse segmented lung image is
subtracted from the result of modified convex hull algo-
rithm. The resultant image is as shown in Fig. 8c. As the
resultant image contains some small responses and objects
at the border, morphological erosion with a spherical ker-
nel of size 7 and 18-connected label filtering are then
applied to remove these responses. The areas left in the
resultant image after the erosion and connected component
labeling specify the errors in the segmentation. Finally, the

eroded image is subtracted from the result of the modified
convex hull algorithm to extract the final lung region.

Experimental Results and Discussion

Sixty chest HRCT scans are tested by the proposed lung
segmentation method. Forty scans are provided by local
hospitals, the other 20 scans are randomly selected from
publicly available databases. Image data are stored in
DICOM format and reconstructed to 512 × 512 with
1 mm slice thickness, 15 mm slice increment, and 12-
bit gray level resolution. Pixel spacing lay in the range
of 0.51–0.79 mm, with an average value of 0.63 mm.
To qualitatively evaluate the proposed algorithm, all the
images have been traced by an experienced chest radi-
ologist on all slices from the top to bottom parts of the
lungs. The proposed algorithm is implemented in
MATLAB 2014b on Core i7 3.33 GHz PC with
16 GB memory. The comparison of implementation time
between our algorithm and the other methods is given
in Table 1, from which we can see that the implemen-
tation time of the proposed algorithm is less compared
to other methods.

Performance Metrics

To quantify the performance of our algorithm, three metrics
are used.

First is the dice similarity coefficient (DSC) which is de-
fined as,

DSC ¼ 2* M∩Aj j
Mj j þ Aj j ð1Þ

M is the manual lung area segmentation, while A is the
segmented area of the proposed lung segmentation method.
The DSC value is bound between zero (no correspondence)
and one (exact match).

As the lung is a large object, small local errors at the
boundary are not captured in the overlap measure. For this
reason, the contour shape is assessed by two distance
metrics:

1. Mean distance.
2. Root mean square distance

The mean distance (dmean) is defined as

dmean ¼
X pM

q¼1
d q;Mð Þ þ

X pA

q¼1
d q;Að Þ

pM þ pA
ð2Þ

Fig. 8 a Image of binary result for Fig. 5b. b Filling result of convex
areas of the proposed algorithm. c Difference of coarse and modified
convex hull. d Final lung segmentation of our method
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where pA and pM are pixel numbers defining the contours
obtained by the proposed method and the ground truth,
respectively.

d(q, M) and d(q, A) are defined as

d q;Mð Þ ¼ min
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xAq−xMr

� �2
− yAq−yMr
� �2

r( )r

ð3Þ

d q;Að Þ ¼ min
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xAr −xMq

� �2
− yAr −yMq
� �2

r( )r

ð4Þ

where (xM, yM) is the ground truth contour pixel location
and (xA, yA) is the contour pixel location of the proposed
method.

The root mean square distance (drms), between the pro-
posed method border (A) and the border obtained by the
ground truth (M), is calculated by

drms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX pM

q¼1
d q;Mð Þ2 þ

X pA

q¼1
d q;Að Þ2

pM þ pA

vuuut ð5Þ

Evaluation of Methodology

In order to evaluate the proposed method, the results are com-
pared with the results of the rolling ball method and the man-
ual segmentations made by the expert. From Fig. 9, it can be
observed that the proposed method provides accurate lung
segmentation results (Fig. 9 (1–5) and (8–10)) for all kinds
of diffuse parenchyma lung diseases. Both the rolling ball
method and the proposed method perform precisely for scans
corresponding to normal lung parenchyma. The result of the
scan having honeycomb disease is shown in Fig. 9 (1–5). The
proposed method extracts the lung region accurately com-
pared to the rolling ball method as it uses modified convex
algorithm and mathematical morphology. Even when the
coarse segmentation step produces poor quality in diseased
areas, the use of modified convex algorithm and mathematical
morphology permits refinement of a good final segmentation
in more standard cases. When one of the lungs is not found,
due to the segmentation (Fig. 9 (8)) which is used as a starting
point for the lung segmentation, the automatic initialization of
the threshold segmentation fails. However, it can be seen that

the developed method and ground truth contours disagree in
the mediastinum area for some specific cases.

Table 2 presents the performance metrics viz. dice similar-
ity coefficient (DSC), mean distance (dmean), and root mean
square distance (drms) for both the rolling ball method and the
proposed method with respect to the ground truth. Statistical
(mean and standard deviation) and ranking values (minimum,
maximum, and median) are computed on a total of 60 scans
and 612 images and also for each specific disease pattern. The
proposed method achieves a good overlap area with a mean
DSC of 98.62 % together with a small error distance
(dmean=1.39 mm). The initial estimate of lung segmentation
provided by the anatomy-driven framework is also of good
quality but still significantly lower, with an average DSC of
95.06 %. However, the error dis tance is higher
(dmean=4.61 mm) with a maximum value of 55.24 mm. A
direct comparison is achieved between the segmentations of
the rolling ball method and the proposed method by calculat-
ing the difference of each measure on each CT image. The
proposedmethod provides an average improvement of 4.61%
in DSC and 4.49 mm in terms of mean distance error.
However, in some cases, this improvement reaches impressive
maximum values of 58 % and 78 mm. At the disease pattern
level, it appears that the proposedmethod ismore robust, since
the same performance is reached independently on all the
disease patterns considered. Compared to this fact, the rolling
ball method segmentation results are much more desperate,
with more difficulties in achieving good results for ground
glass, honeycombing, and emphysema patterns. The compar-
ison slice by slice between coarse and final segmentations also
comes to the similar conclusion (Table 2).

In Fig. 10, cumulative curves of the fractions of correctly
segmented lung area are shown as functions of (a) DSC, (b)
dmean, and (c) drms thresholds for the segmentations of the

�Fig. 9 Examples of automated lung region detection results in an axial
(1, 2), sagittal (3, 4), and coronal (5) view of the modified convexity
algorithm and mathematical morphology technique segmentation for
the 12 scans in which an error was detected after the conventional lung
segmentation method. The first column shows the original slice, the
second column shows the conventional lung segmentation (red
contour), the third column shows the modified convexity algorithm and
mathematical morphology techniques method (red contour), and the last
column shows the result of the manual segmentation (pink contour)

Table 1 Comparison of average implementation time per frame between our algorithm and the other methods

Region growing
method

Texture-feature
method

The rolling-ball
method

Our method

Average implementation time per frame
(in seconds per frame)

12 5 1.13 0.66
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Fig. 9 (continued)
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proposed and rolling ball methods. The fraction of correctly
segmented lung area is defined as the percentage (in absolute
value) of lung area with a DSC value greater than the thresh-
old and as the percentage of lung area with a distance metric
value lower than the threshold. As observed (Fig. 10a), at a
DSC value of 98 %, the fraction of correctly segmented lung
area is 0.70 for the final segmentation, while it is 0.39 for the
anatomy-driven segmentation. This difference persists even
for the distance metrics. At a dmean value of 2 mm
(Fig. 10b), the fraction of correctly segmented lung area is
0.92 for the final segmentation, while it is only 0.36 for the
anatomy-driven segmentation. At a drms value of 4 mm

(Fig. 10c), the fraction of correctly segmented lung area is
0.975 for the final segmentation, while it is only 0.6 for the
anatomy-driven segmentation.

Discussion and Conclusion

Segmentation of structures in medical images is a challenging
task, including among other things, anatomical differences,
abnormalities, image noise, and differences in acquisition pa-
rameters. A fully automatic framework for segmentation of
the lungs in thoracic CT scans is a crucial prerequisite for

Fig. 9 (continued)

Table 2 Segmentation accuracy of the developed method for the final segmentation (after modified convexity and mathematical morphology), for the
coarse segmentation (anatomy-driven) and difference in the segmentation accuracy of the two methods

Final segmentation Coarse segmentation Difference

DSC dmean drms DSC dmean drms ΔDSC Δdmean Δdrms

CT scans having abnormalities Mean 98.05 1.57 3.26 91.19 6.06 10.34 6.86 −4.49 −7.08
SD 5.37 2.55 5.47 10.4 5.18 7.64 −5.03 −2.63 −2.17
Min 63.29 0.3 0.42 48.85 0.63 1.09 14.44 −0.33 −0.67
Max 99.65 18.04 37 98.56 29.29 52.88 1.09 −11.25 −15.88
Median 98.43 0.74 1.35 93.42 5.2 8.45 5.01 −4.46 −7.1

Normal Mean 99.18 1.21 2.26 98.93 3.15 7.78 0.25 −1.94 −5.52
SD 5.16 4.62 5.26 9.76 5.87 9.11 −4.6 −1.25 −3.85
Min 60.02 0.19 0.34 47.14 0.39 0.37 12.88 −0.2 −0.03
Max 99.59 21.66 43.07 99.47 81.18 110 0.12 −59.52 −66.93
Median 99.47 0.52 0.97 96.36 3.53 6.09 3.11 −3.01 −5.12

Overall Mean 98.62 1.39 2.76 95.06 4.61 9.06 3.56 −3.22 −6.3
SD 5.27 3.59 5.37 10.08 5.53 8.38 −4.82 −1.94 −3.01
Min 61.66 0.25 0.38 48 0.51 0.73 13.66 −0.27 −0.35
Max 99.62 19.85 40.04 99.02 55.24 81.44 0.61 −35.39 −41.41
Median 98.95 0.63 1.16 94.89 4.37 7.27 4.06 −3.74 −6.11

Results are given for disease pattern, normal lungs, and overall slices (DSC is given in % and shape metrics in mm)
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automatic analysis of chest CT scans. Each available chest CT
analysis system incorporates automatic lung segmentation.
However, the lung segmentation methods incorporated in
most automatic analysis systems are highly conventional
methods which are based on thresholding and region growing
since these techniques are generally fast. The lung segmenta-
tions produced by such systems are often erroneous for clini-
cal scans, whichmay lead to incorrect analysis of the data. The
discrepancy between the results reported in the literature and
the actual results in a clinical setting are partly caused by the
reason that many algorithms have been tested only on very
few selected patient populations which may not necessarily
represent actual clinical practice.

Lung segmentation is a primary requisite for automated
analysis of chest CT scans; ignoring the fact that the conven-
tional methods of lung segmentation depend on large attenu-
ation differences between lung parenchyma and surrounding
tissue. These methods were not successful in scans where
dense abnormalities are present, which holds for a large per-
centage of clinical scans. This work successfully segments the
lung region even when the scans have dense abnormalities.
The key feature of the proposed algorithm is that it uses the
monotonicity property in modified convex hull algorithm to
extract the convex hull of an object such that the accuracy in
segmentation and the computing speed increases. The pro-
posed algorithm has a very less computational cost in the
following ways: (1) it divides the binary image into several
regions by using the extreme points such that only those
boundary pixels in few regions require computation. (2) The
boundary pixels obtained by scanning are computed dynami-
cally and only these vertices of temporary convex hull require
storage. Performance evaluation of the proposed method
shows that the method can accurately segment lungs even in
the presence of all kinds of diffuse parenchyma lung diseases,

with some limitations in the apices and bases of the lungs. We
compare the implementation time of the proposed algorithm
with the other methods. Hence, the proposed automatic lung
segmentation method is an absolute fit for the first stage of a
CAD system for diffuse lung diseases.
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