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Abstract A significant volume of medical data remains un-
structured. Natural language processing (NLP) and machine
learning (ML) techniques have shown to successfully extract
insights from radiology reports. However, the codependent
effects of NLP and ML in this context have not been well-
studied. Between April 1, 2015 and November 1, 2016, 9418
cross-sectional abdomen/pelvis CT and MR examinations
containing our internal structured reporting element for cancer
were separated into four categories: Progression, Stable
Disease, Improvement, or No Cancer. We combined each of
three NLP techniques with five ML algorithms to predict the
assigned label using the unstructured report text and compared
the performance of each combination. The three NLP algo-
rithms included term frequency-inverse document frequency
(TF-IDF), term frequency weighting (TF), and 16-bit feature
hashing. The ML algorithms included logistic regression
(LR), random decision forest (RDF), one-vs-all support vector
machine (SVM), one-vs-all Bayes point machine (BPM), and
fully connected neural network (NN). The best-performing
NLP model consisted of tokenized unigrams and bigrams with
TF-IDF. Increasing N-gram length yielded little to no added
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benefit for most ML algorithms. With all parameters opti-
mized, SVM had the best performance on the test dataset, with
90.6 average accuracy and F score of 0.813. The interplay
between ML and NLP algorithms and their effect on interpre-
tation accuracy is complex. The best accuracy is achieved
when both algorithms are optimized concurrently.

Keywords Natural language processing - Machine learning -
Structured reporting - Informatics

Hypothesis

Arttificial intelligence software’s ability to predict radiologist
intent in an oncologic diagnostic report relies on the co-de-
pendent, combinatorial optimization of both the natural lan-
guage processing (NLP) and machine learning (ML)
algorithms.

Background

The advent of structured reporting may improve the availabil-
ity of standardized data elements in a radiology report for text
mining. However, most radiology reports remain unstruc-
tured. The lack of structure reporting can result in poor com-
munication of abnormal radiology reports to referring physi-
cians; this is particularly true for unstructured reports that con-
tain complex results and convey intrinsic diagnostic uncertain-
ty such as oncologic follow-up [1]. For named-entity recogni-
tion, regular-expression and search-based report analytics
have been shown to extract specific critical diagnoses success-
fully [2, 3]. NLP is increasingly being used to analyze radiol-
ogy reports for oncologic imaging [4, 5]. For instance, the
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presence of specific malignant diagnoses such as lung cancer
and colon cancer has been previously examined [6].

Commonly deployed pre-processing techniques for un-
structured text include stop word removal (SWR) and word
stemming [7]. In SWR, the most commonly used words in a
language such as “and” and “the” are removed from the
dataset prior to text processing. Word stemming converts
inflected forms of words into their root forms; for example,
“write,” “writes,” and “writing,” share the stem “write.” For
the processing of text written in English, Martin Porter’s algo-
rithm has become the most commonly deployed stemmer [8].
Although SWR and stemming have been shown to improve
NLP of English lay-language text, a paucity of literature exists
describing their effect in the processing of unstructured med-
ical text.

The “bag-of-words” model may be used to represent un-
structured text as vectors. The vectors contain features based
on the frequencies of tokens contained in an up to a pre-
determined length N (N-gram). For instance, term frequency
(TF) is a commonly deployed method of feature generation, in
which terms are represented by the frequency of the N-gram.
While meaningful N-grams may appear more frequently with-
in a document, the tokens with the highest frequencies may
represent an artifact of commonality. For instance, in English a
word such as “the” would have very high TF. Therefore, in
some use cases, each term’s TF as normalized by the inverse
document frequency (TF-IDF), which has been shown to be
superior to using TF alone [9]. However, as TF and TF-IDF
strategies can sometimes create extraordinarily high dimen-
sional datasets, feature hashing has been shown to be an ef-
fective strategy for dimensionality reduction [10]. Bag-of-
words models have been used to successfully process radiol-
ogy reports [11, 12].

ML techniques have become increasingly common in med-
ical text processing. An abundance of research explores the
use of a specific approach to address a specific problem. For
example, support vector machines (SVMs) have shown suc-
cess in predicting sepsis in emergency department [13]. In
radiology, SVM has been used to predict significant findings
in diagnostic reports [12]. Other ML techniques utilizing
Bayesian probabilities, neural networks (NNs), and random
decision forests (RDF) have shown some success in produc-
ing clinically useful insights from both text and imaging data
[14-17].

Although pre-processing techniques, text feature repre-
sentation models, and ML algorithms have all shown use-
fulness in the processing of medically relevant text data,
there is a paucity of literature exploring the comparative
effectiveness of different NLP techniques and ML algo-
rithms performing the same task. In this study, we assess
the effect of multiple NLP techniques and ML algorithms
on the automatic detection of the radiologist’s intent in
oncologic evaluations.

Methods

This project was reviewed by the institutional review board
(IRB) and approval was waived. At our tertiary referral academic
institution, all abdominal and pelvic CT and MRI reports must
include one of two standardized assessment categorization
schemes. For patients with no known malignancy, radiologists
employ an in-house lexicon called Code Abdomen that assigns a
numeric category according to the malignant likelihood of focal
masses in the abdomen and pelvis. Code Abdomen is loosely
based on the Breast Imaging Reporting and Data System (BI-
RADS) [18]. For patients with known malignancy, radiologists
use a different in-house lexicon, called Code Oncology. Code
Oncology is loosely based on the categories in the Response
Evaluation Criteria in Solid Tumors (RECIST) system [19].
Using Code Oncology, the interpreting radiologist assigns values
in a structured reporting template to two specified categories: (a)
interval evolution of existing lesions and (b) interval develop-
ment of new lesions. Within the departmental voice recognition
software, options are provided for the values of the fields within
the structured templates; these are shown in Table 1. The options
chosen for each exam are left to the discretion of the interpreting
board-certified radiologist. All abdominal and pelvic CT and
MRI reports are mined daily to confirm the presence of one of
these two categorization schemes within the reports. Radiology
trainees and staff are sent email notifications for non-compliant
reports and asked to issue addendums.

Between April 1, 2015 and November 1, 2016, a total of
9418 out of 50,891 cross-sectional abdominal and pelvic CT
and MRI exams contained the Code Oncology scheme.
Similar to RECIST, we created four response assessment
groups: progression, stable disease, improvement, and com-
plete resolution/no cancer for overall assessment. Definitions
of these groups are provided in Table 2. During the initial
preliminary data analysis, we discovered a wide practice var-
iation regarding the use of non-RECIST labels. For instance,
“mixed response” is sometimes used when some lesions may
have been stable to decrease in size despite increases in other
lesions; in clinical practice, such cases are generally

Table 1 Code Oncology categories for existing and new lesions

Existing lesion New lesions

No previously documented cancer No new lesion

Complete response Possible new lesion
Significant improvement Definite new lesion
Mild improvement

Stable

Mild progression

Significant progression

Mixed response

Indeterminate
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Table 2 Oncologic follow-up

categories used in the Progression
classification task
Improvement
Stable disease

Resolution/no cancer

Interval development of new lesion(s) OR either mild or significant progression
of existing lesions

No interval development of a new lesion AND either mild or significant
improvement of existing lesions

No interval development of a new lesion AND stable appearance of existing
lesions

Absence of any new lesion AND either “no previously documented cancer”
OR “complete response”

considered disease progression. Examinations with new le-
sions that do not clearly represent metastases are sometimes
categorized as “indeterminate” and sometimes “possible new
lesion.” For these reasons, examinations containing “mixed
response,” “indeterminate,” and “possible new lesion” were
excluded from the dataset.

The structured “Code Oncology” elements were
parsed and then removed from the report text prior to
pre-processing. Relevant personal health information
was also removed for compliance with the Health
Insurance Portability and Accountability Act (HIPAA).
Pre-processing was performed within the Azure
Machine Learning Studio (Microsoft Corporation,
Redmond, WA), using a combination of the Python pro-
gramming language (version 3.5), the Natural Language
Toolkit Python package (version 3.2), and native prepro-
cessing modules [20]. Only deidentified report text was
made available through the cloud resource for data se-
curity. Text header detection was performed using regu-
lar expressions to segment the radiology report by sec-
tion. Only the impression was utilized in the final com-
parative analysis, as the use of the impression yielded
more accurate performance relative to the full report
text based on our preliminary work (Table 3). If more
than one impression bullet point existed, then the im-
pression was included both in total as well as separated
by each bullet point. All report text was then converted
to lower case and all punctuations removed. For each
section, evaluation was performed after applying an
English word tokenizer both with and without SWR

Table 3 Comparative F measure score of the machine learning
techniques using the full diagnostic report after the removal of “Code
Oncology” elements versus using impression-only

Full report Impression-only
Bayes point machine 0.798 0.791
Logistic regression 0.797 0.803
Random decision forest 0.780 0.800
Neural network 0.771 0.765
Support vector machine 0.797 0.813

@ Springer

and both with and without applying a Porter stemmer
[8].

Three forms of text feature vectorization using the bag-of-
words model were compared: term frequency-inverse docu-
ment frequency weighting (TF-IDF), term frequency
weighting (TF), and 16-bit feature hashing. Vectorization pa-
rameters were adjusted for the overall best predictive perfor-
mance defined by the ML model’s micro-average F' score
[21]. Parameters adjusted include N-gram (up to five-gram).
For TF and TF-IDF, K-skip size, minimum N-gram document
absolute frequency, and maximum N-gram document ratio
were also explored for optimal performance. Filter-based fea-
ture selection was performed to select the most relevant fea-
tures using mutual information [22].

Five ML algorithms were compared in the present
study, including logistic regression (LR), RDF, one-vs-
all SVM, one-vs-all Bayes point machine (BPM), and
fully connected NN. Input data was stratified by classi-
fication label and randomly assigned into training (70%)
or testing (30%) datasets. The BPM was implemented to
train for 60 iterations with bias. The training data was
divided into five folds to perform an eight-run random
sweep with cross-validated hyperparameter model tuning
to identify the best parameter set for each of the re-
maining four ML algorithms. Table 4 lists all the pa-
rameters that were optimized for each ML algorithm.
The performance was measured using a micro-average
F score and average classification accuracy using the
testing dataset [21, 23].

Results

Of the 9418 examinations performed within the study
timeframe, 8614 examinations met the inclusion criteria.
Of these, 2800 were manually categorized as “resolution/
no cancer,” 2498 categorized as “progression,” 2132 cat-
egorized as “stable disease,” and 1184 categorized as
“improvement.”

The set of text preprocessing techniques which yielded the
best predictive accuracy and F score is referred hereafter as
“reference preprocessing settings” consisting of tokenized
unigrams and bigrams with TF-IDF, SWR, Porter stemming,
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Table 4 Machine learning parameters optimized by hyperparameter tuning. In parentheses are the hyperparameter tuning results demonstrating the

best performance

Bayes point machine Logistic regression

Random decision forest

Neural network Support vector machine

Iteration (60)

Bias L1 regularization (0.99)
L2 regularization (0.74)

Memory for L-BFGS (39MB)

Gradient descent tolerance (3 x 10°%) # of estimators (247)

Maximum depth (22)
Number of random splits (390)

Minimal sample per leaf (1)

Hidden nodes (200)

Learning rate (7.2 x 1072)
Iterations (94)

Initial learning weight (0.5)
Momentum (0.2)

Iterations (84)
A1 %107

and filter-based feature selection limited to the top 1000 fea-
tures. Using the reference preprocessing techniques on the
testing dataset, the BPM algorithm achieved an 89.5% aver-
age classification accuracy. After hyperparameter model
tuning, the best performing multi-class LR algorithm, RDF
algorithm, fully connected NN, and SVM achieved an average
predictive accuracy 0f 90.2, 90.0, 88.3, and 90.6%, respective-
ly. Table 5 displays the results from training and testing accu-
racy as well as F scores.

With other elements of the reference preprocessing tech-
niques held constant, SWR slightly improved the micro-
average F score for all ML algorithms relative to no SWR.
Word stemming slightly improved the performance of BPM,
NN, and SVM but did not impact or minimally degraded the F'
score of LR and RDF. TF-IDF was superior to TF alone for
BPM, NN, and SVM but slightly decreased accuracy in RDF
and had no effect in LR. Using feature hashing rather than TF-
IDF improved the runtime of model training but decreased
micro-average F score for BPM, LR, and SVM, with minimal
performance effect on RDF and NN. Table 6 demonstrates the
relative contribution of each of the NLP parameters.

A combination of unigrams and bigrams outperforms other
lengths of contiguous word series for all ML algorithms ex-
cept for RDF, which performed best with a combination of
unigrams, bigrams, as well as trigrams (Fig. 1). Table 7 lists
the top 15 most discriminating word features ranked by mu-
tual information. While LR and NN performed best with all
the N-gram features, the other ML algorithms performed best
when only the top 1000 features are used based on the filter-

Table 5  Average multi-class classification accuracy and ' measure for
each of the five trained machine learning models utilizing the optimal
parameters after hyperparameter tuning

Training Testing

Accuracy F measure Accuracy [ measure

Bayes point machine 91.5% 0.830 89.5% 0.791
Logistic regression 91.5% 0.829 90.2% 0.803
Random decision forest 98.1% 0.962 90.0% 0.800
Neural network 91.4% 0.829 88.3% 0.765
Support vector machine 91.4% 0.828 90.6% 0.813

based selection. The effect of filter-based feature selection on
F score of all five ML algorithms is shown in Fig. 2.

Discussion

The present study uses standardized reporting structures em-
bedded within formal diagnostic reports as the ground truth
for ML. Our results show that the performance of radiology
report classification is likely dependent on both the ML algo-
rithm and on the NLP parameters. Modern NLP includes in-
creasingly complex manipulations and vectorization ap-
proaches such as Word2Vec and Stanford University’s
GloVe [24, 25]. However, the present study focuses on tradi-
tional text preprocessing techniques and adds to current liter-
ature by assessing multiple ML algorithms simultaneously
regarding their performance on the same diagnostic radiology
reports. Our findings agree with existing literature in electron-
ic report text mining that SVM performs well in classification
tasks [6]. Specifically, the best predictive performance was
achieved using SVM with the reference preprocessing
techniques.

The present study further assessed the effect of optimizing
NLP parameters by assessing the impact of each modification
on five different ML algorithms. SWR generally improves the F’
scores of all ML algorithms except for BPM, although the pre-
cise underlying reason is unclear. However, as with many real-
word use cases of NLP and ML, the optimal parameter settings
are often difficult to determine due to the complexity of the task
and rely on empiric experimentation, for which hyperparameter
tuning has been well-established in the literature. The use of TF-
IDF rather than TF alone had a modest to equivocal effect on '
scores across the board. Our findings are compatible with the
published literature on the use of inverse document frequency to
normalize the TF [9, 26]. The use of 16-bit feature hashing
significantly improved the runtime of all five algorithms but
decreased the F score of BPM, LR, and SVM. It had little to
no impact on the RDF and fully connected NN algorithms.

The relative performance of SVM decreases when more
features are included. Specifically, with greater than 2500 text
features, RDF outperforms SVM when other parameters are
held constant. When the full set of 4122 text features are used,
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Table 6  Effect of NLP parameters on micro-averaged F measure score. Reference—stop word removal, application of Porter word stemmer, with
feature extraction using unigram and bigrams, term frequency-inverse document frequency (TF-IDF) weighting, top 1000 features by mutual
information (MI) filter selection. SWR—stop word removal, TF—term frequency

Bayes point machine Logistic regression

Random decision forest Neural network Support vector machine

Reference 0.791 0.803
No SWR +0.003 - 0.009
No word stemming —0.002 +0.004
TF —0.001 0.000
Feature hash —0.007 -0.016

0.800 0.765 0.813

—0.002 —0.005 -0.013
+0.0004 —0.005 —0.003
+0.004 —0.005 —0.003
0.000 +0.001 —0.019

both RDF and LR perform better than SVM. The interval
decreases in performance in SVM, LR, and BPM—but not
RDF or NN—as the size of the feature set increases is likely
related to overfitting. The problem of overfitting in SVM has
been well studied in text categorization and other non-linear
classification tasks, particularly when the number of features
is large [27, 28]. Additionally, our findings agree with existing
literature that RDF and NNs can be relatively resistant to per-
formance penalties from overfitting [16, 29].

The natural language used in radiologic reporting is inher-
ently ambiguous due to the complexity of human illness and
the variable language used to describe it. The top 20 “high-
confidence misses” by the best-performing SVM is listed in
Supplemental Table 1. Preliminary manual analysis of the
“high-confidence misses” by the best-performing SVM with
reference preprocessing techniques showed a variety of

Fig. 1 Increasing the length of

possible causes for predictive error. In some cases, the algo-
rithm inappropriately overweighed portions of the impression
describing improvement and underweighed a separate section
of impression documenting disease progression. In other
cases, the interpreting radiologists made a human error in
manual categorization of existing and new disease, while the
algorithm correctly identified the disease states. In yet other
cases, both designations could have been considered correct.
Although the present study focuses on the differential perfor-
mance of NLP and ML algorithms, a thorough, detailed anal-
ysis of these discrepancies arising from the best performing
algorithm is a direction of future pursuit.

The “Code Oncology” reporting structure at our institution
was developed to help clarify otherwise potentially confusing
reports due to the complexity of medical language used in radio-
logic reports. Nevertheless, the structured report coding is for

Effect of N-Gram Tokenization on Prediction F-Measure

N-gram tokenization has variable 0.820
effect on the performance of the y —
underlying machine learning
algorithms. Report text was 0.800 = %
processed using TF-IDF, SWR,
Porter stemming, and filter-based °
feature selection on the top 1000 0.780 —
features
0.760
2
3
1%}
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(55
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0.720
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Table 7 Top 15 most

differentiating features Feature Mutual information

after applying unigram

and bigram tokenization, decreas 0.143

term frequency-inverse increas 0.140

document frequency, and abdomen 0.126

Porter stemmer
progress 0.117
decreas size 0.116
abdomen pelvi 0.114
size 0.110
pelvi 0.109
new 0.105
increas size 0.100
recurr metastat 0.095
interv 0.095
metastasi 0.092
stabl 0.086
recurr 0.085

each study relies on the radiologist’s manual curation. Therefore,
the development of an algorithm’s capable of identifying the
radiologist’s diagnostic intent has several clinical implications.
First, our preliminary analysis of the “high-confidence misses”
reveals that in some minority of cases, human radiologists may
accidentally assign an erroneous code to a report, and the algo-
rithm serves as an error-correction mechanism. Additionally, we
plan to implement the superior algorithm clinically so that

accurate, automatic assignment “Code Oncology” can be in
for approximately 90% of the cases, allowing radiologists to
reduce human coding errors and to improve efficiency.
Additional next steps include the application of addi-
tional NLP algorithms. For instance, convolutional neural
networks (CNN) have shown remarkable success in image
recognition and classification and have been applied to
natural language feature extraction using medical litera-
ture such as semantic models [30, 31]. Additionally, the
use of skip-gram models in the future may yield improved
performance over TF, TF-IDF, and hashing mechanics.
The present study is limited by the size of its annotated
dataset and the computational power of the hardware.
Improvements to the present technique may be achieved
by using gradient descent or grid-based methods for
hyperparameter tuning. Due to the use of k-fold cross-
validation and hyperparameter optimization for model
training, we were unable to include CNNs as a compara-
tive ML algorithm. A future analysis in this field would
include applying convolutional models on significantly
larger training sets by using graphical processing units.

Conclusion

Although NLP and ML algorithms have the potential to accu-
rately classify the radiologist’s diagnostic intent in the

Effect of Filter-Based Feature Selection on Prediction F-Measure
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Fig. 2 Increasing the number of included relevant N-gram tokenized
features improved the performance of neural network and random
decision forest but has detrimental effect on support vector machine,
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logistic regression, and Bayes point machines. Report text was processed
using tokenized unigrams and bigrams with TF-IDF, SWR, and Porter
stemming
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oncologic interpretation, the overall performance depends on
the combinatorial optimization of both the NLP and ML algo-
rithms. We demonstrated that (1) the best predictive perfor-
mance was achieved using SVM with the reference prepro-
cessing techniques, (2) SWR generally improves the F scores
of all ML algorithms except for BPM, and (3) the relative
performance of SVM decreases with more features included.
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