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Abstract We built a natural language processing (NLP)
method to automatically extract clinical findings in radiology
reports and characterize their level of change and significance
according to a radiology-specific information model. We uti-
lized a combination of machine learning and rule-based ap-
proaches for this purpose. Our method is unique in capturing
different features and levels of abstractions at surface, entity,
and discourse levels in text analysis. This combination has
enabled us to recognize the underlying semantics of radiology
report narratives for this task. We evaluated our method on
radiology reports from four major healthcare organizations.
Our evaluation showed the efficacy of our method in
highlighting important changes (accuracy 99.2%, precision
96.3%, recall 93.5%, and F1 score 94.7%) and identifying
significant observations (accuracy 75.8%, precision 75.2%,
recall 75.7%, and F1 score 75.3%) to characterize radiology
reports. This method can help clinicians quickly understand
the key observations in radiology reports and facilitate clinical
decision support, review prioritization, and disease
surveillance.

Keywords Natural language processing . Radiology reports .

Imaging informatics

Introduction

Reviewing and making sense of a large volume of text is a
time-consuming and laborious task in many clinical settings.
In the clinical domain, physicians and healthcare providers
face an information overload problem. Often, clinicians need
to review multiple narrative documents describing patients’
medical history, clinical laboratory, surgical pathology, and
radiology results. Studies have shown that the volume of nar-
rative and structured clinical data has been growing exponen-
tially [1, 2], while clinicians have only a limited time to review
and interpret the data. Therefore, natural language processing
(NLP) methods that provide summaries of major clinical find-
ings and characterize their important aspects can be instru-
mental to direct the focus of healthcare providers to clinically
significant observations and help clinicians to review and un-
derstand the information efficiently.

Radiology reports are a particularly common source of in-
formation in many medical conditions. However, the majority
of radiology reports remain in unstructured text format. Even
in the presence of recent attempts to introduce structured tem-
plates for radiology reports, most of the information in these
templates is in free text. Given the large volume of these texts,
which can vary in size, purpose, modality, and source, it is a
cumbersome task to review, comprehend, and prioritize the
information in radiology reports. This large volumemay cause
information errors and is a major obstacle for healthcare pro-
vider’s efficiency and productivity. To tackle this problem, we
propose an NLP system that will distill the clinical findings in
a report, including important new observations and significant
changes in previous observations.

A related field to our work is computer-based summariza-
tion, which started in the 1950s [3, 4]. There are multiple
survey papers that discuss the different summarization tech-
niques from early times to the recent era [5–9]. Summarization
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techniques are also developed and applied in the biomedical
domain [10–12]. These methods mostly customize general
text summarization methods in the biomedical domain. For
example, Sarkar [13] uses features such as term frequency,
title, and position for summarization; Reeve et al. [14] uses
graph-based lexical chaining for biomedical text; Chuang and
Yang [15] uses an array of supervised classifiers such as naïve
Bayes, decision tree, and neural networks for biomedical sum-
marization. A large number of these biomedical summariza-
tion methods focus on biomedical articles and literature sum-
marization as their input rather than radiology reports and
clinical notes [11, 16]. Electronic medical record (EMR) data
and notes were also used to find and retrieve relevant biomed-
ical literature, which was subsequently used as input to sum-
marization methods [15, 17, 18]. There have been other
methods for summarization of radiology reports [19–21].
However, these methods are mostly focused on a specific
medical condition and they do not provide a characterization
of clinical findings in radiology reports.

Despite the large number of existing text summarization
and characterization methods, generally, they can be divided
into three categories based on the level of abstraction in text
analysis and their utilized textual features: (1) surface level,
(2) entity level, and (3) discourse level [22]. Surface-level
features include simple textual features such as term frequen-
cies, term positions, and cue words. The entity-based features
represent entities in text and their relationships such as term
similarities, term’s dictionary-based memberships, and syn-
tactic relationships. The discourse-level features focus on
overall text structure and its semantics such as thread of topics
and covered subjects [9]. Our NLP approach presented in this
paper is unique, because our method covers all three levels of
abstractions in text analysis, features, and criteria used for
extracting and characterizing summaries. For example, as de-
scribed in the BMaterial and Methods^ section, we use
surface-level features such as n-grams and frequency-based
weights, entity-level features such as named-entity recogni-
tion annotations, and discourse-level analysis such as negation
detection to extract and determine significance and change in
clinical findings. As a result, our method provides a compre-
hensive approach to analyze the radiology reports at different
abstraction levels compared to the previous summarization
and characterization methods. The details of this method are
described in the following section.

Material and Methods

We use a combination of machine learning and rule-based
methods to extract clinical findings in radiology reports and
characterize their level of change and significance. Figure 1
shows the overview of our approach. The details of this ap-
proach are as follows.

Information Model

The information model in our method provides a coherent
framework for radiology report information. The information
model focuses on two major aspects of clinical findings in
radiology reports: change and significance. This model is in-
spired by a previous work on radiology report assessment
[23]. Change in our information model has four classes:
new/worse, unchanged, improved, and indeterminate. These
classes indicate clinically significant changes in the outputs of
our characterization method compared to the most recent prior
study. Significance in our informationmodel has three classes:
significant, normal/insignificant, and indeterminate. These
finding classes indicate potential for harm and the need for
follow-up, treatment, or change in management based on a
provided summary elicited from the radiology report.
Tables 1 and 2 describe each of these classes with examples
from radiology reports for change and significance,
respectively.

Radiology Report Data Set

The source of the radiology reports in this work is the
RadCore database and Stanford Translational Research
Integrated Database Environment (STRIDE). RadCore and
STRIDE were used jointly to build training and test data sets.
RadCore is a multi-institutional database of radiology reports
aggregated in 2007 from three major healthcare organizations:
Mayo Clinic, MD Anderson Cancer Center, and Medical
College of Wisconsin. RadCore radiology reports were col-
lected under institutional review board approval from those
three organizations. STRIDE database contains radiology re-
ports from Stanford Health Care since 1998. The use of these
data in our project was approved by our institutional review
boards.

We use manually annotated radiology reports to build and
evaluate our methodology. Given the large amounts of data in
RadCore and STRIDE radiology report repositories and our
limited resources, we restricted our focus to chest computed
tomography (CT) radiology reports to keep the manual anno-
tation requirements tractable. Therefore, we randomly select-
ed ten radiology reports from each of the four organizations
with chest CT study type. There were no major differences in
the formatting of chest CT radiology reports in different orga-
nizations. In our manual annotations, a domain expert radiol-
ogist highlighted findings in selected 40 radiology reports’
text and rated their significance and change according to our
information models.

To evaluate the quality of the manual annotations, we cal-
culated interannotator agreement for a subset of our data set.
We randomly selected 25% of our annotated radiology re-
ports, and we asked an independent radiologist to annotate
their findings according to the information models. We
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calculated the total percentage of agreements between two
annotators. To remove the effect of agreements by chance,
we also calculated Cohen’s kappa coefficient [24], a widely
accepted agreement metric in NLP, for these two sets of
annotations.

Clinical Observation Extraction

We use our previously developed NLP method to identify
clinical observations in radiology reports [25]. In this method,
a combination of semantic and syntactic features such as ne-
gations, word shapes, word stems, part of speech tags, n-
grams, and RadLex [26] ontology memberships are used in
a machine learning named-entity recognition model to identi-
fy terms and phrases that belong to radiological observations.
This named-entity recognition model is based on a conditional
random field (CRF) framework [27]. CRF is a discriminative
sequence classifier, which is used in state-of-the-art part of
speech tagging and named-entity recognition systems [28].

A CRF model includes an estimation of the conditional distri-
bution of output labels given the input features with an asso-
ciated graphical structure. This method uses a linear chain
graphical structure to predict sequences of annotation labels
for the sequences of input words from radiology reports. The
CRF model considers previously assigned labels, surrounding
terms, and their features as context for annotation of a single
word. Our previous work showed strong performance of this
method for annotating observations in chest CTs (precision
89.4%, recall 84.1%, and F1 score 86.7%) [25].

Inclusion of Grammatical Dependencies

To provide meaningful summaries, we need to include associ-
ated modifiers and dependents for extracted observations. To
do that, we parse the radiology report sentences using Stanford
Parser [29]. The Stanford Parser is an open-source and widely
used probabilistic natural language parser that identifies gram-
matical roles of words in sentences. A probabilistic parser

Fig. 1 Overview of our methodology for characterization of change and significance for clinical findings in radiology reports

Table 1 Change information
model classes for radiology report
summaries and their associated
descriptions and examples

Change class Description Example

New orworse Finding was not present on the prior
study or has progressed

Bskeletal metastases a few of which are slightly more
prominent^

Unchanged Finding has not changed Bno significant change in the mild mediastinal and mild
right hilar adenopathy^

Improved Finding has partially resolved Bmarked interval improvement in the bilateral
pulmonary nodules^

Indeterminate Change cannot be assessed Bcalcified right hilar and mediastinal nodes with
calcified granulomas in the liver and spleen^
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searches over the space of all possible candidate parses that
represent grammatical roles of words of a sentence and derive
the most probable parse by using dynamic programming [29].
After parsing the radiology report sentences, we expand ex-
tracted observations from the last step to their largest subsum-
ing noun phrase in the parse trees. This expansion completes
the extracted observations based on grammatical dependencies
and complements the clinical findings.

Refinement of Clinical Findings

We process the outcomes of the grammatical expansions to
filter out text snippets that are not representing clinical find-
ings. For this purpose, we develop a text classifier that iden-
tifies extracted text snippets that refer to clinical findings. This
text classifier is based on a support vector machine (SVM)
framework [30]. SVM is one of the most effective classifiers
in machine learning. SVM is a maximum-margin classifier,
which finds the decision boundary with the largest separation
between positive and negative training examples. To train this
classifier, we partition our manually annotated radiology re-
ports into separate training and test sets. Our training set con-
tains 80% of radiology reports from each organization. The
test contains the remaining 20% of the data.

To use radiology report content in an SVM classification
framework, we need to model radiology report text quantita-
tively. We therefore modeled radiology reports as vectors in
Euclidian space, where each vector dimension corresponds to
an n-gram, which is a contiguous sequence of one, two, or
three words in a report. If a report contains an n-gram, that n-
gram has a non-zero weight in the report’s vector representa-
tion. The weight of each n-gram was computed using term
frequency-inverse document frequency (tf-idf), a common
weighting scheme in text mining [31]. A tf-idf weight in-
creases proportionally by the n-gram frequency in the report
and is scaled down by the commonality of the n-gram among
all reports in the data set. In this work, we used LIBSVM, a
widely used open-source machine learning library, with a lin-
ear kernel function to train our SVM classifier [32].

Determine Change in Clinical Findings for Summaries

To rate the degree of change in clinical findings of the extract-
ed summaries, we utilized a simple key term matching ap-
proach accompanied with a negation detection tool. The rules
and criteria used were decided in discussions with radiologist
coauthors, based on the review of 20% of data set’s radiology
reports as the training set, while the remaining 80% of the data
set was held out as the test set for evaluation. To determine the
negative context for our key terms, we used NegEx [32], a
widely used clinical text-mining tool. NegEx first identifies
negation triggers in text based on its dictionary, and then uses
a set of rules to determine which terms fall within the scope of
those triggering terms [33]. The list of change model classes
and their deciding criteria are listed in Table 3.

Assess the Significance of Clinical Findings in Summaries

Significance for clinical findings is encoded in numerous
ways in radiology. Because of this variety and the complexity
of natural language associated with significance of clinical
findings in extracted summaries, our radiologist collaborators
could not identify a conclusive set of rules and key words to
recognize their level of significance. Therefore, to address this
problem, we developed an SVM text classifier to assess the
significance of the clinical findings in extracted summaries.

Table 2 Significance information model classes for radiology report
summaries and their corresponding descriptions and examples

Significance
class

Description Example

Significant Finding may or likely cause
harm without initiation of
treatment or change in
management

Bbilateral pulmonary and
right pleural nodules
suspicious for a
metastases^

Normal or
insignifi-
cant

Finding is normal or unlikely
to cause harm without
initiation of treatment or
change in management

Bminor airway
secretions^, Bno
definite new nodules^

Indeterminate Unable to draw conclusions
from imaging

Bsmall mediastinal lymph
nodes that do not meet
criteria for
lymphadenopathy^

Table 3 Our rules and criteria to
determine levels of change in
radiology report summaries

Change class Rule

New or worse Presence of Bnew ,̂ Bincrease^, Bdevelop^, Bprogress^, and Bmore^ in positive context

Unchanged Presence of Bnew ,̂ Bincrease^, Bdevelop^, Bprogress^, and Bmore^ in negative context

Presence of Bchange^ in negative context

Presence of Bstable^, Bremain^, and Bpersist^

Improved Presence of Bimprove^ and Bdecrease^

Indeterminate Absence of other criteria
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The previously constructed training and test sets for clinical
finding refinement are also manually annotated by our collab-
orator radiologist according to our significance information
model (Table 2). Similarly, we used tf-idf weights of n-grams
in the annotated training set to train a linear kernel function
SVM classifier to rate significance levels in extracted
summaries.

Evaluation

We evaluated the developed classifiers for clinical finding
refinement on the holdout test set. The developed methods
for change and significance assessment were evaluated on
both true clinical findings and clinical finding results from
our refinement method on their associated test sets. Testing
change and significance assessment on refinement results
gives the end-to-end evaluation of our characterization meth-
od. In these evaluations, we measured standardmachine learn-
ing evaluation metrics of accuracy, precision, recall, and F1
score [34]. 95% confidence intervals were calculated for these
metrics using the asymptotic approach in R statistical toolbox
[35].

Results

Table 4 shows the number of manual annotations that are used
in our work to build and evaluate our method. Table 5 shows
agreement percentage and kappa coefficient for the inter-
annotator agreement evaluation on 25% of annotations.

Table 6 shows accuracy, precision, recall, and the F1 score
of our method for capturing clinical findings, characterizing
their change and significance in radiology report summaries,
and their corresponding 95% confidence intervals. This table
shows the measurements for change and significance determi-
nation on true clinical findings, in addition to extracted clinical
findings by our SVM classifier for an end-to-end evaluation.

We also measured the evaluation metrics and the 95% con-
fidence intervals for all classes of change and significance for

radiology report summaries in the end-to-end evaluation. As it
was noted in the breakdown of the manual annotations
(Table 4), because our data set does not contain clinical find-
ings with indeterminate significance, we focused on normal/
insignificant and significant classes in our analysis. Table 7
shows these results for change classes, and Table 8 shows the
results for significance classes.

Discussion

The main contribution of this work is the use of NLP and
machine learning frameworks to extract clinical findings and
characterize their change and significance according to a
radiology-specific information model. This method relies on
our previously developed information extraction system,
which annotates granular level concept classes such as obser-
vations in radiology reports and new NLP methods to extract
and refine the clinical findings and rate their change and sig-
nificance. Our results show that the presented approach can
characterize key radiological synopses in radiology reports
with high accuracy. We also demonstrated the generalizability
of our radiology report characterization approach to different
healthcare organizations by training and testing our method on
data from different organizations. For an input radiology re-
port, this automated pipeline generates an easy-to-read sum-
marization text output, encompassing clinical findings and
their level of change and significance, in a fraction of a
second.

Our radiology report characterization method has many
potential clinical applications. For example, our method can
assist healthcare providers at the point of care as a part of an
online clinical decision support system by providing the char-
acterization for key clinical findings for decision-making
based on radiology reports. The resulting characterizations
can be combined with other information from electronic
health records for review prioritization, disease surveillance,
and content-based image retrieval. Given the performance of
our method on multi-organizational radiology reports, our

Table 4 The number of
annotated classes in manual
annotations in entire data set and
the test set

Annotation Counts in the data set Counts in the test set

Not a clinical finding 161 35

New or worse clinical finding 23 21

Unchanged clinical finding 10 7

Improved clinical finding 65 50

Indeterminate clinical finding 593 488

Significant clinical finding 275 45

Normal or insignificant clinical finding 255 45

Clinical finding with indeterminate significance 0 0

Total number of annotations 1382 691
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characterization method can provide an infrastructure to de-
velop and improve various data-driven biomedical informa-
tion systems that deal with information overload.

The reference standard annotations in this study were gen-
erated by one radiologist. This might have introduced bias into
the annotation process. To explore these potential biases, we
asked a second independent radiologist to annotate 25% of our
data set. The inter-annotator agreement measures for this sub-
set showed reasonably high agreements between the two an-
notators (agreement percentages were between 94.6 and
96.8% and kappa coefficients were between 79.4 and 83.9%
for different types of annotations). This level of interannotator
agreement shows the integrity of our reference standard anno-
tations. The existing disagreements between the annotators
demonstrate the challenges of the manual annotation process,
caused by the complexity of radiology report language. We
expect providing a comprehensive set of annotation guidelines
with expressive examples will improve the quality of the ref-
erence standard annotations and the interannotator agreement.

As part of our error analysis, we reviewed the errors that
occurred at each stage of our method. For capturing clinical
findings (F1 score 85.7%), most of the errors were caused by
invalid clinical observation annotations from the utilized CRF
named-entity recognition system. We expect that expanding
the training data for retraining both the CRF model and our
finding refinement SVMmodel will improve the performance
of the method. The errors for detecting changes (end-to-end

F1 score 94.7%) are mostly due to the triggering of conflicting
rules in summaries due to expressions such as Bunchanged
increased^ (identified as new/worse by our method and un-
changed by the radiologist) or Bdevelopment of a small
amount^ (identified as unchanged by our method and new/
worse by the radiologist). Adding new rules in our method to
resolve the conflicts between different rules can resolve these
errors. Other errors in change characterization were caused by
underlying semantics of the summaries. For example, Bas seen
on the prior examination^ indicates an unchanged status, or
Bmore callus formation^ is an indication of healing fracture
and improving condition. Although new rules can address
these errors case by case, we plan to develop a more sophis-
ticated machine learning method for capturing text’s underly-
ing semantics for this task through novel semantic text analy-
sis frameworks such as deep neural networks [36] as future
work. That said, considering the strong performance and rel-
atively simple implementation of the rule-based approach, the
current rule-based method is highly effective for the change
characterization task. The errors in determining the signifi-
cance of clinical findings (end-to-end F1 score 75.3%) are
mostly due to new terms and phrases in the test set that were
not observed in the training process.We expect that expanding
the training set will significantly improve the performance of
our SVM classifier for this task.

We also examined our method’s errors in our multi-
organizational study through manual review. We observed
the error types for identifying and characterizing radiology
report summaries are similar in reports from different organi-
zations. This is due to similarities in the patterns of our infor-
mation model classes in radiology reports across different or-
ganizations. Of note, we did not observe any spelling errors in
the review of the radiology reports. All reports in our data set
are dictated by radiologists using speech recognition systems
[37]. These speech recognition systems have built-in dictio-
naries, perform spell check, and therefore almost always

Table 6 Evaluation results of our
method for extracting clinical
findings for radiology reports and
determining their characteristics
with 95% confidence intervals
(CIs)

Results Accuracy
(CI) (%)

Precision
(CI) (%)

Recall (CI)
(%)

F1 score
(CI) (%)

Extracting clinical findings 78.4

(70.4–86.4)

81.8

(74.3–89.3)

90.0

(84.2–95.8)

85.7

(78.9–92.5)

Determination of change on true clinical findings 99.3

(98.2–100.0)

97.3

(94.3–100)

93.4

(88.6–98.2)

95.2

(91.1–99.3)

Determination of change on extracted clinical
findings (end-to-end)

99.2

(97.9–100.0)

96.3

(92.8–99.8)

93.5

(88.8–98.2)

94.7

(90.4–99.0)

Determination of significance on true clinical
findings

78.9

(71.0–86.8)

79.3

(71.4–87.2)

78.9

(71.0–86.8)

78.8

(70.9–86.7)

Determination of significance on extracted
clinical findings (end-to-end)

75.8

(67.5–84.1)

75.2

(66.8–83.6)

75.7

(67.4–84.0)

75.3

(66.9–83.7)

Table 5 Inter-annotator agreement on manual annotations

Annotation type Agreement percentage (%) Kappa coefficient (%)

Clinical finding 96.8 83.9

Change 94.6 79.4

Significance 96.3 82.1
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include correctly spelled terms and phrases in radiology re-
ports [30]. In addition, no errors caused by homophones were
observed by our domain expert radiologists who reviewed and
annotated the radiology reports in our data set.

Limitations and Avenues for Future Work

As future work, we plan to expand our annotated training and
test data sets and enrich the NLP features to address the cur-
rent errors of the NLP approach and improve the robustness of
our method and its evaluation. The number of radiology re-
ports for training and evaluating our method was small and
limited. Expanding this data set will inform and refine the
machine learningmodels for error cases in the training process
and improve the performance of our method. Also, the in-
crease of the test set will enhance the confidence intervals of
the evaluation metrics. Adding new features that capture text
semantics such as distributional semantics and term co-
occurrence patterns [38, 39] will address the NLP errors even
without observing similar cases in the training set. In addition,
as mentioned in the BMaterial and Methods^ section, the ref-
erence standard annotations in this work are generated by one
domain expert. To address any potential biases in these anno-
tations, we plan to leverage multiple annotators instructed
with annotation guidelines and examples for manual annota-
tion in the future extension of our work. We will use the
majority vote among these overlapping annotations to remove
potential disagreements, biases, and noise in annotations. We
expect this will increase the reliability of our annotated

training set and improve our machine learning models for
radiology report information extraction and characterization.

As a limitation of this study, our training and test sets in this
work are small and only focused on chest CT reports. This is
due to the time-consuming nature of manual annotation and
our limited resources for the manual annotation of radiology
reports. Despite this restriction, chest CT report narratives
cover clinical findings from many vital organs and conditions
and are representative of the complexity of radiology report
narratives for other imaging modalities and body regions.
Even with a relatively small set of training data, our results
showed the robustness and generalizability of our method on
data from different organizations. In fact, none of the NLP
techniques described in this work are specific to an informa-
tion model, narrative, or organization. The developed tech-
niques are applicable to other types of narratives with different
information models and data sources as well. We plan to ex-
tend and apply this method beyond chest CTmodality to other
types of radiology reports and clinical notes in both structured
and unstructured format.

As another future work, we plan to extend our characteri-
zation method to multiple radiology reports for each patient to
capture the complete imaging history for patients. For this
purpose, we will consider temporal patterns across various
reports, non-monotonic reasoning, and measures such as
pointwise mutual information [40] to remove the redundan-
cies and contradictions in the summarization results frommul-
tiple radiology reports. We also plan to expand the richness of
our information model. This includes adding more concept
classes, such as classes to describe urgency of clinical find-
ings, for more detailed characterization of radiology reports.

Table 7 Results of end-to-end
evaluation and the corresponding
95% CIs for each change class

Results Accuracy (CI) (%) Precision (CI) (%) Recall (CI) (%) F1 score (CI) (%)

New or worse 99.3

(98.2–100.0)

92.6

(87.6–97.6)

92.6

(87.6–97.6)

92.6

(87.6–97.6)

Unchanged 98.9

(97.3–100.0)

93.1

(88.2–98.0)

96.4

(92.9–99.9)

94.7

(90.4–99.0)

Improved 99.8

(99.4–100.0)

100.0

(99.7–100.0)

85.7

(78.9–92.5)

92.3

(87.2–97.4)

Indeterminate 98.2

(95.9–100.0)

99.4

(98.4–100.0)

98.5

(96.5–100.0)

99.0

(97.5–100.0)

Table 8 Results of end-to-end
evaluation and the corresponding
95% CIs for each significance
class

Results Accuracy (CI) (%) Precision (CI) (%) Recall (CI) (%) F1 score (CI) (%)

Normal/insignificant 75.8

(67.5–84.1)

81.5

(74.0–89.0)

75.9

(67.6–84.2)

78.6

(70.6–86.6)

Significant 75.8

(67.5–84.1)

68.9

(59.9–77.9)

75.6

(67.2–84.0)

72.1

(63.4–80.8)
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Conclusions

We developed an NLP method to extract clinical findings
from the radiology report narrative and determine the level
of change and significance of these clinical findings according
to an information model. This radiology-specific information
model covers different levels of change and significance re-
quired for an informed clinical decision-making process. Our
method uses a combination of machine learning and rule-
based approaches and leverages various features and abstrac-
tions at surface, entity, and discourse levels in text analysis.
For evaluation, we applied our method on radiology reports
from four major healthcare organizations. Our results showed
the strength of our method in summarizing radiology reports
and rating their level of change (accuracy 99.2%, precision
96.3%, recall 93.5%, and F1 score 94.7%) and significance
(accuracy 75.8%, precision 75.2%, recall 75.7%, and F1 score
75.3%). Considering the evaluation results, the method pro-
vided a coherent characterization framework for radiology
reports in the presence of various wording and stylistic varia-
tions in radiology reports in different organizations. The ex-
tracted clinical findings and their associated characterizations
can enable clinicians to understand radiology reports better
and prioritize the report review process to rapidly identify
reports that need further follow-up. Our method can facilitate
automated identification of patients for clinical trials, acceler-
ate disease surveillance, and enable real-time clinical decision
support and content-based image retrieval systems.
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