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Abstract
Humans can determine image quality instantly and intuitively, but the mechanism of human perception of image quality is
unknown. The purpose of this work was to identify the most important quantitative metrics responsible for the human perception
of digital image quality. Digital images from two different datasets—CT tomography (MedSet) and scenic photographs of trees
(TreeSet)—were presented in random pairs to unbiased human viewers. The observers were then asked to select the best-quality
image from each image pair. The resulting human-perceived image quality (HPIQ) ranks were obtained from these pairwise
comparisons with two different ranking approaches. Using various digital image quality metrics reported in the literature, we built
two models to predict the observed HPIQ rankings, and to identify the most important HPIQ predictors. Evaluating the quality of
our HPIQ models as the fraction of falsely predicted pairwise comparisons (inverted image pairs), we obtained 70–71% of correct
HPIQ predictions for the first, and 73–76%for the second approach. Taking into account that 10–14% of inverted pairs were
already present in the original rankings, limitations of themodels, and only a few principal HPIQ predictors used, we find this result
very satisfactory. We obtained a small set of most significant quantitative image metrics associated with the human perception of
image quality. This can be used for automatic image quality ranking, machine learning, and quality-improvement algorithms.
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Introduction

Humans can glance at an image and instantly conclude its
quality as Bbad,^ Bperfect,^ Btoo noisy,^ or Btoo dark.^
However, can we quantify this intuitive perception, and can
we build numerical models to approximate its value?

The problem of objective image quality assessment can be
found inmany applications, ranging from simple web browsing
to the most sophisticated machine and pattern learning. We

have faced this problem many times through our work in med-
ical imaging. In radiology, the quality of medical images has
direct impact on the quality of diagnosis and patient treatment.
Moreover, our ability to increase image acquisition quality in
medicine often bounded by the harmful side effects (such as
radiation in computed tomography, CT). To overcome this lim-
itation, a number of image quality enhancing algorithms have
been suggested and implemented—CT low-dose image en-
hancement being one of them [1]. However, the choice and
the magnitude of this enhancement have been always left to
humans, very subjective decision makers as they are. If an
objective HPIQ Bcalibration^ were possible, subjectivity could
be completely eliminated from the radiology QA process.

Finally, the idea of objective image quality calibration is
not foreign to medicine, and has been already tried in some
basic ways: calibrating imaging scanners for SNR, or calibrat-
ing medical displays for DICOM greyscale. As a result, the
goal of this study was to determine the most important numer-
ical metrics that can be used to model HPIQ.

To achieve this goal, we considered HPIQ as a multivariate
characteristic perceived by an average human observer
looking at a given image. We also viewed HPIQ as a general,
task-independent property the human visual system—similar
to recognizing color or contrast. Therefore, we hypothesized
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that despite inevitable observer variability, HPIQ can be ap-
proximated as an objective (observer-independent), task-inde-
pendent, and absolute (non-reference independent on the other
images) metric, that can be computed based on the data ex-
tracted from the image. Our practical goal was to find a limited
set of digital image features which can be used to create nu-
merical HPIQ models.

Up to this point, the problem of perceived image quality
was given very scarce treatment. Most relevant studies were
done in the area of digital medicine, using single quality mea-
sures such as non-reference image quality metrics for structur-
al MRI [2], a non-reference blur image quality measure based
on wavelet transform [3], and information entropy measure
for evaluating image quality [4]. There were a few studies
attempting multidimensional quality evaluation such as radia-
tion dose and image-quality assessment in computed tomog-
raphy [5].

To give this problem a full treatment independent on the
image content, we chose a much broader and unexplored ap-
proach, focusing on multivariate HPIQ modeling. To exclude
contextual image bias, we experimented with two completely
different sets of digital images: a set of computed tomography
scans (MedSet) and a set of scenic forest images (TreeSet).
For HPIQmodeling, we chose two different model types, thus
making sure that the selection of the most important HPIQ
metrics is not influenced by the choice of the model.

Methods and Materials

Image Quality Metrics

To consider all major metrics of digital image quality, we
started from an exhaustive list of different non-reference qual-
ity-related image metrics described in the previous literature
(Table 1). We use I(x,y) to represent image intensity value at
the (x,y) pixel; h and w are height and width of image.

Data Preparation

Although our initial interest in HPIQ was driven by medical
imaging, it was clear that even within the medical domain,
image context can vary significantly. Therefore, to eliminate
contextual image bias, we used two image datasets of very
different origin: MedSet (CT tomography images, HIPAA-
deidentified and IRB compliant under 45 CRF §46.101.
(b).(4)), and TreeSet (scenic forest landscapes). Each set
contained 50 greyscale images, to exclude color bias. The
images were presented in 7000 random pairs to 15 human
observers of different age and gender, and without any back-
ground in CT imaging. For each image pair, the observers
were asked to choose the best image. The taskwas implement-
ed using Amazon Mechanical Turk (Fig. 1).

Image quality metrics were computed for the original im-
ages as well as their lower-resolution versions, to compare
Table 1 at different scales. To do so, two lower-resolution
copies were produced for each image as first two low-pass
levels of the Gaussian pyramid. The low-resolution images
were not shown to human observers and were used only for
computing the low-resolution metrics. This resulted in a total
of 57 image quality measurements per each image (Table 2),
to be used as quality-predicting variables.

Modeling HPIQ with Absolute Quality Ranks: Linear
Regression Model

Our first approach to HPIQ modeling was based on the as-
sumption that digital image quality can be expressed as a
single quality index number. Therefore, using the original
pairwise image comparison results, we computed a quality
index value for every image as the number of this image’s
wins divided by the number of all comparisons with this
image.

Note that in some instances, an image with a higher quality
index might have been perceived as inferior when compared
with some lower-quality image. An obvious example would
be when image A is perceived as better quality than image B,
B—as better than C, but C is perceived as better than A. We
called image pairs such as (A,C) inverted. This non-
transitivity in image scores means that one cannot accurately
model all human scores with a sequential, single-value out-
come. Overall, 10% of pairs were found to be inverted in
MedSet, and 14% in TreeSet.

The inverted pairs were not excluded from the visual scor-
ing for two principal reasons. First, we believe that many
humans will not be able to perceive image quality in a strictly
transitive order. Second, the inverted pairs mean that some
images in the dataset are harder to compare, which should
provide some valuable information for model building.

Using linear quality indices as a target variable, we then
attempted to predict them with a linear regression model. We
considered all possible regression models containing various
combinations of at most 57 features (Table 2). For each model
size k ≤ 57, we determined the best model with exactly k fea-
tures, as the model with the least error. To avoid suboptimal
stepwise selection, we decided to use an exhaustive search
through millions of possible models (feature combinations);
branch-and-bound algorithm was applied to speed-up the
search process. We observed that model prediction quality
essentially stopped to improve after using more than five pre-
dictors. Therefore, to avoid overfitting and to maintain model
clarity, we limited further analysis to the models with k ≤ 5
features only.

Figure 2 visualizes our results, plotting model prediction
quality (as R squared) for both MedSet and TreeSet datasets
combined into a single merged set. Circle color corresponds to
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Table 1 Major metrics of digital image quality

Descrip�on Formula
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specific model size k, and circle size—to the model error.
Thus, the largest circles in the left bottom corner correspond
to models of size k = 1. You can see that with increased k,
model error decreases, and models converge to the right top
corner.

One can also observe that the circles on the Fig. 2
plot tend to cluster along the diagonal line, which
means that most HPIQ models perform similarly on
both MedSet and TreeSet. Moreover, the more model
features k are used, the closer circles approach to the
right top corner. As a result, one can arrive to another

interesting conclusion: higher model size k corresponds
not only to the more accurate, but also to the more
context-independent models, capturing the true nature
of HPIQ regardless of the image content.

Figure 3 illustrates similar results obtained for MedSet and
TreeSet independently. As the figure indicates, the models
selected as the best for one dataset performed well on the
other. Despite the obvious differences between the CT scans
and forest landscapes, models optimal for one set were among
the best performers for the other, which again confirms our
hypothesis of context-independent HPIQ modeling.

Table 1 (continued)

J Digit Imaging (2018) 31:768–775 771



Table 3 summarizes the best predictors selected for each
number of features defined in Tables 1 and 2. It provides us
with some significant insights. As one can see, HPIQ can be
captured with a very limited set of the most principal digital
image metrics. It can be assumed that these metrics play the

key role in our perception of the image quality. One can see
that image entropy, blur, and blockness at different resolution
levels turned out to be the most prominent predictors of HPIQ.

The number of inverted pairs computed for predicted qual-
ity measures in comparison to initial matrix of comparisons

Fig. 1 Amazon Mechanical Turk assignment for image markup

Table 2 Correspondence
between described measures and
names of variables used in HPIQ
models. Indices 0, 1, and 2
correspond to three levels of
Gaussian pyramid; the first index
in blockness corresponds to the
block size

Measure Name Corresponding variables

Blurriness 1 Fblur1 blur10, blur11, blur12

Blurriness 2 Fblur2 blur20, blur21, blur22

Shannon entropy Fent ent10, ent11, ent12; entb0 (background), entf0 (foreground)

Separability Fsep sep0, sep1, sep2

Flatness Fflat flat0, flat1, flat2

Sharpness Fsharp sharp0, sharp1, sharp2

Blockness Fblock block20, block40, block60, block80, block21 etc.

Fractal dimension Ffrac frac0, frac1, frac2

Noise Fnoise noise0, noise1, noise2

Average gradient FAG ag0, ag1, ag2

Edge intensity FEI ei0, ei1, ei2

Contrast FC contr20, contr21, contr22

CPP—contrast per pixel FCPP contr10, contr11, contr12

Average intensity FAI intens0, intens1, intens2
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was 30% for MedSet and 29% for TreeSet, thus resulting in a
70–71% prediction. Although it was not matching, the origi-
nal counts of the inverted pairs (10 and 14% respectively),
given the small model size and HPIQ complexity, we consider
this as a very good result.

Modeling HPIQwith Relative Quality Ranks: Nonlinear
Elo Model

In our previous approach, the original observations were re-
duced to sequential quality indices, to be used as a target for a
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Fig. 2 Optimizing quality-
predicting models for both
MedSet and TreeSet data. Navy,
blue, green, orange, and red
circles correspond to modal sizes
k from 1 to 5, respectively. Note
that as model accuracy increases
(with model size k), the models
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Fig. 3 Optimizing quality-predicting models for TreeSet (left) and MedSet (right)
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linear regression model. This reduction eliminated most of the
original comparison pairs. To overcome this limitation and to
use our experimental data to its full extent, we studied another
quality-rating approach, where all original pairwise compari-
sons can be used to discover the best predictive features.

The approach is based on the Elo rating system for chess
tournaments [15]. Each image pair presented to an observer is
considered as an independent Bernoulli test where each out-
come (such as winning of image A over image B) has its own
probability. Image comparison outcomes are still determined
by individual image ratings, so that the image with higher
rating wins. Rating of image A is modeled a linear combina-
tion of its k features Fj with weights wj:

RA ¼ ∑ j¼k
j¼1w jF j

The probability of image A rating being higher than image
B rating is modeled as a logistic function:

Pi RA > RBð Þ ¼ exp RA−RBð Þ
1þ exp RA−RBð Þ

The optimal set of features weights wj would correspond to
the optimal Elo model explaining the observed comparisons.
Outcome x of each comparison can be 0 or 1, which can be
written using Bernoulli formula as follows:

Pi RA > RBð Þ ¼ Pi xð Þ ¼ Px
i 1−Pið Þ1−x; x ¼ 0; 1f g

Finally, likelihood function is written as the following
product:

L ¼ ∏N
i¼1 Px

i 1−Pið Þ1−x
h i

To obtain image rankings that would produce pairwise
comparisons closest to the original (human observer) compar-
ison data, one should iteratively train features weights wj to
maximize the logarithm of likelihood L. This method was
applied to various combinations of five features discovered
in our previous method, for TreeSet and MedSet datasets,
independently. Then best models for combined set of all im-
ages were also obtained. In case of testing model on both
MedSet and TreeSet datasets, we used the sum of log

Table 3 Best predictor values for models with restricted sets of metrics. Table contains best three models according to average error on two datasets

Model size k Best predictors for both datasets Best predictors for TreeSet Best predictors for MedSet

1 - blur10
- blur12
- sep0

- ag1
- sharp1
- ei1 or ei0

- ent10
- ent11
- sep0

2 - blur20, sep0
- blur20, sep1
- entf1, blur20
- blur20/21, intens0/1/2

- blur20, entf0
- entb0, block60
- entb0, frac0

- blur20, sep0
- blur20, sep1
- blur20, intens0

3 - blur20, entb0, sharp1
- blur10, blur11, blur22
- blockness measures + blur
- blur20, entb0, frac0

- blur20, entb0, frac2
- entb0, sep0, flat2
- blur20, block22, block62

- blur10, blur11, blur22
- contr20, blur21, noise2
- contr20, intens0, ent11

4 - blur20 + blockness measures
- blur11, entb1, intens1, block22

- entb0, sep0, block80, flat2
- blur10, entb0, sep0, flat2

- block62, blur20, contr10, block22
- blur20, contr20, block62, block22

5 - entb0, blur21, flat1, ei1, frac2
- entb0, blur21, flat1, ei1, block62

- blur10, entb0, sep0, block40, flat2
- blur10, entb0, sep0, block80, flat2

- blur20, block60, block62, block22
- blur20, ei0, ei1, block22, block42

Table 4 Best predictor values for models with restricted sets of metrics; model size k = 5. Table contains best six models according to average rate of
correct pairwise comparisons

Model with size k = 5 Ratio of correct pairwise comparisons predicted by the model

Both sets combined MedSet only TreeSet only

block21, block22, blur20, ent10, ent11 0.69 0.75 0.74

block82, ent11, ent12, entb0, entf0 0.69 0.73 0.75

contr12, contr20, ent11, entf2, sharp2 0.69 0.76 0.73

block42, block62, ent11, intens2, sharp2 0.67 0.63 0.67

block20, block22, ent10, entf1, noise1 0.66 0.74 0.75

block20, block22, ent10, entf1, noise1 0.66 0.75 0.76
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likelihood for two datasets separately, and took the average of
features weights for the two datasets. To compare models, we
used the rate of truly detected pairwise outcomes as are pre-
sented in Table 4 (for model size k = 5).

Looking at the Table 4 models, one can observe that the
most important HPIQ predictors identified by the Elo model
approach correspond to the ones found with the linear regres-
sion HPIQ model in Table 3. Thus, the entropy of the whole
image, and the entropy of the image background and fore-
ground on all levels of Gaussian pyramid are still the most
essential predictors of HPIQ. In addition, blurriness,
blockness, noise, sharpness, and contrast are also present in
the top winning models. However, due to a less-constrained
modeling, Elo approach achieves 24–27% of inverted pairs on
separate sets, which is better than with linear regression.

Conclusions

Using two image datasets of different origin, we identified the
most important metrics responsible for the human perception
of image quality (HPIQ). The analysis was performed with
two unrelated HPIQ-modeling algorithms, to eliminate depen-
dency on the model.

The first algorithm used an absolute quality index that was
obtained from the initial comparisons as a ratio of pairwise
wins; linear regression was used as the predictive model. The
second algorithm modeled a raw pairwise HPIQ comparisons
matrix with nonlinear Elo model. Comparing the two algo-
rithms based on their fraction of falsely predicted pairwise
comparisons (inverted image pairs), we obtained 29–30%
for the first, and 24–27% for the second approach. This result
indicates that at least 70% of all pairwise comparisons can be
predicted with a rather simple numerical model and only up to
five key image metrics. Given that the original data already
contained 10–14% of inverted (unpredictable) pairs, we find
our result extremely interesting and satisfactory.

Both HPIQ models led to the unification of the most influ-
ential predictors (metrics), and both models resulted in similar
predictor sets. It is particularly visible in Figs. 2 and 3, where,
as model accuracy increases, the best MedSet and TreeSet
models converge to each other. We view this as the most
interesting result of our study, demonstrating that human per-
ception of image quality is largely context-independent, and
therefore can be efficiently quantified with an objective, nu-
merical model. As a result, one can build concise HPIQ

models to automatically evaluate digital image quality as it
is perceived by the humans.
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