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Abstract TensorFlow is a second-generation open-source
machine learning software library with a built-in framework
for implementing neural networks in wide variety of percep-
tual tasks. Although TensorFlow usage is well established
with computer vision datasets, the TensorFlow interface with
DICOM formats for medical imaging remains to be
established. Our goal is to extend the TensorFlow API to ac-
cept raw DICOM images as input; 1513 DaTscan DICOM
images were obtained from the Parkinson’s Progression
Markers Initiative (PPMI) database. DICOM pixel intensities
were extracted and shaped into tensors, or n-dimensional ar-
rays, to populate the training, validation, and test input
datasets for machine learning. A simple neural network was
constructed in TensorFlow to classify images into normal or
Parkinson’s disease groups. Training was executed over 1000
iterations for each cross-validation set. The gradient descent
optimization and Adagrad optimization algorithms were used
to minimize cross-entropy between the predicted and ground-
truth labels. Cross-validation was performed ten times to pro-
duce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908–
0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI
0.947–1.00) and mean specificity was 0.822 ± 0.207 (95 %
CI 0.694–0.950). We extended the TensorFlow API to enable

DICOM compatibility in the context of DaTscan image anal-
ysis. We implemented a neural network classifier that pro-
duces diagnostic accuracies on par with excellent results from
previous machine learning models. These results indicate the
potential role of TensorFlow as a useful adjunct diagnostic
tool in the clinical setting.
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Background

Machine learning approaches are increasingly used to per-
form automated image analysis with the goal of improv-
ing the accuracy of visual interpretation. In the imaging
evaluation of Parkinson’s disease, the European
Associat ion of Nuclear Medicine Neuroimaging
Committee guidelines recommend concomitant visual
and quantitative assessments of striatal signal changes
on 123I-ioflupane (DaTscan) SPECT studies [1].

Computational models such as support vector machines
[2–4], multivariate logistic regression [5], and artificial neural
networks [6] have correctly classified patients with
Parkinson’s disease with high accuracies above 90 %.
Although machine learning models show excellent potential
as diagnostic aids in clinical practice, access to the technology
is limited due to institution-specific, localized software
implementations.

GoogleTM TensorFlow is a widely available second-
generation machine learning software library for
implementing and executing large-scale artificial neural net-
works [7]. Released under the Apache 2.0 license in
November 2015, TensorFlow offers open-source access with
documentation for general public use. TensorFlow has a
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potential to advance radiological image analysis in a similar
way that other Google algorithms have made progress in im-
age classification and object detection [8–10] and in speech
recognition [11–13].

TensorFlow features artificial neural networks that train on
labeled input data for classification tasks with the goal of
correctly assigning an unknown into a predefined class
through iterative updates of weights and biases associated
with each input [7]. Training is a search process for sets of
weights and biases that minimize the squared errors between
the predicted output and ground-truth data.

The TensorFlow application program interface (API) al-
lows researchers to train and test neural networks by con-
structing computational graphs using one of the supported
front-end languages such as Python or C++ [7]. Input image
datasets are in the form of tensors, or n-dimensional arrays
with prespecified element types, that flow between nodes dur-
ing each training iteration. TensorBoard is a visualization tool
for the TensorFlow computational graph where execution se-
quences and performancemetrics are displayed via a graphical
interface [14].

TensorFlow is commonly used for classification tasks with
established computer vision input datasets [15]. However, the
DICOM file format for medical imaging is not yet supported
in the TensorFlow API. The purpose of this study is to de-
scribe a methodological innovation for adapting the
TensorFlow API to raw DICOM input in the context of 123I-
ioflupane (DaTscan) classification.

Methods

DaTscan Image Collection

The Institutional Review Board of Mount Sinai Hospital
System deemed that this study does not require IRB approval
or IRB exemption. Data used in the preparation of this article
were obtained from the Parkinson’s Progression Markers
Initiative (PPMI) database (www.ppmi-info.org/data). For
up-to-date information on the study, visit www.ppmi-info.
org. PPMI is an observational clinical study that collects
imaging, biologic sampling, clinical, and behavioral
assessments to characterize Parkinson’s disease progression.
Further details about inclusion and exclusion criteria are
a v a i l a b l e a t h t t p : / / www. p pm i - i n f o . o r g / w p -
content/uploads/2014/01/PPMI-AM7-Protocol.pdf [16].

The dataset retrieved on February 16, 2016 contained 1513
preprocessed 123I-ioflupane SPECT images. There was no
statistically significant difference in age and gender between
healthy controls and Parkinson’s disease patients in the PPMI
database. Initial and follow-up 123I-ioflupane SPECT images
were included in the subsequent analysis.

DaTscan SPECT Image Processing

123I-ioflupane SPECT imaging was acquired at PPMI imaging
centers according to PPMI protocol [16, 17]. Briefly, SPECT
raw projection data at all imaging centers was imported to a
HERMES (Hermes Medical Solutions, Skeppsbron 44, 111
30 Stockholm, Sweden) system for iterative (HOSEM) recon-
struction. The HOSEM-reconstructed files were then trans-
ferred to the PMOD (PMOD Technologies, Zurich,
Switzerland) for subsequent processing. Attenuation correc-
tion ellipses were drawn on the images, and a Chang 0 atten-
uation correction was applied to images utilizing a site-
specific mu that was empirically derived from phantom data
acquired during site initiation for the trial. A standard
Gaussian 3D 6.0-mm filter was applied. PPMI database pro-
tocol [17] specified that attenuation-corrected SPECT studies
were normalized to the Montreal Neurologic Institute (MNI)
space, a standard anatomical coordinate system, such that all
scans were in the same anatomic alignment for image regis-
tration. Each DaTscan SPECT contains 91 slices, and each
slice contains 91 × 109 pixels encoded with 16-bit greyscale.

TensorFlow Input Dataset Assembly

TensorFlow accepts sets of images and corresponding textual
labels as input data. A total of 1513 DaTscan SPECT imaging
volumes were included in this study, of which 1171 studies
were from the Parkinson’s disease group, 211 studies from the
control group, and 131 studies from the Scans without
Evidence of a Dopaminergic Deficit (SWEDD) group. For
each DaTscan study, only a single axial image out of the im-
aging volume can be selected for analysis because
TensorFlow currently supports input in the form of 2D images
and not 3D volumetric data. Two radiologists (board-certified
attending and board-eligible fellow) reviewed DaTscan axial
images and selected slice 41, which contains the highest
striatal signal-to-background ratio by visual inspection, as in-
put data for TensorFlow.

The 1513 axial images through the basal ganglia were ran-
domized and split into three parts: 1189 images for the training
set, 108 images for the validation set, and 216 images for the
test set (Fig. 1). The 11:1:2 ratio of training, validation, and
test sample sizes was modeled after the TensorFlow tutorial
dataset construction [15]. In addition to analyzing axial slice
41, two more datasets containing 1189 training, 108 valida-
tion, and 216 test images were constructed using slice 40 and
slice 42 in order to include more imaging volume and capture
possible additional discriminating information.

The training set containing images and corresponding la-
bels are used to train the machine learning model. The valida-
tion set, which is not seen in the training phase, is used to
iteratively assess training accuracy and prevent overfitting,
which manifests as increasing errors in prediction. The
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validation set gives insight into how the algorithm will gener-
alize to the unknown test dataset.

Images from the Parkinson’s disease group were labeled
B1^ in a TensorFlow input label file. Images in control and
SWEDD groups were labeled B0^ since both the groups do
not demonstrate imaging signs of dopaminergic deficit. The
image sets and their corresponding labels were saved to the
appropriate TensorFlow input data directories.

Wemodified the TensorFlow source code for image extrac-
tion with a custom Python script (Fig. 2) in order to enable
direct extraction of pixel intensities from raw DICOM files.
Each DaTscan image is encoded as an array of 16-bit
greyscale intensities with dimensions 91 × 109 pixels. This
pixel array is reshaped into a vector of size 9919 pixels to
match the input format for TensorFlow’s linear algebra com-
putations. The training image dataset is a tensor (an n-dimen-
sional array of numbers) with shape (1189, 9199), where the
first dimension indexes the image number out of 1189 images
in the training dataset. The second dimension indexes the
vectorized pixels for each image. The corresponding training
label dataset is a tensor of shape (1189, 2), where the first
dimension indexes the label number out of 1189 labels in
the training dataset. The second dimension indexes the value
of B0^ for normal or B1^ for Parkinson’s disease.

The validation image dataset is a tensor of shape (108,
9199) where the first dimension indexes the image number
out of 108 images in the training set. The second dimension
indexes the vectorized pixels for each image. The

corresponding validation label dataset is a tensor of shape
(108, 2). The test image and label tensors are of shape (216,
9199) and (216, 2) respectively.

Neural Network Implementation

All implementations of machine learning algorithms were per-
formed with GoogleTM TensorFlow API [15]. A single-layer
artificial neural network was used to create a simple linear
model for binary classification of normal versus Parkinson’s
disease patients. We chose the gradient descent optimization
algorithm as previously described [7] to minimize the differ-
ence between ground-truth and predicted labels. In such an
algorithm, output errors are fed back through the neural net-
work to update weights and biases. A comparison of gradient
descent optimization versus Adagrad optimization in the
TensorFlow toolkit [18] was also performed. Training was
implemented over 1000 iterations using small batches of ran-
domized data for performance optimization. The TensorBoard
tool was executed to view a graphical representation of the
neural network. Finally, the neural network’s diagnostic per-
formance metrics are evaluated using a first-seen test dataset.

Statistical Analysis

A two-tailed Mann-Whitney U test with significance level of
0.05 was performed to compare differences in accuracy, sen-
sitivity, and specificity between the gradient descent optimizer

Fig. 1 Input dataset assembly.
Block diagram illustrates a single
cross-validation dataset where
1513 individual axial DaTscan
images through the basal ganglia
are randomized into a training
dataset of 1189 images, validation
dataset of 108 images, and test
dataset of 216 images
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algorithm and the Adagrad optimizer algorithm. All calcula-
tions were performed using a web-based calculator [19].

Results

Neural Network Implementation

The TensorBoard output is a graphical representation of the sim-
ple single-layer neural network used in this study (Fig. 3). The
Bx-input^ node represents the normalized and vectorized
DaTscan pixel intensities, and the By-input^ node represents
the label vectors. TensorBoard uses arrows to represent data flow
originating from Bx-input^ and By-input^ nodes into the mathe-
matical operation node BWx_b^, which calculates a weighted
sum of pixel intensities plus biases. The output is passed into

the Bxent^ or cross-entropy node, which calculates the loss asso-
ciated with the predicted output when measured against the
ground-truth y-input labels. In the Btrain^ node, stochastic gradi-
ent descent and Adagrad optimization algorithms minimize
cross-entropy by shifting weights and biases in small increments
in the direction of reducing cost at every training iteration. Upon
completion of training, the final instances of weights and biases
aremultipliedwith Bx-input^ to yield predicted labels. The Btest^
node compares the prediction with ground-truth By-inputs^ to
yield the accuracy of the model.

Diagnostic Performance Metrics

TensorBoard generates a graphical output of accuracy and
cross-entropy as a function of training iteration. Figure 4a is
the output of a single cross-validation, which demonstrates

Fig. 2 Custom Python script for
TensorFlow API. The extract_
images function reads in a list of
DaTscan SPECT volume
filenames called targetlist from
directory. A single slice (slice 41)
is extracted from each volume.
The pixel intensities for x,y
coordinates in each selected slice
is loaded into the array data

train

xent test

Wx_b

x-input

y-input

weights

variable

weights

variable

Fig. 3 Graphical visualization of the neural network. x- and y-input
represent the vectorized DaTscan pixel intensities and corresponding
labels, respectively. Wx_b represents a mathematical operation node
that applies weights and biases to each x-input. The xent node

computes the cross-entropy, or cost function, between the predicted and
actual labels. Train updates the weights and biases at each training
iteration. After completing all training iterations, the test node computes
the accuracy, sensitivity, and specificity of the model
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accuracy convergence for the test dataset using slice 41 after
1000 training iterations. Figure 4b is the output of a single
cross-validation, which shows the convergence of cross-
entropy towards a minimum for the test dataset using slice
41 after 1000 training iterations.

The accuracy, sensitivity, specificity, false positive fraction,
and false negative fraction of the trained neural network are
collected for each cross-validation run using slice 41
(Table 1). The gradient descent optimizer algorithm produced

a mean accuracy of 0.938 ± 0.047 (95%CI 0.908–0.967) over
a tenfold cross-validation. The mean sensitivity was 0.974 ±
0.043 (95 % CI 0.947–1.00) and the mean specificity was
0.822 ± 0.207 (95 %CI 0.694–0.950). The Adagrad optimizer
algorithm produced a mean accuracy of 0.956 ± 0.015 (95 %
CI 0.965–0.947) over a tenfold cross-validation. The mean
sensitivity was 0.971 ± 0.015 (95 % 0.962–0.981) and the
mean specificity was 0.899 ± 0.051 (95 % CI 0.868–0.931).
A comparison of gradient descent versus Adagrad optimizers
for slice 41 demonstrated no significant difference in accuracy
(p = 1.0), sensitivity (p = 0.112), or specificity (p = 0.795).

For adjacent striatal slice 40, the gradient descent optimizer
algorithm produced a mean accuracy of 0.952 ± 0.040 (95 %
CI 0.927–0.977) over a tenfold cross-validation. The mean
sensitivity was 0.953 ± 0.053 (95 % CI 0.920–0.986) and the
mean specificity was 0.953 ± 0.048 (95 % CI 0.924–0.982).
The Adagrad optimizer algorithm produced a mean accuracy
of 0.956 ± 0.012 (95 % CI 0.949–0.963) over a tenfold cross-
validation. The mean sensitivity was 0.976 ± 0.014 (95 % CI
0.968–0.985) and the mean specificity was 0.887 ± 0.055
(95 % CI 0.853–0.922). A comparison of gradient descent
versus Adagrad optimizers for slice 40 input demonstrated
no significant difference in accuracy (p = 0.347) or sensitivity
(p = 0.150). However, the gradient descent optimizer pro-
duced a significantly greater specificity compared to the
Adagrad optimizer (p = 0.009) for slice 40 input.

Comparing diagnostic performance using slice 40 versus
slice 41 input, the gradient descent optimizer yielded a bor-
derline significant increase in sensitivity with slice 41 input
(p = 0.046), but produced no differences in accuracy (p =
0.384) or specificity (p = 0.064). Comparison of slice 40 ver-
sus slice 41 input using the Adagrad optimizer showed no
significant difference in accuracy (p = 0.968), sensitivity
(p = 0.674), or specificity (p = 0.624).

For adjacent striatal slice 42, the gradient descent optimizer
algorithm produced a mean accuracy of 0.953 ± 0.023 (95 %
CI 0.939–0.968) over a tenfold cross-validation. The mean
sensitivity was 0.970 ± 0.019 (95 % CI 0.958–0.982) and the

Fig. 4 Performance summary for a single cross-validation run. Accuracy (a) and cross-entropy (b) converge with increasing number of training iterations

Table 1 Quantitative performance measures of two classifier
algorithms. The results represent individual statistics for each cross-
validation dataset. Note: FP fraction denotes false positive fraction; FN
fraction denotes false negative fraction

Algorithm Accuracy Sensitivity Specificity FP
fraction

FN
fraction

Gradient descent
optimizer

0.95 0.97 0.90 0.02 0.02

0.88 0.86 1.00 0.00 0.12

0.84 1.00 0.38 0.16 0.00

0.90 0.99 0.52 0.09 0.00

0.99 1.00 0.94 0.01 0.00

0.95 0.99 0.83 0.04 0.01

0.97 0.97 1.00 0.00 0.03

0.95 0.98 0.88 0.03 0.02

0.96 0.99 0.86 0.04 0.00

0.97 0.99 0.91 0.02 0.00

Adagrad
optimizer

0.97 0.99 0.91 0.02 0.01

0.94 0.98 0.80 0.04 0.01

0.95 0.97 0.90 0.02 0.02

0.95 0.98 0.87 0.03 0.01

0.95 0.94 0.96 0.01 0.04

0.95 0.97 0.90 0.02 0.02

0.97 0.98 0.93 0.01 0.01

0.94 0.95 0.85 0.03 0.04

0.94 0.96 0.89 0.02 0.03

0.98 0.98 0.98 0.00 0.01
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mean specificity was 0.892 ± 0.144 (95 % CI 0.803–0.981).
The Adagrad optimizer algorithm produced a mean accuracy
of 0.956 ± 0.016 (95 % CI 0.946–0.966) over a tenfold cross-
validation. The mean sensitivity was 0.964 ± 0.023 (95 % CI
0.950–0.979) and the mean specificity was 0.931 ± 0.036
(95 % CI 0.908–0.953). A comparison of gradient descent
versus Adagrad optimizers for slice 42 input demonstrated
no significant difference in accuracy (p = 0.912), sensitivity
(p = 0.849), or specificity (p = 0.912).

Comparing diagnostic performance using slice 41 versus slice
42 input, neither the gradient descent optimizer nor the Adagrad
optimizer produced significant differences in accuracy (p= 0.569
and 0.704, respectively), sensitivity (p = 0.187 and 0.384, respec-
tively), or specificity (p= 0.327 and 0.211, respectively).

Discussion

Artificial neural networks are a well-established class of ma-
chine learning approaches for automated image classification.
In this study, we implemented a simple single-layer neural
network as a proof-of-concept study to interface TensorFlow
with raw DICOM inputs at the pixel level.

Our implementation of a neural network in TensorFlow
produces diagnostic accuracies on par with excellent results
from previous machine learning models. These results indi-
cate TensorFlow’s potential role as a useful adjunct diagnostic
tool in the clinical setting. Furthermore, the diversity of
DaTscan images in the Parkinson’s Progression Markers
Initiative database, acquired on a variety of scanners across
multiple international centers, contributes to the robustness of
the machine learning model.

Limitations of our study include single-slice processing
of DaTscan SPECT volumes. TensorFlow currently sup-
ports analysis of single images and not volumetric data.
Consequently, a single axial slice 41 at the basal ganglia
with maximal uptake was chosen to populate the training,
validation, and test datasets. This technique creates a po-
tential selection bias by effectively eliminating contribu-
tion of other axial slices for any given training session.
We reduced this bias by separately analyzing adjacent
slices 40 and 42 in the basal ganglia to incorporate more
imaging volume. The results indicate that TensorFlow in-
put with slice 41 produces a borderline significant in-
crease in sensitivity over slice 40 input (97.4 versus
95.3 %, respectively), but yields no significant differences
in accuracy or specificity. Input with slice 41 versus slice
42 produced no significant differences in accuracy, sensi-
tivity, and specificity. Although a congruence in diagnos-
tic performance is reassuring for adjacent slices within the
basal ganglia, this method nonetheless represents a depar-
ture from human expert reads that evaluate all slices in the
imaging volume.

In the absence of a definitive diagnostic test for Parkinson’s
disease, machine learning models depend on clinical evalua-
tions to accurately label normal subjects versus those with
Parkinson’s disease during the training process. Therefore,
classification accuracy may be affected by variations in clini-
cal confidence. Furthermore, since imaging findings of pa-
tients with Parkinson’s disease may precede clinical manifes-
tations, the Bground truth^ classification labels derived from
clinical exams may be a source of additional bias.

The relatively small sample size is a third limitation of our
study. State-of-the-art image classification algorithms in com-
puter science utilize tens of thousands of images. For instance,
the established computer vision dataset CIFAR-10 contains
50,000 training images and 10,000 testing images for classi-
fication into one of ten labeled categories [20]. CIFAR-10 is a
subset of an even larger research dataset containing 80 million
images for object and scene recognition [21, 22]. Although the
PPMI DaTscan database contains a significantly smaller sam-
ple size, TensorFlow nevertheless achieved an excellent accu-
racy and thus merits follow-up studies using its more sophis-
ticated multi-layered models.

Future directions of research may include analyzing radi-
ology images with convolutional neural networks to account
for translational variations of abnormal structures. Potential
use cases include lung nodule detection or breast cancer
screening. The ability to submit DICOM images to
TensorFlow for implementing convolutional neural networks
opens an exciting next step for machine learning in radiology.

Conclusion

We extended the TensorFlow API to enable DICOM compat-
ibility as a framework for implementing machine learning
classifiers in medical imaging.
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