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Abstract A computer-aided differential diagnosis (CADD)
system that distinguishes between usual interstitial pneu-
monia (UIP) and non-specific interstitial pneumonia
(NSIP) using high-resolution computed tomography
(HRCT) images was developed, and its results compared
against the decision of a radiologist. Six local interstitial
lung disease patterns in the images were determined, and
900 typical regions of interest were marked by an experi-
enced radiologist. A support vector machine classifier was
used to train and label the regions of interest of the lung
parenchyma based on the texture and shape characteristics.
Based on the regional classifications of the entire lung
using HRCT, the distributions and extents of the six region-
al patterns were characterized through their CADD fea-
tures. The disease division index of every area fraction
combination and the asymmetric index between the left
and right lungs were also evaluated. A second SVM classi-
fier was employed to classify the UIP and NSIP, and fea-
tures were selected through sequential-forward floating fea-
ture selection. For the evaluation, 54 HRCT images of UIP
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(n =26) and NSIP (n = 28) patients clinically diagnosed by
a pulmonologist were included and evaluated. The classifi-
cation accuracy was measured based on a fivefold cross-
validation with 20 repetitions using random shuffling. For
comparison, thoracic radiologists assessed each case using
HRCT images without clinical information or diagnosis.
The accuracies of the radiologists’ decisions were 75 and
87%. The accuracies of the CADD system using different
features ranged from 70 to 81%. Finally, the accuracy of the
proposed CADD system after sequential-forward feature
selection was 91%.

Keywords Computer-aided differential diagnosis - Usual
interstitial pneumonia - Non-specific interstitial pneumonia -
Regional lung disease patterns - SVM classifier

Introduction

Diffuse interstitial lung disease (DILD) is a type of chronic
disorder that infiltrates the lung parenchyma (functional tis-
sue) and leads to respiratory problems if the cause is not re-
moved or if therapy fails. Idiopathic interstitial pneumonia
(ITP) is a type of DILD that consists of seven clinical-
radiologic-pathologic entities, including usual interstitial
pneumonia (UIP) and non-specific interstitial pneumonia
(NSIP). Specifically, UIP and NSIP account for two-thirds
of IIP cases and show different prognoses with a five-year
survival rate [1]. Differentiating between UIP and NSIP is
clinically important in terms of their different therapies and
prognoses [2].

Because of the rapid development of computer tomogra-
phy (CT), high-resolution computed tomography (HRCT)
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has become an important tool for characterizing various
types of lung parenchyma disorders, particularly DILD [3,
4]. The texture and shape characteristics of the local lung
parenchyma of DILD patients have potential importance for
understanding the various lung diseases that correlate with
disease pathology [5—7]. Several lung disease quantifica-
tion methods employing textural and shape features have
been verified for accurate regional disease differentiation
and a reproducible assessment [8—11].

In this paper, we present a computer-aided differential
diagnosis system for distinguishing between usual intersti-
tial pneumonia (UIP) and non-specific interstitial pneumo-
nia (NSIP) by employing HRCT lung quantification
methods. The proposed system consists of two classifica-
tion steps. First, the DILD regional disease—pattern classi-
fier quantifies the lung parenchyma into one normal and
five regional pulmonary disease patterns (ground-glass
opacity, consolidation, reticular opacity, emphysema, and
honeycombing) using textural and shape features extracted
from HRCT images. Subsequently, the computer-aided dif-
ferential diagnosis (CADD) classifier differentiates the
HRCT images into UIP and NSIP, based on their quantified
lung characteristics.

Materials and Methods

Figure 1 illustrates the overall procedure of the proposed
scheme. Two different classifiers are concatenated for a step-
by-step analysis of the HRCT image. First, for lung quantifi-
cation, textural and shape features are extracted from the
HRCT images. A support vector machine (SVM), trained
using DILD regional disease patterns manually labeled by
radiologists, categorizes the entire lung parenchyma into six
classes. Subsequently, CADD features characterizing the dis-
tribution of a regional disease pattern are extracted. Another
SVM classifier is applied to differentiate the lung images be-
tween UIP and NSIP using the CADD features. In the follow-
ing section, we describe the details of our materials and
methods used.

Subjects

The Asan Medical Center’s institutional review board for hu-
man investigations approved the study protocol, removed all
patient identifiers, and waived the informed-consent require-
ments owing to the retrospective nature of this study.

For the lung quantification, HRCT images were selected ret-
rospectively from images obtained from 14 healthy subjects, 16
patients with emphysema, 35 patients with cryptogenic-
organizing pneumonia, 36 patients with usual interstitial pneu-
monia, 4 patients with pneumonia, and 1 patient with acute
interstitial pneumonia. (See “Lung quantification™).
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For modeling the CADD classifier, images from 26 dif-
ferent patients with UIP and 28 patients with NSIP, diag-
nosed both clinically and pathologically, were selected as
the dataset. This decision, based on a combination of
clinico-radiologico-pathological discussions and consen-
sus, has been regarded as the gold standard according to
the latest official statement by ATS/ERS/JRS/ALAT, i.e.,
Idiopathic Pulmonary Fibrosis: Evidence-based
Guidelines for Diagnosis and Management [12].

The entire chest was covered within the scanned field of
view. A 10-mm interval was used, and 30 to 40 slices were
acquired per patient. For the image reconstruction, a 16-
multidetector CT (Sensation 16, Siemens, Erlangen,
Germany) with a 1-mm slice thickness and an edge-
enhancing reconstruction kernel (B70f) was used.

Lung Quantification

In this study, we employed our previous work on regional
DILD disease-pattern classification for lung quantification
[13]. We used the same dataset and classifiers with similar
parameters.

In this study, six classes were defined, including normal,
ground-glass opacity, consolidation, reticular opacity, emphy-
sema, and honeycombing, as illustrated in Fig. 2. The ground-
glass opacity shows an abnormally hazy focus in the lungs,
and is not associated with the obscured underlying vessels.
Consolidation is similar to the ground-glass opacity, but is
associated with the obscured underlying vessels. Reticular
lung opacity is contracted by a thickened interstitial fiber net-
work of the lung, resulting from fluid, fibrous tissue, or cellu-
lar infiltration. The focal area of emphysema shows very low
attenuation in contrast to the surrounding area, whereas the
normal parenchyma shows higher attenuation. Emphysema
can be typically distinguished from honeycombing based on
its areas of emphysematous destruction, which lack a visible
wall, whereas honeycomb cysts have thick walls of fibrous
tissue. In a honeycombing area, extensive fibrosis with lung
destruction is found, which results in a cystic, reticular
appearance.

A thoracic radiologist with 10 years of experience marked
900 typical regions of interest (ROI), including normal (NL,
n = 150), ground-glass opacity (GGO, n = 150), reticular
opacity (RO, n = 150), honeycombing (HC, n = 150), emphy-
sema (EMPH, »n = 150), and consolidation (CONS, n = 150),
using a circular mask with a 20-pixel diameter. To prevent a
clustering effect, only one ROI was selected in each image. To
characterize the six types of regional DILD disease patterns,
we extracted 28 textural and shape features from the ROI of an
HRCT image [9, 14], e.g., histogram, gradient, run-length
matrix, co-occurrence matrix, cluster analysis, and top-hat
transform. An SVM was employed to quantify the lung pa-
renchyma into six classes. We applied sequential-forward
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Fig. 1 Overall scheme of the proposed CADD system and evaluation

feature selection, and the SVM was trained using the 900-ROI
dataset with a radial basis function (RBF) kernel and opti-
mized parameters.

After manual segmentation of the lung parenchyma, a
moving ROI function that travels and captures ROIs from
the lung parenchyma was applied. For each ROI, the SVM
predicted one of the six classes. As a result, the six regional
disease patterns were labeled pixel-by-pixel on the entire lung
parenchyma. Figure 3 shows examples of the lung quantifica-
tion results using the SVM classifier trained through the afore-
mentioned processes.

Computer-Aided Differential Diagnosis

After the lung quantification, the entire lung area is represent-
ed as an area composed of six regional disease patterns. The
distribution of the six classes provides important evidence for
differentiating UIP and NSIP [15, 16]. We defined CADD
features for quantifying the distribution characteristics after

consulting with experienced radiologists: area fraction (AF),
directional probability density function (dPDF), regional clus-
ter distribution pattern (RCDP), disease division index (DDI),
and asymmetric index (Al).

The AF is defined by counting the voxels of each regional
disease pattern from the entire lung, and is useful for
representing how the entire lung volume is composed, and
which regional disease is dominant.

AF; = Vi/VLunga

where V is the voxel count, and i is the regional disease
pattern.

In radiology, when differentiating UIP and NSIP, it is im-
portant to note which regional disease is dominant in which
area of the lung [17, 18]. The dPDF represents the distribution
patterns of each regional disease pattern throughout the entire
lung. We measure the dPDFs in three directions: anterior-
posterior (AP), upper-lower (UL), and central-peripheral
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Fig. 2 Examples of one normal
and five regional lung disease
patterns

(CP). The scales of the three direction ranges are normalized
from zero to 1. For each regional disease pattern, the mean,
standard deviation, and skewness are calculated in three direc-
tions, as in the following equation.

dPDF, 4 = pdf(i,d),

where i is the regional disease pattern, and d is the direction,
ie., AP, UL, or CP.

After the lung quantification, each regional disease pattern
in the entire lung appears to be an isolated mass. We consider

(e) Honeycombing

(f) Emphysema

these as connected component voxel clusters and measure the
characteristics of the cluster distribution. Regional cluster dis-
tribution patterns calculate the number of clusters (RCDP),
cluster area (RCDP_AR), and cluster centroid (RCDP_CR):

RCDP; = cluster_number(7;)
RCDP_AR; = cluster_area(T;)
RCDP_CR; = cluster_centroid(7’;),

where i is the regional disease pattern, and 7 is the connected
component cluster set. For each regional disease pattern, the

Fig. 3 Examples of DILD quantification. For every pixel, the semi-transparent color was coded based on the classification result (normal, green;
ground-glass opacity, yellow; reticular opacity, cyan; honeycombing, blue; emphysema, red)
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mean and standard deviation of the RCDP_AR and
RCDP_CR are calculated. Because the regional clustering
can represent how the regional diseases are formed, it can
distinguish between the diffused patterns and isolated mass
by calculating the number of clusters, sizes, and centroids.
The disease division index (DVI) is calculated by dividing
each regional disease pattern pair. Because we defined six
regional disease patterns, 50 pairs of DVIs are calculated.

DVI, = V,-/Vj,

where i and j are regional disease patterns and should have
different values. The DVI is also important for differentiating
UIP and NSIP; the proportions of the regional disease pairs are
a type of differentiation evidence in the field of radiology.

The symmetry between the left and right lungs is one of the
important keys in radiological UIP/NSIP differentiation. The
asymmetric index (Al) is defined by the measurements of the
left and right lung asymmetry of the aforementioned dPDF
and RCDP features. The Al of both dPDF and RCDP is cal-
culated through the following equations.

Alppr = dPDF 14-dPDF i3, / dAPDF ;g1
Alrcop = RCDPig=RCDPgss | RCDPyig.

An SVM classifier was again used to classify the UIP and
NSIP using the CADD features. Before training the SVM,
meaningful features were selected from a number of CADD
features to maximize the classification accuracy and avoid the
curse of dimensionality. Sequential-forward floating feature
selection (SFFS) was employed for selecting the CADD fea-
tures [19]. A grid search algorithm was applied to optimize the

parameters, including the SVM cost and gamma, using the
training data. Various cost and gamma pairs were attempted,
and the one with the best classification performance was se-
lected. The details of training and testing of the classifiers are
described in the following section.

Results

To evaluate the proposed differential diagnosis system, an
HRCT dataset of 54 patients, who were clinically and patho-
logically diagnosed with UIP (n = 26) and NSIP (n = 28), was
used. In this study, we carried out two experiments, including
a radiologic decision and a classification-based decision.

Radiologic Decision

Two thoracic radiologists were recruited, and asked to review the
HRCT images to diagnose each case as either UIP or NSIP, based
on a visual assessment without clinical information or diagnosis.
During the review, the radiologists assessed each HRCT image
and scored 21 entries: five disease-pattern quantifications (five
entries, 20 scales from 0 to 100%), three-directional distributions
of five disease patterns (15 entries, 20 scales from 0 to 100%),
and a radiologic decision (one entry, five scales).

The entities were used as feature sets for the SVM classi-
fier. Effective features were selected through sequential-
forward selection, and the classifier parameter was optimized
using the grid search algorithm. The trained classifier was
evaluated using a five-fold cross-validation with 20 repeti-
tions. The average accuracies of the radiologist decisions were
0.75 and 0.87, respectively.

Fig. 4 Example of a UIP lung quantification

@ Springer



240 J Digit Imaging (2018) 31:235-244

Table 1 CADD features of a UIP case

Area fraction

Normal Honeycombing GGO Consolidation =~ Emphysema Reticular
| [ ] u u opacity =
0.57 0.20 0.02 0.01 0.00 0.19

GGO directional probability-density function

Upper-lower Anterior-posterior Central-peripheral
Mean SD Skewness Mean SD Skewness Mean SD Skewness
0.02 0.03 1.87 0.02 0.02 1.54 0.01 0.01 3.13

Reticular opacity directional probability-density function =

Upper-lower Anterior-posterior Central-peripheral
Mean SD Skewness  Mean SD Skewness  Mean SD Skewness
0.20 0.12 0.63 0.23 0.14 1.90 0.22 0.02 1.41

Disease division index
Normal B/ GGO Normal B / Reticular opacity = GGO" / Reticular opacity =
29.85 3.01 0.10

GGO regional cluster distribution pattern

Number of clusters Area mean Area SD
18 440 807

L
Fig. 5 Example of NSIP lung quantification
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Qualitative Analysis of Lung Quantification and CADD
Features

To verify whether the lung quantification and CADD feature
extraction can represent lung-regional disease patterns and char-
acteristics for the differentiation, we compared the quantification
results and extracted features with radiological knowledge. For

Table 2 CADD features of an NSIP case

each UIP and NSIP case, the lung quantification results were
captured and their CADD features were extracted.

Figure 4 and Table 1 show an example of the lung quanti-
fication of a UIP case. The proposed CADD features are cal-
culated based on the quantification. The area fraction and
disease division index are used to represent the proportions
of reticular opacity and honeycombing in the entire lung

Area fraction

Normal Honeycombing GGO

Consolidation

Emphysema

Reticular
u | m m opacity
0.71 0.02 0.15 0.01 0.00 0.11
GGO directional probability-density function

Upper-lower Anterior-posterior Central-peripheral
Mean SD Skewness  Mean SD Skewness  mean SD Skewness
0.12 0.17 1.53 0.14 0.11 1.06 0.08 0.02 8.25

Reticular opacity directional probability-density function

Upper-lower Anterior-posterior Central-peripheral
Mean SD Skewness  Mean SD Skewness  Mean SD Skewness
0.11 0.13 1.61 0.09 0.06 0.46 0.05 0.02 8.10

Disease division index

Normal m / GGO

Normal B / Reticular opacity

GGO" / Reticular opacity

4.86 6.14 1.26
GGO regional cluster distribution pattern
Number of clusters Area mean Area SD
24 3202 12044
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parenchyma, and are similar to radiological knowledge. The
mean, standard deviation, and skewness of the three-
directional probability density functions represent well where
the regional disease is positioned and how the distribution is
formed. Based on radiological knowledge of the UIP, the re-
ticular opacity and honeycombing usually appear in the sub-
pleural region of the lung.

Figure 5 and Table 2 show an example of NSIP lung quan-
tification. Based on radiological knowledge, the diffused pat-
terns of the ground-glass opacity can appear dominantly in the
overall lung parenchyma. Reticular opacity can be found in
cases of fibrotic NSIP. The lung quantification result of the
example case and its extracted CADD features represent the
patterns well.

CADD Decision

To observe the effectiveness of the proposed CADD features
for differentiating between UIP and NSIP, the accuracy of a
fivefold cross-validation with 20 repetitions was measured
after training the classifier using each of the extracted
CADD features. As shown in Fig. 6, the average accuracy of
the classifier trained using AF, dPDF, Al of dPDF, RDP, Al of
RDP, and DDI was 0.70, 0.79, 0.77, 0.80, 0.78, and 0.81,
respectively.

The SVM classifier using multiple features after
sequential-feature forward selection was also evaluated
through a fivefold cross-validation with 20 repetitions. The
best average accuracy of the classifier was 0.91, and 16 fea-
tures from the area fraction, Al of dPDF, and Al of RCDP
were selected. Fig. 7 shows a comparison of the accuracy
between the determination of the radiologists and the pro-
posed CADD system.

Discussion

The present study aims to differentiate between usual in-

terstitial pneumonia and non-specific interstitial
1

0.9

0.8 oo — T

0.7+ —

0.6

05/ - _— _— _— — L

0.1

O I 1 I | | I

AF dPDF  Alof dPDF RCDP Al of RCDP DDI

Fig. 6 Average accuracy of each classifier trained using CADD features
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Fig. 7 Comparison of accuracy between radiologists and CADD system

pneumonia using HRCT images, excluding any clinical
or pathological information. As shown in the “Results”
section, the computer-aided differential diagnosis system
can be compared with the visual assessment of experi-
enced radiologists. To the best of our knowledge, this is
the first development and validation trial of a CADD sys-
tem for UIP and NSIP, including the semi-automatic
quantification of regional disease patterns of DILD from
HRCT images.

A total of 16 of the most accurate CADD features were
selected. We found that the features were well fitted to the
radiological knowledge for differentiating between UIP and
NSIP. The decision procedures of the lung quantification and
classifier, using different combinations of the proposed
CADD features, were similar to the diagnosis-decision proce-
dures of the radiologists, and showed a similar differentiation
performance.

Our computer-aided differential diagnosis system for
UIP and NSIP included two steps for quantifying the lung
and classifying between UIP and NSIP. For the lung quan-
tification, the trained SVM classifier classified the lung
parenchyma into one normal and five regional disease
patterns. If the performance of the SVM classifier can
be improved using a well-controlled dataset, the trained
classifier will consistently produce quality results.
Moreover, we found that intra-reader variability exists in
the visual assessment of the HRCT images in our previous
study, which might have depended on the experience of
the radiologist [20]. In this situation, a semi-automatic
assessment method can be useful for supporting the deci-
sions of the clinicians or as an initial screening when
experts are unavailable.

There are several limitations to the present study. First, the
study is dependent on two evidentiary categories, UIP and
NSIP, among the various types of lung diseases because it is
not easy to clearly differentiate between the different kinds of
DILD and we want to prove the validity of the proposed
method. However, we need to extend this study to
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differentiate among UIP, possible UIP, and images inconsis-
tent with UIP or various other types of DILD, which could be
a topic of further research. As another limitation, this is a
retrospective study, using a dataset collected from patients
with regional UIP and NSIP disease patterns. Finally, a lack
of consensus among radiologists remains problematic for the
type of supervised learning algorithm applied. Unsupervised
learning could be a solution to the gold standard used, which is
unclear even to expert radiologists.

Conclusion

In this study, we proposed a computer-aided differential
diagnosis (CADD) system that differentiates between usual
interstitial pneumonia (UIP) and non-specific interstitial
pneumonia (NSIP) using high-resolution computed tomog-
raphy (HRCT) images. Lung quantification was presented
to automatically classify the voxels of the HRCT images
into one normal and five regional disease patterns. Based
on the lung quantification, the CADD features that charac-
terize each regional disease pattern throughout the entire
lung were extracted. Using these CADD features, a
CADD classifier was able to predict the patient HRCT im-
ages as either UIP or NSIP cases.

To evaluate the proposed system, we compared its accuracy
against the determinations of radiologists. The results of the
comparison indicate that the proposed system can be a robust
and quantitative tool supporting the decisions of clinicians and
providing an initial screening for UIP and NSIP.
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