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Abstract We propose the use of ensemble classifiers to over-
come inter-scanner variations in the differentiation of regional
disease patterns in high-resolution computed tomography
(HRCT) images of diffuse interstitial lung disease patients
obtained from different scanners. A total of 600 rectangular
20 × 20-pixel regions of interest (ROIs) on HRCT images
obtained from two different scanners (GE and Siemens) and
the whole lung area of 92HRCT images were classified as one
of six regional pulmonary disease patterns by two expert ra-
diologists. Textual and shape features were extracted from
each ROI and the whole lung parenchyma. For automatic
classification, individual and ensemble classifiers were trained
and tested with the ROI dataset. We designed the following
three experimental sets: an intra-scanner study in which the
training and test sets were from the same scanner, an integrat-
ed scanner study in which the data from the two scanners were
merged, and an inter-scanner study in which the training and
test sets were acquired from different scanners. In the ROI-
based classification, the ensemble classifiers showed better
(p < 0.001) accuracy (89.73%, SD = 0.43) than the individual

classifiers (88.38%, SD = 0.31) in the integrated scanner test.
The ensemble classifiers also showed partial improvements
in the intra- and inter-scanner tests. In the whole lung
classification experiment, the quantification accuracies of
the ensemble classifiers with integrated training (49.57%) were
higher (p < 0.001) than the individual classifiers (48.19%).
Furthermore, the ensemble classifiers also showed better per-
formance in both the intra- and inter-scanner experiments. We
concluded that the ensemble classifiers provide better perfor-
mance when using integrated scanner images.

Keywords Interstitial lung disease (ILD) . Ensemble
learning . Support vector machine (SVM) . Inter-scanner
variation .Multi-center trial

Introduction

Diffused interstitial lung disease (DILD) is a group of disease
showing disorders in the interstitium, which is a collection of
tissues within the lung including the alveolar epithelium,
pulmonary capillary endothelium, basement membrane,
and perivascular and perilymphatic tissues. DILD shows
complex disorders in the lung whose cause should be
removed with proper therapy due to its critical effect to
respiratory failure [1]. Studies on the DILD have been
generally driven by the pathologic reclassification and
known to be associated with different clinical outcomes.
Five major categories of the DILD had been defined, and
different approaches to therapy were studied for each category.
Recently, the importance of revealing its correlation to high-
resolution computed tomography (HRCT) has been increased
as the imaging technology advances.

HRCT is a popular diagnostic tool for detecting and char-
acterizing numerous disorders of the lung parenchyma and
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airways [2, 3]. To automatically classify lung diseases using
HRCT images, texture features as well as density histograms
have been used [4–6]. Furthermore, to avoid variations caused
by patient breath-hold variations and to detect early-stage
diseases, shape features were added for accurate classifica-
tion [7, 8]. The usefulness of automatic classification sys-
tems using both texture and shape features such as run
length, co-occurrence matrix, cluster analysis, and top-hat
transforms has been verified [9–12]. Furthermore, studies
for classification systems for DILD have been discovering
new features and their combining methods for more accurate
classification. Table 1 shows the comparisons of representative
studies on DILD classification using HRCT images [13–17].
As a multidimensional CT (MDCT) coming into wide use,
various studies have proposed the automatic classification
and quantification system for DILD using three-dimensional
images and volume of interest (VOIs) [18–20]. Since the
HRCT image has been used for long periods in corresponding
studies including clinical trials and pathology and used to be a
groundwork for MDCT imaging, studies on characterizing
HRCT images still have an important role in DILD studies.
In this paper, we focus on implementing an accurate and robust
classification and quantification of HRCT images, which has
potentials to be extended to further studies.

General approaches to lung classification use HRCT im-
ages from a single CTmachine with well-controlled variations
and parameters. However, to consider both lung changes
and disease progress or treatment, the analysis and com-
parison of large numbers of patient images from large
multicenter cohorts are required. In this case, the use of
images from various kinds of scanners with distinct set-
tings and mechanical differences is unavoidable. In [21],
the effect of radiation dose and scanner type on lung
volume, mass, mean density, and the extent of emphysema
was investigated using paired statistical testing. In [22],
authors observed that the different reconstruction parameters
and other variations such as the kernel can significantly
influence the feature extraction results of the images and,
thus, investigated several classifiers to reduce the inter-
scanner variations in the DILD classification [23].

In the present study, we focused on the inter-scanner vari-
ability in the HRCT image classification of regional lung dis-
ease patterns of DILD. To overcome the difficulties in the use
of an integrated dataset obtained from different scanners, we
apply the ensemble classification method which is known to
be robust in data having high variability. Firstly, we collect
typical regional disease patterns of DILD and implement de-
scriptors extracting textural and shape features from HRCT
images. We apply various single and ensemble classification
method for classifying regional disease patterns. The classifi-
cation methods are evaluated and compared in terms of clas-
sification accuracy using data from each scanner, inter-scan-
ner, and integrated data scanner. While evaluating the classi-
fication methods, we apply them in two different purposes,
which are ROI-based classification which classifies square
and small ROI images and the whole lung quantification
which accesses the whole lung parenchyma and classifies
areas locally. In following sections, we describe the details
of materials and methods and discuss with the results.

Materials and Methods

The overall scheme of the proposed system and its evaluation
is illustrated in Fig. 1. First, HRCT images of DILD were
acquired and assessed. To generate a training dataset of the
classifiers, radiologists selected representative ROIs for each
regional disease pattern and a normal lung. The proposed
system extracted a textural and shape feature set and selected
the near-optimal feature set by using a forward feature selec-
tion method. The quantification system used the classifiers
trained by the feature dataset. In this experiment, we evaluated
the performances of the classifiers using both ROIs and whole
lung comparisons. The ROI classification evaluated the clas-
sifiers by calculating the match between the predicted and
radiologist-marked ROIs using a cross-validation method.
The whole lung quantification compared the accuracy of the
regional lung disease pattern in whole lung parenchyma
drawn by the automatic quantification system with that drawn
by the expert radiologists. In this experiment, the accuracies of

Table 1 Comparisons of DILD classification systems using HRCT images

Authors Features Classifier Number of cases Number of
classes

Overall accuracy

Delorme et al. [13] Texture features Multivariate discrimination analysis 1022 ROIs 6 70.7%

Uppaluri et al. [14] Texture features Adaptive multiple feature method 72 subjects 6 51.7%

Gangeh et al. [15] Texton features SVM-RBF 168 ROIs 3 96.4%

Sorensen et al. [16] LBP intensity histogram k-nearest neighbor 168 ROIs 3 95.2%

Vo et al. [17] Gaussian derivative filter Wavelet
and contourlet transform-based
features

Multi-class multiple kernel learning 38 subjects 4 94.2%
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the classifiers were measured by comparison to the gold stan-
dard that was manually drawn by the expert radiologists. More
details on each step are provided in the following sections.

Subjects

The institutional review board for human investigation of
Asan Medical Center, Seoul, South Korea, approved the
study protocol; removed all patient identifiers; and, due to
the retrospective design of this study, waived informed
consent requirements. From 14 healthy individuals and
92 patients with lung disease, CT images were obtained
using a Siemens CT scanner (Sensation 16; Siemens
Medical Solutions, Forchheim, Germany) at Asan Medical
Center or a GE CT scanner (GE Lightspeed 16; GE
Healthcare, Milwaukee, WI) at the National Jewish Health
Center, Denver, CO, between November 2000 and July 2005.
Typical HRCT protocol parameters were used when obtaining
the HRCT images, 220 mAs and 120–140 kVp with the pa-
tients at full inspiration. Image reconstruction used a 1-mm
slice thickness and 10-mm slice interval with a reconstruction
kernel B70f in the Siemens scanner and the sharp kernel in the
GE scanner.

In this study, six classes—normal lung and five regional
lung disease patterns—were defined, which are normal,
ground-glass opacity, consolidation, reticular opacity, emphy-
sema, and honeycombing. Representative examples of each
class are shown in Fig. 2. Ground-glass opacity is an abnor-
mally hazy focus in the lungs that is not associated with

obscured underlying vessels. The latter is defined as consoli-
dation. Increased reticular lung opacity is the product of a
thickening of the interstitial fiber network of the lung by fluid,
fibrous tissue, or cellular infiltration. In emphysema, there
are focal areas of very low attenuation that can be easily
contrasted with the surrounding higher-attenuation normal
parenchyma at sufficiently low window levels (≤−600 HU).
Emphysema can usually be distinguished from honeycombing
because areas of emphysematous destruction lack a visible
wall, whereas honeycomb cysts have thick walls of fibrous
tissue. Honeycombing is additionally characterized by exten-
sive fibrosis, with lung destruction and a resulting cystic, re-
ticular appearance.

To collect representative examples of the five regional dis-
ease and normal lung patterns from CT images, two expert
radiologists (J.B.S. and Y.K.L.) with more than 15-year expe-
riencewere asked to independently select ROIs on CT images.
Based on the study on DILD classification using textural fea-
tures, ROIs with a 20 × 20-pixel size were used [24]. To
prevent the unintended selection bias, no ROIs were selected
more than once in the same lobe of CT images. For the cate-
gorization of the selected ROIs, the radiologists selected 100
ROIs per regional disease and normal lung pattern by mutual
consent. By repeating the process on each scanner, 1200 ROIs
for the different regional disease patterns were collected from
the different scanners. In addition, 92 HRCT images were
collected to investigate the classification of the whole lung
parenchyma. The expert radiologists were asked to draw area
maps of the five regional diseases and normal lung in each 92
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HRCT image. As a result, 92 pairs of the gold standard dataset
of the whole lung were obtained.

Image Pre-Processing and Representation

To characterize the patterns of the six categories (five regional
lung disease and normal lung patterns), 28 textural and shape
features were extracted from each ROI [6, 9]. The extracted
textural and shape patterns could be divided into six types of
descriptor by their calculation methods, which are histogram,
gradient, run-length matrix, co-occurrence matrix, cluster
analysis, and top-hat transform. The histogram of an image
is the distribution of gray level values of all pixels in the
image. The gradient represents the variations in the gray level
between black and white. The run-length matrices calculate
the gray tone run length within the image. These matrices can
help to distinguish coarse and fine textures based on the length
of the run [25].

To describe spatial dependency characteristics, the other
features were computed from a co-occurrence matrix contain-
ing spatial gray tone relationships [26]. Binning of the gray
level into a smaller number is necessary to calculate the
run-length and co-occurrence matrices. In this paper, the
linear bin sizes of the run-length and co-occurrence matri-
ces were optimized to 196 and 32, respectively [27]. Two
additional descriptors, cluster analysis and top-hat transform,

were additionally computed to describe not only the textural
patterns but also the shape of the regional patterns. By
thresholding the image under −950 HU, low-attenuation areas
regarded as emphysema were obtained [28]. Subsequently,
cluster analysis and top-hat transform were used [29]. As a
result, 28 dimensions of the extracted feature vectors were
extracted. The corresponding descriptors are listed in Table 2.
The feature extractions are implemented and imported from a
publicly available tool written in C++ (ITK 4.7) [30]. The
extracted feature vectors were standardized with the zero mean
and uniform variation before applying to the classifiers.

Research Design

Comparison of Individual and Ensemble Classifiers

To investigate the effect of the ensemble classifier in classify-
ing regional lung disease patterns and normal lung based on
both the ROI and whole lung, we used a number of individual
and ensemble classifiers. For the individual classifier, a sup-
port vector machine (SVM) and naïve Bayes’ classifier were
used. For the ensemble classifiers, we applied four ensemble
methods, which are random forest, bagging, voting, and stack-
ing. To implement these classifiers, a publicly available tool
written in Python language (scikit-learn) was used [31].

(a) Consolidation (b) Emphysema (c) Normal

(d) Ground-glass opacity (e) Honeycombing (f) Reticular opacity

Fig. 2 Representative examples
of the five regional lung disease
and normal lung patterns
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Table 3 shows the list of individual and ensemble classifiers
used in this study.

SVM is a supervised learning model that is widely used in
various areas such as pattern recognition and data analysis
[32]. While training the model, SVM defines the hyperplane,
which is a boundary separating different classes, by finding
support vectors. To find support vectors generating the optimal
hyperplane, the Lagrange multiplier and Karush-Kuhn-Tucker
condition were used to solve the optimal problem with the

boundary margin constraints. In this study, we used SVMwith
a radial-based function (RBF) kernel and the optimal parame-
ter such as gamma and cost are selected by grid searching
algorithm. RBF kernel is the kernel function widely using in
various classification problem with SVM classifier. With RBF
kernel, feature space is reformed by calculating given two data
point x and x′ as shown in the following equation:

K x; x0ð Þ ¼ exp −γ x−x0k k2
� �

ð1Þ

where Ck is the class variables and x is the feature vector.
The naïve Bayes’ classifier defines classification criterion

based on the maximum a posteriori probability and with
Bayes’ theorem. According to the Bayes’ theorem, the prior
probability multiplied by the likelihood is proportional to the
posteriori as the following equation:

p Ck jxð Þ ¼ p Ckð Þp xjCkð Þ
p xð Þ ð2Þ

Table 2 Feature (N = 28) vectors
for characterizing regional lung
disease patterns

Descriptor Dimension Description

Histogram (4) Mean

SD

Skewness

Kurtosis

- Number of pixels in each ROI with a given
gray level value

Gradient (2) Mean

SD

- Variation in the gray level from black to white,
with a high gradient value defined as an
abrupt change in gray level from black to
white

- Horizontal and vertical direction

Run length (2) Short primitive emphasis (SPE)

Long primitive emphasis (LPE)

- Run of gray tones, with coarse and fine
textures defined as large and small numbers
in the run, respectively, in a constant gray
tone run

- Horizontal, vertical, 45°, and 135° directions

- 196 nonlinear binning

Co-occurrence matrix (12) Angular second moment mean
and SD

Contrast mean and SD

Correlation mean and SD

Inverse difference moment mean
and SD

Entropy mean and SD

Inertia mean and SD

- Spatial gray tone relationships in textural
patterns and computed by co-occurrences at
each ROI

- Horizontal, vertical, 45°, and 135° directions

- 32 nonlinear binning

Cluster analysis (4) LAA

Number of LAAs

Area mean

Area SD

- Low-attenuation area (LAA) regarded as
emphysema below a threshold of −950 HU

Top-hat transform (4) White top-hat mean

White top-hat SD

Black top-hat mean

Black top-hat SD

- Morphological filter extracts small elements
and details by calculating differences
between images and its structuring element

Table 3 Individual and ensemble classifiers

Type Classifier

Individual classifier Support vector machine
Naïve Bayes’ classifier

Ensemble Random forest
Bagging
Voting
Stacking

J Digit Imaging (2017) 30:761–771 765



The naïve property applied to Bayes’ classifier assumes
that each feature is independent to the other features. The
naïve Bayes’ classifier uses maximum a posteriori (MAP) as
a decision rule which choose the most probable hypothesis
class among the posteriors of the classes. Following equation
shows how the function assigns the hypothesis class Ck when
feature vector x is given:

y ¼ argmax
k∈ 1;:::;Kf g

p Ckð Þ ∏
n

i¼1
p xijCkð Þ ð3Þ

The ensemble method combines a set of individual classi-
fiers and integrates their decisions by taking a vote of their
predictions [33]. In this paper, we applied four ensemble
methods to the classifications, which are voting, bagging, ran-
dom forest, and stacking. The voting and bagging methods are
the most straightforward ways of combining individual clas-
sifiers. The votingmethod simply involves taking a vote of the
predictions of individual classifiers. In the bagging method,
training datasets are randomly sampled and generated from
the original training dataset. The generated training datasets
are called bootstrap replicates, and the prediction is computed
by taking a vote of the predictions of classifiers trained by
each replicate. The random forest method applies the
bootstrapping approach to decision trees [34]. These ensemble
methods apply the bootstrapping method to both the training
dataset and feature space. For the classification, the prediction
is selected by taking a vote on the result predicted by multiple
decision trees. The stacking method (stacked generalization)
is similar to the voting ensemble method but uses meta-
classification instead of voting on the predictions of individual
classifiers [35]. In other words, the meta-classifier is trained
and makes a final decision using the dataset obtained by the
predictions of each individual classifier.

Cross-Vendor Study

To investigate the effects of ensemble classifiers on the clas-
sification of the regional disease patterns obtained using dif-
ferent scanners, we designed three types of experiments,
which are intra-scanner, inter-scanner, and integrated scanner.
In the intra-scanner experiment, classifiers used the training
and testing datasets from the same scanner. In the inter-
scanner experiment, the training and testing datasets for the
classification were obtained from different scanners. In the
integrated scanner experiment, the training and testing
datasets were equally integrated using the datasets from the
two different scanners. Table 4 describes these experimental
designs.

In our experimental design, the traditional cross-validation
scheme was inapplicable to the intra-scanner experiment.
Thus, we modified the cross-validation method for selecting
testing and training subsets. In the intra-scanner experiment,

two datasets from different scanners were both shuffled and
divided into five exclusive subsets. After selecting a testing
subset from a scanner, four training subsets were selected from
the other scanner. By sequentially rotating the testing and
training subsets, subsets were selected exclusively from each
dataset as if in the traditional cross-validation scheme.

Evaluation and Statistics

In each experiment, individual and ensemble classifiers were
compared in two aspects, which are ROI-based classification
and whole lung quantification. For the ROI-based classifica-
tion, sequential forward selection and fivefold cross validation
were used to estimate the prediction accuracies of the five
regional disease patterns and normal lung. We used the se-
quential forward selection algorithm, which selects and adds
features to gradually increase classification accuracy until
maximum accuracy is reached. For the whole lung quantifica-
tion, trained classifiers predicted the regional disease patterns
in the whole lung images and the predictions were compared
with the quantification results of the expert radiologists. In the
fivefold cross validation, the dataset was shuffled and divided
into given subsets. One of the subsets was selected as the
testing dataset, while the remaining subsets were selected as
the training set. Classifiers were trained and the prediction
accuracies were calculated. By rotating the testing and training
roles of the five subsets, the average accuracy was calculated
as the cross-validation accuracy. To measure reliable esti-
mations in terms of statistics, the fivefold cross validations
were repeated 20 times by applying variations in shuffling.
As a result, the averages and standard deviations of the
classification accuracy were calculated and statistically
evaluated (paired t test).

For the whole lung quantification, individual and ensemble
classifiers trained by ROIs were used. After manually
segmenting the lung parenchyma from the whole lung image,
the moving ROI function traveled and made predictions for
each pixel with the trained classifiers. Since the boundary
areas of the parenchyma usually cause miscalculation of both
textural and shape features, they are eroded before the feature
extraction. After the classification, the eroded areas are filled
with the nearest neighbor classes. As a result, each pixel of the
whole lung parenchymawas represented by the corresponding
class among the five regional diseases or the normal lung. This
whole lung quantification process was applied to the 92 col-
lected HRCT lung images. To evaluate the accuracy of the
whole lung quantification, we defined two criteria for com-
puting the agreement, which are regions and areas. The region
agreement was calculated by the number of matched pixels
between the classifiers and the two radiologists. The area
agreement was calculated by the area proportion of each re-
gional pattern comprising the whole lung parenchyma. The
mean square error (MSE) was used to represent the
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differences. TheMSEs between each pair of classifiers and the
radiologist read were calculated by the following equation:

MSEi;k ¼ 1

6
∑
6

j¼1
Ri; j−Ci; j;k
� �2 ð4Þ

where Ri,j and Ci,j,k are the proportions of the regional
lung disease pattern j to the whole lung parenchyma cal-
culated from the radiologists and the classifier k for the
HRCT image i, respectively. A lower MSE indicated a
higher quantification agreement between the classifier and
radiologists. Using theMSE, we could define the area accuracy
by the following equation:

Area accuracyi;k ¼ 1−MSEi;k ð5Þ

All statistical evaluations were performed by SPSS v20
(20.0.0) with a 0.05 significance level.

Results

ROI-Based Classification

As shown in the experimental design in Table 4, each individ-
ual and ensemble classifier was applied to the comparison of
the classification accuracy. For each classifier, optimal feature
sets giving the highest classification accuracy were selected.
Table 5 shows the results of the comparison. Among the indi-
vidual classifiers, the SVM (RBF kernel; parameter optimized
by grid search algorithm) was better than the other individual
classifier (p < 0.001). In most experiments, the ensemble clas-
sifiers showed better performance than the individual classi-
fiers. In the intra-scanner experiment using the GE dataset, the
stacking ensemble classifier had higher classification accuracy
than the SVM classifier (p < 0.01). In contrast, for the Siemens
dataset in the intra-scanner experiment, the ensemble classi-
fiers were not different from the individual classifiers
(p = 0.916). In the inter-scanner experiment, the random forest
(with 200 estimators) classifier showed better classification
accuracy than the SVM when training with the Siemens
dataset and testing with the GE dataset (p < 0.001). In the
inter-scanner experiment using GE training and the Siemens

testing dataset, the individual and ensemble classifiers did
not show significant differences in classification accuracy
(p = 0.797). In the experiment using the integrated dataset,
the voting ensemble classifier performed better than the
SVM classifier (p < 0.001).

Whole Lung Quantification by Regions

To more clearly investigate the effects of the classification
methods, the individual and ensemble classifiers were applied
to the whole lung area with moving ROIs. For the evaluations,
we used similar study designs as those applied to the ROI-
based classification (Table 4), which are intra-scanner, inter-
scanner, and integrated scanner. Based on the study designs,
we compared the voxel-by-voxel quantification agreements
between the classified results and the visual assessments of
the two expert radiologists. Table 6 shows the quantification
agreement between the classifiers and radiologists using var-
ious training datasets and classification methods.

As shown in Table 6, the ensemble classifiers, including
bagging, stacking, and random forest, performed better quan-
tification agreements in all study designs. In the integrated
dataset, the bagging ensemble classifier had higher quantifi-
cation agreement with the two radiologists than the SVM
classifier (p = 0.001). When the classifiers were trained by
the Siemens dataset, the quantification agreements were
higher than those of the other study designs because the 92
whole lung images were obtained from the same scanner
(comparison to the integrated experiment t test, p < 0.001).
In this design, the stacking ensemble method also shows sig-
nificantly higher agreement with both radiologists than with
the individual SVM classifiers (p = 0.022 and 0.034, respec-
tively). When the classifiers were trained by the GE dataset,
quantification of the whole lung HRCT images obtained from
the Siemens scanner showed the lowest agreement among the
study designs. In this study design, the random forest ensem-
ble method showed higher agreement than the other individual
classifiers (p = 0.004 and 0.000). Figure 3 illustrates several
examples of the quantification results obtained using the inte-
grated training dataset with a comparison of the results of the
classifiers and radiologists using colored overlays.

Table 4 Study designs for the
classification of the five diseases
or the normal region

Study design Training set (N) Test set (N)

Intra-scanner study GE GE (600) GE (600)

Siemens Siemens (600) Siemens (600)

Integrated-scanner study Integrated set GE + Siemens (1200) GE + Siemens (1200)

Inter-scanner study Train GE and test Siemens
(GE → Siemens)

GE (600) Siemens (600)

Train Siemens and test GE
(Siemens > GE)

Siemens (600) GE (600)

J Digit Imaging (2017) 30:761–771 767



Whole Lung Quantification by Areas

For the lung quantification, the amount of each regional dis-
ease pattern composing the lung parenchyma is important in-
formation in the clinical approach. In this experiment, the
ratios of each regional disease pattern to the whole lung area
were calculated from the classifier and radiologist reads. The
MSE was computed between the classifiers and the radiolo-
gists to compare the individual and ensemble methods with
three different training datasets, which are the GE, Siemens,
and integrated datasets. Table 6 shows the area accuracy of the
individual and ensemble classifiers.

As shown in Table 7, ensemble classifiers performed better in
the integrated dataset for the lung quantification by area
(p < 0.001). With the Siemens training dataset, ensemble classi-
fiers showed the lowest MSE, although it was not always signif-
icantly lower than the individual classifier (p = 0.021 and 0.054,
respectively). When ensemble and individual classifiers were
trained by the GE dataset, the ensemble classifiers showed a
lowerMSE than the individual classifier, although the difference
was not always significant (p = 0.665 and 0.098, respectively).

Discussion

In our present study, we evaluated the potential use of
ensemble classifiers to overcome inter-scanner variations in

the differentiation of the regional lung disease patterns of
DILD on HRCT images with texture and shape features. In
[23], authors compared the differences in the image features
obtained from CT scanners from two different vendors. Some
extracted features, such as run-length and co-occurrence ma-
trices, showed significant differences due to the different
mechanisms of the two scanners. We believe that these factors
could have a negative effect on stable lung classification
among different scanners with only individual classifiers.

In multicenter trials using scanners from different vendors,
there are fundamental limitations to equal classifications.
Different scanners have different mechanisms and reconstruc-
tion kernels that cannot be controlled. Both limitations prevent
a consistent lung classification. The experimental results of
this study imply that the use of an ensemble classifier can ease
this problem and increase the classification accuracies.

Ensembles of classifiers perform better at classifying robust
data than individual classifiers [33]. Thus, we assumed that
use of the ensemble method to classify regional disease pat-
terns in lung HRCT images would show better performance in
the integrated scanner dataset. In our experiments, the ensem-
ble classifier showed better performance than the individual
classifier in the ROI-based classifications when the integrated
dataset was used. Furthermore, in the whole lung quantifica-
tion, performance significantly increased in the integrated
dataset in both regions and area. In all study designs, the
increase in accuracy was greater than that of the other dataset

Table 5 Classification accuracy comparisons using individual and ensemble classifiers for ROI images of regional lung disease patterns

Study design Training dataset Testing set Accuracy (%) p

Individual classifiers Ensemble classifiers

Intra-scanner GE GE 91.56 ± 0.62 (SVM) 92.02 ± 0.56 (stacking) 0.002

Siemens Siemens 89.91 ± 0.39 (SVM) 89.92 ± 0.36 (bagging) 0.916

Inter-scanner GE Siemens 68.31 ± 0.52 (SVM) 68.27 ± 0.69 (bagging) 0.797

Siemens GE 65.88 ± 0.39 (SVM) 69.73 ± 0.61 (random forest) <0.001

Integrated GE + Siemens GE + Siemens 88.38 ± 0.31 (SVM) 89.73 ± 0.43 (stacking) <0.001

Table 6 Average region accuracy between classifiers and radiologists for the 92 HRCTwhole lung images

Training dataset Radiologist Accuracy (%) Maximum difference
comparison p

SVM NB RF Bagging Voting Stacking

Integrated SJB 48.13** 44.67*** 44.81*** 49.49 48.53* 44.67*** 0.001 (SVM-bagging)

LYK 48.25** 42.71*** 43.47*** 49.64 47.79*** 42.71*** 0.001 (SVM-bagging)

Siemens SJB 54.26* 49.31*** 51.81*** 53.51** 54.40 55.13 0.022 (SVM-stacking)

LYK 50.82* 42.85*** 49.13** 48.23*** 48.18*** 51.78 0.034 (SVM-stacking)

GE SJB 24.75** 25.75** 27.35 24.49** 23.83*** 22.57*** 0.005 (NB-RF)

LYK 23.20*** 25.18** 26.89 23.15*** 22.49*** 21.29*** 0.003 (NB-RF)

SVM support vector machine, NB naïve Bayes, RF random forest

*p < 0.05, **p < 0.01, ***p < 0.001
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when the ensemble classifier and the integrated dataset were
used for training. Additionally, we observed that use of the
ensemble classifier in the intra-scanner dataset showed better

performance in whole lung quantification, even though it
did not show a significant difference in the ROI classifica-
tion. On the other hand, the inter-scanner dataset led to poor

Fig. 3 Examples of the quantification results of radiologists and classifiers trained by integrated dataset using colored overlays

Table 7 Average area accuracy between classifiers and radiologists for the 92 HRCTwhole lung images

Training dataset Radiologist Accuracy (%) Maximum difference comparison p

SVM NB RF Bagging Voting Stacking

Integrated SJB 0.51*** 0.51*** 0.51* 0.54 0.52* 0.51* <0.001 (SVM-bagging)

LYK 0.44*** 0.40*** 0.41*** 0.47 0.44*** 0.40*** <0.001 (SVM-bagging)

Siemens SJB 0.62* 0.54*** 0.58*** 0.61** 0.63 0.64 0.021 (SVM-stacking)

LYK 0.49 0.38*** 0.46*** 0.45*** 0.46** 0.50 0.054 (SVM-stacking)

GE SJB 0.25 0.23** 0.26 0.25 0.23** 0.20*** 0.665 (SVM-RF)

LYK 0.17 0.16*** 0.20 0.18 0.16*** 0.14*** 0.098 (SVM-RF)

SVM support vector machine, NB naïve Bayes, RF random forest

*p < 0.05, **p < 0.01, ***p < 0.001
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classification accuracy in the ROI classification, which was also
reflected in the performance of the whole lung quantification.

In our current analysis, we found a limitation in pairwise
comparisons between the ROI-based classification and the
whole lung quantification using the same classifier. In the
ROI-based classification, the stacking ensemble showed the
highest accuracy when the integrated dataset was used.
Nevertheless, the stacking ensemble was not the best perform-
er and even showed lower accuracy than the individual SVM
classifier in the whole lung quantification. This result is not
directly comparable because the whole lung data consists of
Siemens data only, unlike the ROI dataset.

There was an inevitable difference between the radiologists
and the classifiers in recognizing the regional disease patterns.
While radiologists assess the patterns by area, classifiers ana-
lyze the patterns by pixel. In other words, radiologists might
ignore pixel-wise patterns in their assessment.

Our present findings show that there is still room for im-
provement. We observed that airways or large vessels tend to
be easily misclassified into disorder patterns. In a future study,
the 3D volumetric images need to be analyzed, not only to
leave out unnecessary patterns but also so that more precise
features can be extracted and used for the classification with
more sophisticated segmentation algorithms.

Conclusion

In multicenter trials, the HRCT images of DILD obtained
from scanners from different vendors cause variations in clas-
sification accuracy. In the present study, we investigated the
effects of ensemble classifiers on regional pattern classifica-
tion and whole lung quantification using HRCT images from
different scanners. The main contribution of our present study
is that an ensemble classifier that combines individual classi-
fiers can improve classification performance in analyses that
uses the same scanner and those that use different scanners.
When using an integrated dataset containing HRCT images
from different scanners, ensemble classifiers such as bagging
and stacking performed better than the individual classifiers in
both the ROI-based classification and whole lung quantifica-
tion. In intra- and inter-scanner studies, ensemble classifiers
generally showed better performance than individual classi-
fiers. This implies that ensemble classifiers could differentiate
regional interstitial lung disease patterns with better accuracy
in multicenter trials.
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