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Abstract Lung cancer is pointed as the major cause of
death among patients with cancer throughout the world.
This work is intended to develop a methodology for diagno-
sis of lung nodules using images from the Image Database
Consortium and Image Database Resource Initiative (LIDC-
IDRI). The proposed methodology uses image processing
and pattern recognition techniques. In order to differentiate
between the patterns of malignant and benign nodules, we
used phylogenetic diversity by means of particular indexes,
that are: intensive quadratic entropy, extensive quadratic
entropy, average taxonomic distinctness, total taxonomic
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distinctness, and pure diversity indexes. After that, we
applied the genetic algorithm for selection of the best model.
In the tests’ stage, we applied the proposed methodology to
1405 (394 malignant and 1011 benign) nodules. The pro-
posed work presents promising results at the classification
into malignant and benign, achieving accuracy of 92.52%,
sensitivity of 93.1% and specificity of 92.26%. The results
demonstrated a good rate of correct detections using texture
features. Since a precocious detection allows a faster thera-
peutic intervention, thus a more favorable prognostic to the
patient, we propose herein a methodology that contributes
to the area in this aspect.

Keywords Lung cancer · Phylogenetic diversity index ·
Genetic algorithm · Medical image

Introduction

It is estimated a yearly increase of 1.8 million new cases of
lung cancer throughout the world, and lung cancer already
corresponds to 13% of all the cancer cases all over the
world. Out of the more than 100 types of cancer, lung
cancer is responsible for the highest mortality rate [5, 32,
41]. A lung nodule is defined as a nearly spherical opacity
with up to 3 cm in diameter, surrounded by the pulmonary
parenchyma [18]. Lesions larger than 3 cm are called
masses and are often malignant [15, 17, 18]. Most of lung
cancer cases are related to smoking (representing around
80% of the cases), by aging of society, industrialization,
urbanization, pollution, and bad lifestyle [5].

The most effective manner to defeat lung cancer is the
early diagnosis and treatment. If precociously treated, the
post-diagnosis survival rate increases about 90% [25]. One
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of the most effective diagnosing methods is the image exam.
The computed tomography (CT) is an affordable exam
which provides good-quality images, and which is used in
the analysis of several lesion types, including lung lesions.
However, the analysis of a CT is a sensitive task which
demands too much of the expert, since it is a repetitive and
tiring process, with high possibility of errors due to the large
number of images to be analyzed [26, 26, 32].

The early detection of lung cancer allows an anticipated
and faster therapeutic intervention, providing the patient
with a more favorable prognosis [40]. Various computa-
tional tools that employ digital image processing and pat-
tern recognition techniques have been constantly explored.
Those techniques have been used together to develop
computer-aided detection (CAD)/computer-aided diagnos-
tic (CADx) systems [48]. Such tools aim at increasing the
precision of diagnosis, providing the expert with a sec-
ond opinion since additional information results in a more
precise diagnosis.

In most CADx methodologies, the feature extraction
stage is based on: (1) geometry, which measures, for exam-
ple, how circular the candidate is, and (2) on texture, that
describes aspects of the candidate based on its gray lev-
els distribution. In order to characterize the lung nodules,
we only used texture descriptors. For such, we employed
phylogenetic diversity indexes.

Diversity is a term frequently used in ecology. The objec-
tive of a diversity index is to describe the variety of species
present in a community or area [27]. Phylogeny is a branch
of biology concerned with studying the evolutionary rela-
tionships between species, by verifying the relationships
among them, in order to determine possible common ances-
tors. A phylogenetic tree, or simply a phylogeny, is a tree
in which the leaves represent the organisms and the inter-
nal nodes represent possible ancestors. The edges of the tree
denote the evolutionary relationships [6].

In order to characterize texture, we used five diversity
indexes, namely: (1) the intensive quadratic entropy index,
which represents the phylogenetic difference between two
randomly chosen species; (2) the extensive quadratic
entropy, which indicates the sum of all the distances
between the pairs of species; (3) the average taxonomic
distinctness, in which we have the distance between two ran-
domly chosen species; (4) the total taxonomic distinctness,
which allows us to verify the sum of the mean phyloge-
netic distinction between all the species; and finally (5) the
pure diversity, which is computed as the distance between
neighbor species. These indexes are based on the phyloge-
netic diversity (number of edges) from the structure of a tree
rooted as a dendrogram.

Our work brings direct contributions to some fields. In
the medical field, our contribution is the development of
an automatic system for pulmonary diagnosis through the

analysis of the texture of the nodule. In the computer science
field, we contribute in the following aspects: (a) in the
use of texture measures based on the intensive quadratic
entropy, extensive quadratic entropy, average taxonomic
distinctness, total taxonomic distinctness, and pure diver-
sity indexes, and (b) in the use of phylogenetic trees for
characterization of lung nodules.

Others studies [8, 10, 11, 23, 24, 28, 28, 30, 31, 44],
have been conducted concerning the diagnosis of lung nod-
ules as malignant and benign, with the goal of increasing
accuracy rates of CADx systems for detection and diagno-
sis of lung cancer. Tables 4 and 5 present a recent literature
review in the area of diagnosis of lung nodules, showing the
following details: work, techniques, database, and results.
Since it is a complex task, most of these works do not only
use texture descriptors to classify lung nodules into malig-
nant and benign. Instead, they combine texture and shape
descriptors, using them as complementary analyses [10, 11,
24, 44]. In most of the nodules and non-nodules manually
classified by the experts, delimiting a region is quite bigger
than the real area/volume of the nodule or non-nodule, or
does not match its real shape. Another problem is that most
CAD systems uses segmentation techniques that generate
candidate regions with very similar shapes [3, 29], which
may lead to incorrect classifications. Besides these works,
there are some other studies that the intratumor heterogene-
ity of the lung nodule, which allows, for example, based
on the analysis of the texture of the lesion, to know which
chemotherapeutic agent is more suitable [16]. For these rea-
sons, our methodology employs only texture descriptors to
characterize each lung nodule.

This paper is organized as follows. In “Materials and
Methods” we present the methodology used to classify nod-
ules extracted from CT into malignant and benign, using
the texture-based extraction of features, selection of the
best model by genetic algorithm and classification by of
the Support Vector Machine. In “Results and Discussion”
and “Discussion,” we show and discuss the results achieved
by the proposed methodology. Finally, in “Conclusion,” we
present the final remarks about this work.

Materials and Methods

In this section, we describe the methodology used to classify
lung nodules into malignant or benign. Figure 1 summarizes
the four stages followed by our methodology. In the first
stage, we perform the acquisition of the images from the
LIDC-IDRI database [1]. In the second stage, we have the
extraction of nodules based on the experts’ markings. Then,
the feature extraction is applied to the nodule. At the end,
we have the selection of the best model, classification, and
validation of results.
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Fig. 1 Proposed methodology

Image Acquisition

The image database used in this work is the LIDC-IDRI [1],
which is available on the internet as a result of an associ-
ation between the Lung Image Database Consortium and
the Image Database Resource Initiative with 1018 CT
scans. The CT was acquired in different tomographies. This
increases the difficulty for the classification of the lung
nodules. The database has XML format files that contains
markings of nodules contained in each exam made by four
experts, besides some characteristics such as sphericity, tex-
ture, malignancy, etc., indicated by values from 1 to 5 repre-
senting the diagnosis given by each specialist regarding to
that characteristic of the nodule. For example, in the case of
the malignancy, the closer to 5 the specialist has noted, the
greater the probability of the nodule is malignant, and the
closer it is to 1, the greater the likelihood of being benign.

There is no imposition for consensus, all nodules indi-
cated by the radiologists revision are taken into account and
recorded. Therefore, it is possible to have different diag-
nosis for the same nodule. In this work, it is considered
only one instance per nodule, with the objective of minimiz-
ing the impact of subjectivity in exams. The classification
regarding malignancy or benignity is obtained first with the
calculations presented in [22], which summarizes into one
single value the nodular features made by up to four special-
ists through computing the mode or the median, i.e, when
mode is repeated, the median is used to select which region
is used for analysis. According to the result of this summary,
in this work it is considered that malignant nodules are those
cases which present malignancy semantic values of moder-
ately suspicious or highly suspicious, and benign nodules
are those cases which present characteristics of highly or
moderately indicated benignity. As contour, it adopted the
one that contains larger bounds. As a total, there were 1405
nodules obtained (1011 benign and 394 malignant).

Segmentation of Nodules

In order to segment nodules, we obtained contour infor-
mation supplied by an XML file, which contains the
coordinates of the nodules together with the analysis of each

specialist. However, the segmentation used in this work is
a summary, as presented in “Image Acquisition,” in which
only the larger bound is chosen to represent the instance
of the nodules described through markings made by up to
four experts.

Feature Extraction

After the acquisition, the nodules are subjected to the
texture-based feature extraction stage. In order to describe
the texture of the nodules, we used indexes that compute the
distances between pairs of species. These indexes consider
the phylogenetic distance, computed from the tree architec-
ture presented in Fig. 3. In order to build and organize the
tree, we need to be aware of which species are present in
the nodules. The species are represented by the Hounsfield
units (HU) present in each nodule.

Next, we describe the fundamentals of how the tree was
organized and of the diversity indexes.

Phylogenetic Tree - Dendrogram

Phylogenetic trees are used in Biology to describe the evo-
lutionary phylogenetic relations between species. In these
trees, the leaves represent the species and the nodes repre-
sent the common ancestors. So, it is possible to establish an
evolutionary connection between the species under study.
The dendrogram is a graphical representation which can be
used to describe the phylogenetic relation between species
and their ancestors [43].

These trees allow the extraction of indexes that connect
diversity and parenthood between species [38]. Figure 3
presents an example of the phylogenetic tree, represented
by an inclined dendrogram. In this tree, the leaf nodes are
the analyzed species, the internal nodes correspond to some
common ancestor, and the edges indicate the phylogenetic
distance between two species. By means of phylogenetic
trees, we can compute taxonomic indexes that connect the
species of a community.

In order to establish the division of the species in the
dendrogram, we first adopted a strategy based on the tex-
ture of each nodule, that is, establish a form of parenthood
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Fig. 2 Four iterations of the
Otsu algorithm to separate the
original ROI until there is only
one species on each leaf. In
a, the first iteration; in b, the
second iteration; in c, d, the
third and fourth ones

based on the similarity between species. For such, we
used an automatic segmentation strategy based on the Otsu
algorithm [47].

First, the Otsu algorithm segments the nodule into two
regions of interest (ROI) based on their texture properties.
Based on the thresholds generated by the Otsu algorithm,
we have two ROIs: left ROI, which contains all the species
(voxels) smaller than or equal to the threshold; and right
ROI, which contains all the species greater than the thresh-
old. The left ROI is then segmented once more by the Otsu
algorithm, producing two new ROIs (right and left). This
procedure is recursively repeated for every resulting ROI,
both left and right, until the number of species present in
each ROI is 1. Figure 2 exemplifies this division.

With the procedure of separation of the species contained
in the ROI, such as show in Fig. 2, we obtain the dendrogram
(Fig. 3) with its species and phylogenetic features (Fig. 4).

Having the dendrogram established, the phylogenetic
diversity indexes can be computed in order to measure the
phylogenetic relations between the species in the commu-
nity. Next, we present the diversity indexes used to describe
the texture of the lung nodule.

Fig. 3 Dendrogram generated from the ROI is shown in Fig. 2

Distance-Based Phylogenetic Diversity Index

Several studies in ecology, specially the large-scale ones,
depend on the richness of species as a measure of biodiver-
sity. However, richness of species by itself can be limited
as an indicator of biodiversity, since it treats every species
as if they were equal, and it does not take the phylogenetic
relationships into account [43].

In [37], it was shown that biodiversity points through-
out the world present much more evolutionary history than
one could find by just using richness of species. The
work by [19] demonstrate that the phylogenetic relation-
ships are among the most important factors the determine
the extinction of species, and, in [42], they showed that
the degree of phylogenetic distance can determine the suc-
cess of the invasion of exotic species and sub-species. For
this reason, phylogenetic information can represent a bet-
ter indicator of preservation than using richness of species
by itself. The application of information obtained from phy-
logenetic relationships is therefore a promising approach
[45].

The studies that verify the distance relationships between
pairs of species are based on a matrix that contains all the
species of a community. The distances can be based on
morphological or functional differences [21], on the length
of the branches of the phylogenetic relationships based on
molecular data [33, 39] or, if the lengths of the branches are
unknown, on the number of nodes that separate each pair of
species [13]. The values inside the distance matrix can be
interpreted as the distinction between each pair of species or
between a particular species and all the others [20, 34]. In
our work, the distances will be represented by the number
of nodes between the species.

The five indexes used to describe the texture of lung nod-
ules are based on the distances between the pairs of species.
These indexes are the intensive quadratic entropy [20], the
extensive quadratic entropy [20], the average taxonomic dis-
tinctness [6], the total taxonomic distinctness [7], and the
pure diversity measure [14, 46].
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Fig. 4 Ilustration of how to
choose the best training
model [3]

The intensive quadratic entropy (J) was firstly proposed
by [20] in order in establish a possible connection between
the diversity indexes and biodiversity measurement indexes.
When we have the same values of abundance (hypothet-
ical or formal), the index J (Eq. 1) will be a function
that represents the number of species and their taxonomic
relationships. This way, it expresses the mean taxonomic
distance between two randomly chosen species and, so,
the relationships between the species affect the value of J,
which does not happen in other diversity indexes [20].

J =
[∑

di,j

]
/s2 (1)

where di,j represents the distance between the species i, j ,
and s represents the number of species.

Concerning the properties of the index, monotonicity is
a property which is generally necessary for diversity mea-
surements. So, if we represent a certain measure by I, this
property means that: I (A ∪ {x}) > I (A). This makes
sure that the value of the index will raise if we add a new
species x to a set of species A. The index J does not meet
this requirement. So, it is not an ideal index. To overcome
this problem, based on the index J, we apply the exten-
sive quadratic entropy, F [20], which represents the sum of
the differences between the species. The monotonicity is
applied to the index F since, for any set of species A and
a new species x, the value will change. Eq. 2 defines the
index F.

F =
∑

di,j (2)

where di,j represents the distance between the species i

and j .
The average taxonomic distinctness (AvTD) [6] and total

taxonomic distinctness indexes (TTD) [7] were originally
developed based on taxonomic relationships. However, they
can be easily adapted to phylogenetic information [36].
AvTD is the mean taxonomic distance between any two
species randomly chosen [6]. TTD, in turn, represents the
sum of average phylogenetic distinctness for all the species.
Equations 3 and 4 refer to these indexes, respectively.

AvT D =
⎡
⎣∑ ∑

i<j

dij

⎤
⎦ / [s(s − 1))/2] (3)

TTD =
∑

i

⎡
⎣

⎛
⎝∑

j �=i

dij

⎞
⎠ /(s − 1)

⎤
⎦ (4)

In both Eqs. 3 and 4, di,j represents the distance between
the species i and j , and s represents the number of species.

Finally, we have the pure diversity measure (DD) [14,
46], which checks the distance from a species to its closer
neighbor.

DD =
∑

di min (5)

where di min is the smallest distance from a neighbor
species i to all other species.

The phylogenetic tree pooled with intensive quadratic
entropy, extensive quadratic entropy, average taxonomic
distinctness, total taxonomic distinctness, and pure diversity
indexes are used in biology to compare behavior patterns of
species in different areas. In order to implement this idea,
the first step is to make a correspondence between the terms
used in biology and those used in our methodology. Table 1
shows this correspondence.

The indexes presented were used as texture descriptors to
characterize each lung nodule.

Selection of the Best Model

It is common to find methodologies in the literature that use
techniques to select the most significant features to generate
a training database. We chose to use the genetic algo-
rithm (GA) proposed by [3] to select the best individuals to
generate the model that will be used in the classification.

Table 1 Correspondence between biology and our methodology terms

Biology Our methodology

Community Region of interest (nodule) of the CT image

Species Maximum number of HU in the region

Ancestors Number of internal nodes in the dendrogram

Phylogenetic distance Number of edges between two species
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The GA proposed by [3] to select the best individuals can
be summarized in the following steps:

1. Form the basis of analysis (AB) starting from the set of
all feature vectors of each nodule obtained in the image
acquisition (“Image Acquisition”).

2. Each element in the A1 matrix contains the position
of a features vector extracted from a benign nodule in
the AB.

3. Each element in the A2 matrix contains the position of
a features vector extracted from a malignant nodule in
the AB.

4. The values contained in the A1 and A2 matrices are
modified by mutation and the crossover genetic opera-
tors, whereas the values cannot be repeated. This means
that A1 elements may not be present in A2, or vice
versa. The genetic operators of crossover and mutation
do not match data matrices.

5. The feature vectors selected in A1 and A2 for each indi-
vidual in a generation are trained by the support vector
machine (SVM) [9]. The SVM is also used to test the
feature vectors in the AB that were not selected. The
sum of specificity, sensitivity and accuracy is used to
measure the fitness of each individual. This process is
repeated for 500 consecutive generations of that best
individual until the fitness be the same.

6. At the end of evolution all feature vectors, whose posi-
tions are contained in the A1 and A2 matrices of the
individual with the best fitness in the last generation,
form the best training model.

7. The last step is to validate the selected model by
means of a classification using the remaining nodules
of the base. And then, calculation of sensitivity, speci-
ficity, and accuracy is made. Doing so, it is possible to
measure the quality of the model.

Pattern Recognition

After finishing the feature extraction stage and the selection
of the fittest individuals, nodules are classified as malignant
or benign. The feature vectors are obtained by means of the
proposed shape analysis. These values are used by the SVM
classifier with the radial base function (RBF) [35].

SVM is a powerful, state-of-the-art algorithm with strong
theoretical foundations based on the Vapnik-Chervonenkis
theory. SVM has strong regularization properties. Regular-
ization refers to the generalization of the model to new
data. This characteristic was the main reason for choos-
ing this classifier in our work. The accuracy of an SVM
model is highly dependent on the selection of kernel param-
eters such as C and λ. We used the LibSVM software [4]
to estimate both these parameters. All values of the sam-
ple were normalized between −1 and 1 to improve the

performance of the SVM to guarantee a shorter process-
ing time without mischaracterizing the original value of the
feature [9].

Results Validation

After the conclusion of the pattern recognition stage, it is
necessary to validate and discuss the results. This methodol-
ogy uses metrics commonly applied in CAD/CADx systems
for performance analysis of systems based on image pro-
cessing, namely: sensitivity, specificity, and accuracy [9].
In [12], another way of measuring the performance of
computer-based detection techniques is used, receiver oper-
ating characteristic (ROC) curves. A ROC curve indicates
the true positive rate (sensitivity) as a function of the false
positive rate (1−specificity).

Results and Discussion

In this section, we present the results achieved by the pro-
posed methodology at the diagnosis of lung nodules, as
described in “Materials and Methods.” The strategy for anal-
ysis of the results is the following: (1) acquisition of the
images used to train and test the methodology; (2) descrip-
tion of how the process of feature extraction occurred; (3)
execution of tests with the SVM for each index shown
in “Feature Extraction.” We used the genetic algorithm
described in “Selection of the Best Model” to select the best
training model, and then computed the accuracy, sensitivity
and specificity for each test and the ROC value; (4) finally,
a comparative analysis with other related works.

Database Separation

The LIDC-IDRI database contains 1018 exams, but two fac-
tors made 185 of them unsuitable for this methodology. The
first factor concerns exams that do not have nodules larger
than or equal to 3 mm in diameter, since these cases do
not include information that indicate the degree of malig-
nancy of the nodule. The second factor is the divergence
between information found in the marking file of the exam
and information contained in the DICOM header for the
same exam, which hinders the coherent use of the mark-
ings [3]. Therefore, we applied the proposed methodology
to 833 exams.

All of the training bases were generated by means of the
genetic algorithm (GA) (“Selection of the Best Model”).
This algorithm is responsible for selecting the best nod-
ules, thus making sure that only the most significant nodules
among malignant and benign are selected to create the train-
ing model. An important factor that must be mentioned is
the number of generations used until the GA stops evolving.
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Table 2 Size of nodules

Nodule Size/diameters

Up to 10 mm Up to 20 mm Up to 30 mm

Benign 359 487 163

Malignant 67 155 172

When the fitness value repeats for 500 consecutive times
(generations), the GA reaches the stop criterion.

From the 833 exams, we extracted 1405 nodules (1011
benign and 394 malignant), which were split into 80%
(1124) for training and validation and 20% (281) for tests,
all being randomly selected. The 20% will be used to test
the final model selected by the GA. The 80% in the train-
ing base were subjected to the GA for selection of the
fittest individuals (nodules). In order to select just the most
significant individuals and balance the training base, the
population size given to the GA was of just 70% of the base
of the class with fewer elements, that is, the malignant class.
This way, from the original 80% of the training base, the
GA chooses only the 70% that best represent the malignant
class, and this same quantity is used to perform the selection
in the benign class. The rest of the nodules in the train-
ing base were used by the GA to validate the model. This
procedure was applied to all the experiments conducted in
our methodology.

Table 2 shows the diameters of the nodules that composes
the image database. As can be seen in Table 2, the image
base has several nodule sizes, allowing the proposed method
to be evaluated based on the most diverse nodule stages.

Classification

The tests were carried out for each separate index, that is,
each nodule was characterized by a single index (one feature
per nodule). After that, another test was applied, in which
each nodule was represented by all the indexes together (five
features per nodule). All the tests followed the training/test

scheme shown in “Database Separation.” Table 3 presents
all the results for these tests, as well as the parameters C and
λ estimated for use in the RBF kernel of the SVM in the
classification stage.

The ideal CADx system has a good balance between the
three metrics used for evaluation (accuracy, sensitivity, and
specificity), since a good methodology must be capable of
successfully classifying both malignant and benign cases.
Analyzing the results in Table 3, based on this criterion,
the best result is found for the combination of all indexes,
achieving accuracy of 92.52, sensitivity of 93.10, specificity
of 92.26, and an area under the ROC curve of 0.921. As the
worst case, we highlight the results for the AvTD index, with
accuracy of 83.90, sensitivity of 91.95, specificity of 79.38
and, finally, a ROC of 0.856.

The number of support vectors is related to the gener-
alization capability of the methodology; the smallest the
number of vectors, more generic the classification model
is. Our work managed reach very significant values in all
experiments. For the best result, we achieved 0.273%, that
is, below 30%, representing the generalization capability of
the methodology. For the worst case, we have the AvTD
index, which achieved 0.485%.

Since we believe an index can identify something that
another one cannot, we decided to test them all together. As
one may observe in Table 3, the combined indexes present
promising values. These results prove that the indexes are
complementary. Therefore, when all measures are used
together, the results prove the efficacy of the methodology
for diagnosing lung nodules.

The average time spent on the extraction of the character-
istics was 4.5 s, with emphasis on the stage of dendrogram
assembly (“Phylogenetic Tree - Dendrogram”), which con-
sumes on average 3.8 s. The step of selecting the best model
by GA consumed 2100 s (35 min), and this step is performed
only once, i.e., after the generation of the model, it is only
necessary to use it by SVM. The entire methodology was
developed using Microsoft Windows operating system, with
the C++ programming language and hardware composed
of: Intel i7 processor and 8GB of RAM memory.

Table 3 Results for all the
indexes individually tested Index Ac(%) Se(%) Spe(%) ROC C λ Sv (%)

J 83.98 93.10 79.89 0.867 8 0.5 0.441

F 88.61 86.20 89.69 0.837 24 0.23441 0.338

AvTD 83.27 91.95 79.38 0.856 512 0.187453 0.485

TTD 87.90 89.65 87.11 0.881 128 0.34234 0.322

DD 88.61 93.10 86.59 0.898 256 0.98343 0.308

All index 92.52 93.10 92.26 0.921 1024 0.125 0.273

AC accuracy, SE sensitivity, Spe specificity, and number of SV support vectors
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Comparison With Other Related Works

The comparison with other works in the area is a hard task
because no one of the works cited in this article supplied
the exams used. The only peace of information provided is
the database used. So, we were unable to perform a rigorous
evaluation of our method with respect to other works.

Our objective with Tables 4 and 5 is to provide an
overview (exam database, complexity of the methodology,
etc.) of the results found in the related works and in our
work. So, we intend to show that our methodology is
promising, since, compared to other works, we achieved
results above 93% for various types of situation: (1) diagno-
sis using only shape; (2) large and complex sample; and (3)
several configurations of the sample for training and test.

The comparison was performed in two manners. First,
in Table 4, we compared our methodology with works that
only used texture measures to form their feature vectors.
In Table 5, in turn, we present the comparison with works
that used both texture and shape measures to characterize
their nodules.

Comparing the best result found in our work with those
presented in Table 4, one may notice that our results are very
promising, since they are either superior or equal to those
which use shape measures only. Furthermore, if we take into
account the number of cases analyzed, our methodology
analyzed a superior quantity of nodules.

Table 5 presents the results of works that used texture
and shape measures for the characterization of their nodules.
The works by [10, 11] present slightly superior accuracy
to ours, which does not mean that they are superior, since
the values of sensitivity and specificity, which tell how
efficient the methodology is at detecting the presence or
absence of the illness, are quite lower or even not informed.
Besides, the number of cases they analyze is considerably
inferior.

Discussion

The proposed methodology was evaluated by applying a set
of 1405 nodules (benign and malignant) from the LIDC-
IDRI database. The training set contained 80% of the base,
and the remaining 20% were used for the tests with the
genetic algorithm. The experimental results allowed the
formulation of the following conclusions:

1. The use of the diversity indexes J, F, AvTD, TTD,
and DD combined with phylogenetic trees led to good
results.

2. The use of the genetic algorithm showed efficiency
at the selection of the fittest individuals for creation
of the best training model and to balance the classes
[2].

Table 4 Comparison with other publications with respect to the classification of lung nodules in benign and malignant using only features of
texture

Work Techniques Database Ac(%) Se(%) Spe(%)

[28] Texture features using diversity
indexes of Shannon and Simp-
son, linear discriminant dnalysis
(LDA), and SVM

LIDC 92.78 85.64 97.89

[28] Texture features using diversity
indexes of Shannon and Simpson,
LDA, and SVM

LIDC-IDRI 83.75 82.95 84.58

[30] Texture features, correlation-
based feature selection, k-nearest
neighbor, and SVM

NBIA-ELCAP 82.66 96.15 52.17

[23] Texture features, correlation-
based feature selection, and
k-nearest neighbor

LIDC-IDRI 90.91 85.71 94.74

[8] Texture features using matrix co-
occurrence of gray levels, princi-
pal component analysis, and arti-
ficial neural network

Private 90.63 92.30 89.47

[31] Texture features using matrix co-
occurrence of gray levels and
SVM

Private − 91.38 89.56

Our work LIDC-IDRI 92.52 93.10 92.26

AC accuracy, SE sensitivity, and Spe specificity
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Table 5 Comparison with other publications with respect to the classification of lung nodules in benign and malignant using only features of
shape and texture

Work Techniques Database Ac(%) Se(%) Spe(%)

[44] Shape features using gradient
field and radius features, step-
wise, simplex optimization,
LDA, and SVM.

Private 85 − −

[24] Shape features using bi-
orthogonal wavelet and fuzzy
classifier.

Private 90 86 84

[10] Shape features using spherical
harmonics, mapping this model
to the unit sphere, and k-nearest
classification

Private 93.6 − −

[11] Shape and texture features using
and radial basis function neural
network

94.44 − 88.14

Our work LIDC-IDRI 92.52 93.10 92.26

AC accuracy, SE sensitivity, and Spe specificity

3. Regardless of the shape analyzed, we could achieve
good results just by using texture for the character-
ization of the lung nodules, combining the diversity
indexes J, F, AvTD, TTD, and phylogenetic tree.

4. The combination of all the techniques allowed a bet-
ter discrimination at the classification of the nodules,
reaching accuracy of 92.52, sensitivity of 93.10, and
specificity of 92.26.

5. Finally, it is important to highlight that the LIDC-IDRI
database is extremely complex and diversified, this
is, contains countless different cases of lung nodules.
This database has exams that were extracted by vari-
ous tomographers, making it harder to detect, classify
or even diagnose them through CAD/CADx systems.

All those items aggregate value to this methodology.
The texture features of the lung nodule analyzed by the
indexes J, F, AvTD, TTD, and DD combined with phylo-
genetic trees pooled with the genetic algorithm are behind
the good results. Besides that, the complexity of the LIDC-
IDRI database allows us a more reliable conclusion about
the results.

Conclusion

High rates of deaths and records of lung cancer occurrences
around the world demonstrate the importance of developing
research in order to produce resources for early diagnosis
of the disease, thereby providing a better treatment. This
article presented a methodology for classification of lung
nodules into malignant and benign. For such, we used the
following distance-based phylogenetic diversity indexes as

texture descriptors: intensive quadratic entropy, the exten-
sive quadratic entropy, the average taxonomic distinctness,
the total taxonomic distinctness, and pure diversity measure.
At the end, genetic algorithm and support vector machine
for classification of lung nodules into malignant and benign.
The methodology proved to be a useful tool for specialist
physicians.

The results demonstrate the promising performance of
the techniques for analysis of texture of lung nodules based
on phylogenetic diversity indexes. Another important factor
is the combination of the proposed techniques and the use
of the genetic algorithm, since they allow a better result at
the differentiation between malignant and benign.

Finally, the methodology presented in this work might
integrate a CADx tool to be applied to the detection and
diagnosis of lung cancer, in order to classify the nodules in
malignant and benign, thus making the analysis of exams by
the specialist more agile and less exhaustive.

Acknowledgments The authors acknowledge the Coordination for
the Improvement of Higher Education Personnel (CAPES), the
National Council for Scientific and Technological Development
(CNPq), the Foundation for the Protection of Research and Scientific,
the Technological Development of the State of Maranhão(FAPEMA),
and the Foundation for Research Support of the State of Piauı́
(FAPEPI) for financial support.

References

1. Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer
CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA,
Kazerooni E, MacMahon H, Van Beeke EJR, Yankelevitz
D, Biancardi AM, Bland PH, Brown MS, Engelmann RM,
Laderach GE, Max D, Pais, RC, Qing, DPY, Roberts RY, Smith



J Digit Imaging (2017) 30:812–822 821

AR, Starkey A, Batrah P, Caligiuri P, Farooqi, A, Gladish
GW, Jude CM, Munden RF, Petkovska I, Quint LE, Schwartz
LH, Sundaram B, Dodd LE, Fenimore C, Gur D, Petrick N,
Freymann J, Kirby J, Hughes B, Casteele AV, Gupte S, Sallamm M,
Heath MD, Kuhn MH, Dharaiya E, Burns R, Fryd DS, Salganicoff
M, Anand V, Shreter U, Vastagh S, Croft BY: The lung image
database consortium (LIDC) and image database resource initia-
tive (IDRI): a completed reference database of lung nodules on CT
scans. Med Phys 2:915–31, 2011. http://www.biomedsearch.com/
nih/Lung-Image-Database-Consortium-LIDC/21452728.html.

2. Ben-Hur A, Weston J: A user’s guide to support vector machines.
In Carugo O, Eisenhaber, F Eds. Data Mining Techniques for the
Life Sciences, Methods in Molecular Biology, vol 609, Humana
Press, 2010, pp 223–239. doi:10.1007/978-1-60327-241-4-13.

3. de Carvalho Filho AO, de Sampaio WB, Silva AC, de Paiva
AC, Nunes RA, Gattass M: Automatic detection of solitary
lung nodules using quality threshold clustering, genetic algo-
rithm and diversity index. Artif Intell Med 3:165–177, 2014.
doi:10.1016/j.artmed.2013.11.002, http://www.sciencedirect.com/
science/article/pii/S0933365713001541.

4. Chang CC, Lin CJ: LIBSVM — a library for support vector
machines, 2013. http://www.csie.ntu.edu.tw/cjlin/libsvm/.

5. Chen W, Li Z, Bai L, Lin Y: Nf-kappab in lung cancer, a carcino-
genesis mediator and a prevention and therapy target. Front Biosci
(Landmark edition) 16:1172–85, 2011. doi:10.2741/3782.

6. Clarke KR, Warwick RM: A taxonomic distinctness index and
its statistical properties. J Appl Ecol 35(4):523–531, 1998. http://
www.jstor.org/stable/2405167.

7. Clarke KR, Warwick RMRM, Laboratory PM: Change in marine
communities: an approach to statistical analysis and interpreta-
tion, 2nd edition. Plymouth, U.K.: PRIMER-E Ltd, 2001. Includes
bibliographical references (p. A3-1-A3-5).

8. Dandil E, Cakiroglu M, Eksi Z, Ozkan M, Kurt O, Canan
A: Artificial neural network-based classification system for
lung nodules on computed tomography scans. In: Soft com-
puting and pattern recognition (soCPar), 2014 6th interna-
tional conference of, 2014, pp 382–386. doi:10.1109/SOCPAR.
2014.7008037.

9. Duda RO, Hart PE: Pattern classification and scene analysis.
Wiley-Interscience Publication: New York, 1973.

10. El-Baz A, Nitzken M, Khalifa F, Elnakib A, Gimelfarb G,
Falk R, El-ghar M: 3D shape analysis for early diagno-
sis of malignant lung nodules. In: Szekely G, Hahn H Eds.
Information Processing in Medical Imaging, Lecture Notes in
Computer Science, 6801. Springer: Berlin, 2011, pp 772–783.
doi:10.1007/978-3-642-22092-0-63.

11. Elizabeth D, Nehemiah H, Retmin Raj C, Kannan A: Computer-
aided diagnosis of lung cancer based on analysis of the significant
slice of chest computed tomography image. IET Image Process
6(6):697–705, 2012. doi:10.1049/iet-ipr.2010.0521.

12. van Erkel A, Pattynama P: Receiver operating characteristic
(ROC) analysis: basic principles and applications in radiology. Eur
J Radiol 27(2):88–94, 1998.

13. Faith DP: Conservation evaluation and phylogenetic diversity. Biol
Conserv 61(1):1–10, 1992. doi:10.1016/0006-3207(92)91201-3.

14. Faith DP: Phylogenetic pattern and the quantification of organis-
mal biodiversity Philos Trans: Biol Sci 345(1311):45–58, 1994.
http://www.jstor.org/stable/56137.

15. Fujimoto J, Wistuba II: Current concepts on the molecular pathology
of non-small cell lung carcinoma. Semin Diagn Pathol 31(4):306–
313, 2014. doi:10.1053/j.semdp.2014.06.008, http://www.
sciencedirect.com/science/article/pii/S0740257014000616. Lung
Carcinoma: Beyond The {WHO} Classification.

16. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D,
Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P,
Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones
D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC,
Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi
Z, Downward J, Futreal PA, Swanton C: Intratumor heterogene-
ity and branched evolution revealed by multiregion sequenc-
ing. N Engl J Med 366(10):883–892, 2012. doi:10.1056/NEJ-
Moa1113205. PMID: 22397650.

17. Gould M, Maclean C, Kuschner W, Rydzak C, Owens D: Accu-
racy of positron emission tomography for diagnosis of pulmonary
nodules and mass lesions: a meta-analysis. JAMA 285(7):914–
924, 2001. doi:10.1001/jama.285.7.914.

18. Hansell DM, Bankier AA, MacMahon H, McLoud TC,
Muller NL, Remy J: Fleischner society: glossary of terms
for thoracic imaging. Radiology 246(3):697–722, 2008.
doi:10.1148/radiol.2462070712. PMID: 18195376.

19. Heard SB, Mooers AO: Phylogenetically patterned speciation
rates and extinction risks change the loss of evolutionary history
during extinctions. Proc Biol Sci 267(1443):613–620, 2000. http://
www.jstor.org/stable/2665984.

20. Izsák J, Papp L: A link between ecological diversity indices and
measures of biodiversity. Ecol Model 130(1–3):151–156, 2000.
doi:10.1016/S0304-3800(00)00203-9, http://www.sciencedirect.
com/science/article/pii/S0304380000002039.
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