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Abstract
Highly accurate detection of the intracranial hemorrhage without delay is a critical clinical issue for the diagnostic
decision and treatment in an emergency room. In the context of a study on diagnostic accuracy, there is a tradeoff
between sensitivity and specificity. In order to improve sensitivity while preserving specificity, we propose a cascade
deep learning model constructed using two convolutional neural networks (CNNs) and dual fully convolutional networks
(FCNs). The cascade CNN model is built for identifying bleeding; hereafter the dual FCN is to detect five different
subtypes of intracranial hemorrhage and to delineate their lesions. Using a total of 135,974 CT images including 33,391
images labeled as bleeding, each of CNN/FCN models was trained separately on image data preprocessed by two
different settings of window level/width. One is a default window (50/100[level/width]) and the other is a stroke window
setting (40/40). By combining them, we obtained a better outcome on both binary classification and segmentation of
hemorrhagic lesions compared to a single CNN and FCN model. In determining whether it is bleeding or not, there was
around 1% improvement in sensitivity (97.91% [± 0.47]) while retaining specificity (98.76% [± 0.10]). For delineation of
bleeding lesions, we obtained overall segmentation performance at 80.19% in precision and 82.15% in recall which is
3.44% improvement compared to using a single FCN model.
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Introduction

Stroke is the second leading cause of death worldwide and
occurs accidentally [1]. It is generally thought that there are
two types of stroke. One is an ischemic stroke, which is caused
by a blood clot blocking blood vessels. The second type is
hemorrhagic stroke, most of which are results of blood vessel
bursting or rupturing, caused mostly by hypertension, head
injury, and trauma. Highly accurate and timely imaging as-
sessment of a hemorrhagic stroke is essential for diagnostic
decision and treatment in emergency rooms. Excluding hem-
orrhage by non-contrast computed tomography (NCCT) from
all stroke-suspicious patients within 3–4.5 h of the stroke on-
set time is the fundamental step, as the administration of in-
travenous tissue plasminogen activator (IV-tPA) can lead to
serious side effects to actively bleeding patient [2, 3].

The intracranial hemorrhage is a life-threatening type of
stroke. It is subcategorized into five types depending on its
anatomical location and underlying causes. These subtypes
are intraparenchymal hemorrhage (IPH), intraventricular hem-
orrhage (IVH), extradural hemorrhage (EDH), subdural hem-
orrhage (SDH), and subarachnoid hemorrhage (SAH) as
shown in Fig. 1. While IVH bleeding occurs near a ventricle,
EDH and SDH bleed at outer and inner of dural membranes.
Patterns of the hemorrhagic lesion on CTs vary in shape and
size, and they also develop a single or a mixture of several
patterns. In conjunction with categorizing lesion patterns, es-
timating hemorrhage volume is another significant driving
factor of 30-day mortality and morbidity. Consequently, high-
ly accurate lesion segmentation of hematoma is another criti-
cal issue following the detection of hematoma [4]. However,
certain factors or conditions such as signal to noise, signal

attenuation, and artifacts may negatively influence recogniz-
ing the types of lesions and manual segmentation. This can
lead to delayed diagnosis and misdiagnosis. Detecting intra-
cranial hemorrhage and segmenting using a computer-aided
detection or diagnosis (CAD)-based automatic system is a
promising approach in improving workflow and reducing hu-
man errors. It results in a better patient outcome.

Relevant works have presented various methods for au-
tomatic detection and delineation of hemorrhagic lesions on
NCCT. For example, one method combines region-based
active contour and fuzzy c-means to segment lesions [5],
while another method proposes a random forest algorithm
to achieve a fully automated segmentation approach [6].
However, these methods often demand complicated engi-
neering feature including skull stripping, image registra-
tion, and feature extraction from voxel intensity and local
moment information [7]. Recent deep learning technology
enables the self-learning of nonlinear image filters and the
self-extraction of relevant features [8]. The deep learning
model constructed by convolutional neural networks
(CNNs) is applied to identify the intracranial hemorrhage
[9–13]. For the purpose of clinical triage studies, a 3D-CNN
architecture was used to classify whether an image
contained acute neurological illness or noncritical findings
[14]. These papers only deal with simple binary classifica-
tion problems of either normal or abnormal. Other recent
works investigated both of the classification and segmenta-
tion but only handled three types of intracranial hemorrhage
[15] and localization using bounding boxes [16]. To the best
of our knowledge, there has not been any study on both five
intracranial hemorrhagic identification and segmentation
using a deep learning approach.

Fig. 1 Five subtypes of
intracranial hemorrhage on non-
contrast computer tomography
(NCCT)
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Accordingly, we propose a novel diagnostic system for
segmentation as well as classification of intracranial hem-
orrhage. To detect subtle changes on CT images, we built
a cascade architecture based on CNNs and dual fully
convolutional networks (FCNs) for the purpose of classi-
fication and segmentation respectively. The idea was in-
spired by what radiologists do in order to find subtle
changes by adjusting window width and center level of
Hounsfield unit (HU), so that the contrast between normal
and abnormal tissues can be accentuated. Using the com-
bination of a default brain CT window setting (window
level 50 HU/width 100 HU) and a stroke CT window
setting (level 40 HU/width 40 HU) [17, 18] in cascade,
it helps reduce false-negative cases and contributes to the
improvement of sensitivity. We built a CNN cascade mod-
el and dual FCNs: the CNN cascade model was construct-
ed to detect hemorrhage (bleeding) as a binary classifier.
Once it is identified as bleeding, the dual FCN model is
employed for identifying five subtypes of intracranial
hemorrhage and segmenting their lesions.

Materials and Methods

Data Acquisition

One hundred thirty-five thousand and nine hundred seventy-
four non-contrast head CT images with 5 mm slice thickness
from 5702 patients, of which 3055 cases were non-bleeding
and 2647 cases were bleeding, were acquired from two insti-
tutes. The hemorrhagic patients were selected by ICD 10-
based diagnosis codes including bleeding, traumatic and
non-traumatic SAH, EDH, and SDH from 2011 to 2017.
This data collection was reviewed and approved by the ethics
committee at Kyungpook National University Hospital and
Kyungpook National University Hospital Chilgok (KNUH
2017-06-005 and KNUCH 2016-11-050). Ten medical ex-
perts including one neurologist, four neurosurgeons, and five
emergency medicine doctors participated to establish the
ground truth labels. All of them have more than 10 years’
experiences in each department. After the patients’ sensitive
information in DICOM files was anonymized, eight experts
initially labeled all CT slices with an in-house annotation tool.
And then the two senior experts with more than 5 years’ ex-
periences in neurology subspecialty refined the initial-labeled
ones in terms of false-negative and false-positive findings.
The senior experts cross-checked the refined CTs and then
the final ground truth labels were determined by consensus
among all the experts. In case of bleeding, a total of 33,391 CT
slices were well labeled by tenmedical experts, also indicating
the five subtypes of intracranial hemorrhage: intraventricular,
intraparenchymal, subarachnoid, epidural, and subdural hem-
orrhage. Figure 2 shows the histogram of CT slices on five

different types of hemorrhage so that we can identify how
many CT image data accounts for each type of hemorrhage.
Among a total of 2647 cases (33,391 slices), 1612 cases
(61%) had only one ICH subtype and 1035 cases (39%) had
at least two ICH subtypes.

Data Preprocessing

At the CT data preprocessing stage, the raw DICOM images
were preprocessed by adjusting the window level (WL) and
window width (WW). Through this stage, the Hounsfield unit
(HU) numbers of a specified window ([WL-WW/2, WL+
WW/2]) were transformed into a full range of grayscale values
(0, 255). Each HU number was transformed by a specified
window. Other HU values above (>WL+WW/2) and below
(<WL-WW/2) window were set to be all white (255) and all
black (0) respectively. We assumed the 8-bit depth contains
enough information for classification and segmentation. Since
our ground truth labels were established by human experts, we
follow clinical process where they looked at 8-bit depth im-
ages with specific window settings. Also, other segmentation
works by FCNs demonstrated that performance was similar
compared to the results of 8-bit cases when 6-bit depth per
pixel was used [19].

Two different approaches on CT window setting were
conducted for building cascade deep learning models. The
default and stroke window of a brain CT image were set
to 50/100(WL/WW) and 40/40(WL/WW) respectively.
Figure 3 shows an example of CT images set by two
different windows. The narrower window width setting
(40/40 HU) enables the emphasis of the contrast between
normal and abnormal tissues, improving detection of sub-
tle abnormality. Finally, the cascade combination of two
window settings can reduce false-negative cases, which
leads to an increase in sensitivity.

Fig. 2 Histogram of CT images on five intracranial hemorrhagic types:
intraparenchymal (IVH), intraventricular (IPH), epidural (EDH), subdural
(SDH), and subarachnoid hemorrhage (SAH)
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Diagnostic System

Our proposed diagnostic system consists of a cascaded CNN
and dual FCN deep learning models as shown in Fig. 4. The
first model identifies hemorrhage (in other words, bleeding)

from the CT image. Once it is detected as bleeding, the second
deep learning model predicts the subtype of hemorrhage as
well as their locations. To increase sensitivity, we propose dual
CTwindow setting approach for classification and segmenta-
tion. If it is detected as non-bleeding, the second convolutional

Fig. 3 CTwindow setting on
default (50/100, window level/
windowwidth) and stroke (40/40)

Fig. 4 The flowchart of
diagnostic system for detection of
hemorrhage and delineation of
their lesions
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neural network (CNN), which was trained in a narrow win-
dow width setting, reviews this case to see if it is truly nega-
tive. It helps reduce false-negative cases, resulting in an in-
crease in sensitivity. Two FCN models trained at stroke and
brain window setting were combined in parallel. Once each
slice is predicted as “bleeding” by the cascaded CNN, the slice
feed into each FCN model trained at different window set-
tings. Each FCN produces a segmentation map at stroke or
brain window setting. The final segmentationmap is produced
by merging the results from the two FCNs (logical OR). In
case the label for any pixel(s) differ for the two window set-
tings, the label predicted by the default window is assigned to
it.

In computer vision, there are several popular deep CNN
networks for semantic image segmentation, such as SegNet
[20], U-Net [21], and FCN [22]. A large part of these is com-
posed of encoder and decoder networks. The role of the en-
coder is to take input images, to extract features, and to reduce
the dimensionality through the combination of convolution
and pooling operations. Most of the encoders use the VGG
16 or ResNet-based CNNmodel. The decoder works opposite
of the encoder. Instead of down-sampling the input, the de-
coder uses up-sampling or un-pooling with transposed convo-
lution (deconvolution). For finer segmentation, the decoder
brings some information from the encoder network. In case
of SegNet, the decoder brings pooling indices to keep high
frequency details in the segmentation. These kinds of the
encoder-decoder networks also have been widely applied to
medical applications such as lung segmentation [23], prostate
segmentation [24], and myocardial segmentation in cardiac
MRI [25]. U-Net is a modification from the FCN architectures
with more skip connections and less parameters because of the
lack of fully convolutional layers. It is slightly superior to

FCN-8s on certain problems where the amount of data avail-
able is limited. Hence, it has been popular in the biomedical
imaging field. However, when data available is relatively
abundant FCN-8s and U-Net seems to perform similarly.
FCN-8s which itself is a modification to the VGG architecture
that has been widely used in other applications as well. There
are more readily available pre-trained networks trained on
large datasets available with the FCN-8s/VGG. This made it
preferable for us to use and to do transfer learning. Probably
due to this reason, not only did the FCN-8s training converge a
lot faster than U-Net training for our dataset but had a slightly
better performance as well.

Figure 5 illustrates the FCN model which is applied to
segment hemorrhage lesion. Basically, the FCN model uses
VGG16 architecture as an encoder. During the five pooling
steps, the input image is down-sampled up to 32 times. If up-
sampling with transposed convolution by 32 is processed at
the last pooling layer, it produces coarse segmentation maps
(i.e., FCN-32s). To generate finer segmentationmaps, FCN-8s
brings high resolution feature maps from pooling layer 3 to
pooling layer 5, combines them, and finally conducts 8 times
of up-sampling with deconvolution operators.

Experiment

Training of Cascaded CNNs and Dual FCNs

First, a cascaded CNN classifier was built to identify hemor-
rhage by applying GoogLeNet with 22 convolutional layers,
including 9 Inception modules [26]. Through fivefold cross
validation, a total of 5702 patients, of which 3055 were non-
bleeding and 2647 were bleeding was split into fivefold by

Fig. 5 Fully convolutional neural network for hemorrhagic lesion segmentation
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patient cases. We first split the data based on patients’ IDs.
After that, all slices from that patient was included in that cross
validation fold. We employed a lot of caution regarding not
mixing training and validation slices of the same patient across
the folds and across repeat experiments. The cascaded CNNs
were trained on a high performance computer such as
NVIDIA DGX-1 with 8 Tesla V100. We trained the CNNs
with two different training solvers: stochastic gradient descent
(SGD) and adaptive moment estimation (ADAM). The base
learning rate of weight filters was set at 0.001 and decreased
by three steps in accordance with training epochs. Each CNN
model was trained on CT images, which were differently
preprocessed by default (50/100) and stroke (40/40) CT win-
dow settings, respectively. Trained two CNNs were combined

in cascade. We also evaluated classification performance on
transfer learning by initializing weights from a pre-trained
model in Caffe Zoo. Through fivefold cross validation, overall
accuracy in term of sensitivity and specificity was evaluated.

In order to delineate lesions of bleeding, the FCN-8s were
trained on 33,391 CT slices on the DGX-1 system. We trained
the FCN-8s by ADAMwith a batch size of 16 and base learning
rates of 10−4, and fine-tuned all layers of VGG16 using a pre-
trainedmodel. The dual FCNmodel, which combined two FCN-
8s, was trained in the same way as building cascade CNNs. Due
to a class imbalance problem, where the number of pixels occu-
pying a bleeding lesion is much smaller than those of a normal
tissue, we used dice coefficient (DC) metric to evaluate the per-
formance of the trained model. The DC is a measure of the

Fig. 6 Results of binary
classification on two different
optimization schemes with and
without pre-trained weights

Fig. 7 Results of classification performance using the cascaded window setting. a Reducing the number of false-negative CT images and b resulting in
an increase in sensitivity
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overlap between the segmented regions by trained networks and
the ground truth. Its value of 1 means the perfect match, whereas
the value of 0 means the complete mismatch between the seg-
mentation and the ground truth. Since the Caffe deep learning
framework does not implement the DC metric as default, a DC
scoring module for multi-lesion segmentation was plugged into
Caffe through a custom Python layer.

Results and Discussion

Binary Classification

In the experiment of binary classification, we obtained the
best overall accuracy of 98.28% by the CNNs trained with
ADAM optimization and fine-tuned from a pre-trained
model (Fig. 6). The error bar indicates the standard

deviations of fivefold cross validation. A top 1 prediction for
binary identification of bleeds was chosen using 0.5 as
threshold. We could select high-sensitivity operating
point in the receiver operating characteristic (ROC) anal-
ysis but there is a trade-off relationship between sensi-
tivity and specificity and we will obtain poor specificity
at the highest sensitivity operation point. Our goal is to
improve sensitivity without decreasing specificity perfor-
mance by the cascaded window setting approach for bi-
nary classification.

In an additional experiment, we investigated how the cas-
caded CT window setting helps to reduce false negatives. As
you can see the left side of the bar graph in Fig. 7a, we ob-
served that the number of predictions on false-negative cases
was reduced by combining the default and stroke windows in
cascade. Thus, reducing false negatives results in an increase
in the sensitivity while its specificity is preserved in Fig. 7b.

Fig. 8 Examples of predicted results by FCN-8s including a well-segmented, b falsely negative, and c falsely positive case

Fig. 9 A flowchart of recall and
precision analysis
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Lesion Segmentation

After training the FCN-8s up to 50 epochs, we chose the best
model giving the highest DC score with validation sets.
Applying the best model, hemorrhagic lesions of test images
were segmented, and DC scores were calculated on each le-
sion. Figure 8a shows the examples of segmented results on
the existence of a single type of bleeding and mixture one.
Both cases were well segmented compared to the ground truth

in the middle with highDC scores. However, we observed that
the false-negative and false-positive cases were predicted. For
example, there were two ground truths on SAH (cyan colored)
and SDH (green colored) in the middle of Fig. 8b but SAH
lesion was well segmented with 0.84 of DC score whereas
SDH lesion was not predicted (i.e., falsely negative). Both
EDH and SDH lesions were well segmented in Fig. 8c but a
small number of pixels representing the SAH lesion (purple
colored) was falsely predicted as positives.

Fig. 10 Overall a precision and b recall according to different thresholds as falsely positive and negative decision: nP is the number of predicted pixels
and DC is the dice coefficient

Fig. 11 Examples of positively segmented CT images on third row using
the dual FCN deep learning model, whereas they are predicted as
negatives on the second row using a single FCN model trained on the

default CT window setting. On the first-row images, the white arrow
indicates ground truth of each hemorrhagic type
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For analysis of lesion (instance) level—recall and precision,
we usedDC score threshold as criteria for differentiating between
true positive and false negative. As shown in Fig. 9, in the slices
where corresponding ground truth exists, this would be helpful to
exclude small or no overlap with the predicted pixels as a true-
positive prediction. This would be classified as false negative
instead. When ground truth does not exist, DC score is always
0 and even a single pixel prediction would result in a false-
positive prediction. We exclude instances where small number
of pixels (often noise) are predicted even when no ground truth
exists. These are classified as true negative instead. To clarify the
process of assigning the right predictions.

Overall precision and recall were presented on five differ-
ent hemorrhagic types as shown in Fig. 10. In the precision
analysis, we obtained overall accuracy ranging from 70 to
90% according to different thresholds of falsely positive seg-
mented pixel numbers (see Fig. 9a) whereas we achieved
slightly lower recall than precision at different DC threshold
(see Fig. 9b). However, if we decide to set true positives at
lower threshold DC, recall or sensitivity will increase.

Using the dual FCN model for segmentation, the cases of
falsely negative segmented lesions were reduced and some
examples are shown in Fig. 11. Compared to the segmented
ground truth regions, the lesions delineated by the dual FCN
model (shown at the bottom row in Fig. 11) were positively
predicted. Meanwhile, small numbers of pixels by a single

FCN model were positively segmented or no pixels were pre-
dicted. We also observed that most of the subtle changes on
CT images have been detected and segmented with our ap-
proach. Subsequently, it leads to an increase in sensitivity for
detecting each type of hemorrhagic lesions in Fig. 12a, b.
Compared to a single FCN model regarding precision and
recall, the dual FCN model gave 82.15% recall which is an
improvement of 3.44%, while precision decreased by 3.23%.
We also evaluated patient-case level performance. We deter-
mined true positive if the case included at least one slice with a
true positive at given decision thresholds (DCth = .25). If not,
it was regarded as false negative. In the same way, we also
determined false positive if the case included at least one slice
false positive at given threshold (nPth = 200). In overall, we
also obtained 2.16% improvement of sensitivity in Fig. 12c, d.

Although our diagnostic system was highly accurate in
detecting hemorrhage lesion, several diagnostic errors were
still found in false negative (FN) and false positive (FP).
Thus, we reviewed both FN and FP cases again from a clinical
and engineering perspective. In FN cases, most of them were
misinterpreted as other hematomas and this can be categorized
as the following: (a) a very small hematoma, which was dif-
ficult to detect due to few pixels on CT; (b) low- or iso-density
of subacute and old hematomas, making it difficult to discrim-
inate from the normal brain tissue; (c) wide-spreading hema-
tomas of SAH, EDH, or SDH on the base of the skull which

Fig. 12 Comparison of CT-slice
level (a, b) and patient case-level
(c, d) performance between single
(at default and stroke window)
and dual FCN model at five
intracranial hemorrhage and their
overall precision and recall
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can be misinterpreted as IPH because of cross-sectional im-
age; (d) IVH adjacent to massive IPH, which was interpreted
as IPH or undefined, as a result of the distortion of normal
structure of ventricle; and (e) cross-misinterpretation between
EDH and SDH, due to having similar shapes in case of small
hematoma (Fig. 13a–e). With regard to FP cases, most of them
could be classified as the following: (f) massive hematomas of
SAH in the Sylvian fissure which were misinterpreted as IPH;
(g) cross-misinterpretation between EDH and SDH, like the
FN case; (h) IPH adjacent to the fourth ventricle, misidentified
as IVH; and (i) Partial volume effect of the skull which was
misinterpreted as IPH (Fig. 13f–i).

To reduce the number of FN and FP cases, we can apply a
more advanced deep learning architecture for lesion segmen-
tation. Current FCN-8s scheme has its limitations on capturing
features at multiple scales due to using one sized 3 × 3 filter.
Recently dilated convolution (a.k.a. atrous convolution) en-
ables one to enlarge the field-of-view and their pyramid com-
bination with multiple sampling rates, and helps to represent a
multi-scaled imaging object [27, 28]. It is hypothesized that
filters with a large field-of-view are necessary to distinguish
EDH from SDH, or widely spreading hematomas, as their
lesions are occupied in a wide area of the skull (see Fig. 13e,
g). The pyramid parsing module [29] could be another prom-
ising approach as it is capable of representing different sub-
region, including local and global scene class. This approach
will be effective in capturing massive hematomas of SAH in
the Sylvian fissure as a small local lesion, which is similar to
IPH, will not be misclassified (see Fig. 13f).

Conclusion

In this work, we developed our unique diagnostic system
of identifying the types of hemorrhage as well as
segmenting their lesions. In terms of diagnostic accuracy,
there is a tradeoff between sensitivity and specificity.
While conserving specificity in order to improve sensi-
tivity, a cascade deep learning models was built by using
two CNNs. In general, radiologists try to adjust contrast
by setting narrower CT window width to detect subtle
abnormalities. Based on this, each of the CNN and
FCN was trained on the image data, preprocessed by
two different CT window settings. One is a default win-
dow (50/100) and the other is a stroke window setting
(40/40). By combining them, we obtained better sensitiv-
ity on the binary classification and segmentation of hem-
orrhagic lesions.

In our diagnostic system, identifying bleeding on a binary
classifier was very crucial in the first step. We obtained the
best top-1 classification accuracy of 98.28% by the CNNs
trained with ADAM optimization solver and fine-tuned using
a pre-trained model. With a cascade CNNmodel, we acquired
the 97.91% of sensitivity which is about 1% improvement. In
the next step of detecting hemorrhagic types and segmenting
their lesions, we trained the dual FCN-8s architecture on all
cases labeled as bleeding. Based on the fivefold cross valida-
tion, we obtained overall segmentation accuracy of 80.19% in
precision and 82.15% in recall which is a better result than a
single FCN model by 3.44%.

Fig. 13 Typical examples of false-negative (a–e) and false-positive cases (f–i): each left side is a ground truth CT image and right side is the
corresponding inference result
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