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Abstract
Bilateral filters have been extensively utilized in a number of image denoising applications such as segmentation, registration,
and tissue classification. However, it requires burdensome adjustments of the filter parameters to achieve the best performance for
each individual image. To address this problem, this paper proposes a computer-aided parameter decision system based on image
texture features associated with neural networks. In our approach, parallel computing with the GPU architecture is first developed
to accelerate the computation of the conventional bilateral filter. Subsequently, a back propagation network (BPN) scheme using
significant image texture features as the input is established to estimate the GPU-based bilateral filter parameters and its denoising
process. The k-fold cross validation method is exploited to evaluate the performance of the proposed automatic restoration
framework. Awide variety of T1-weighted brain MR images were employed to train and evaluate this parameter-free decision
system with GPU-based bilateral filtering, which resulted in a speed-up factor of 208 comparing to the CPU-based computation.
The proposed filter parameter prediction system achieved a mean absolute percentage error (MAPE) of 6% and was classified as
Bhigh accuracy .̂ Our automatic denoising framework dramatically removed noise in numerous brain MR images and
outperformed several state-of-the-art methods based on the peak signal-to-noise ratio (PSNR). The usage of image texture
features associated with the BPN to estimate the GPU-based bilateral filter parameters and to automate the denoising process
is feasible and validated. It is suggested that this automatic restoration system is advantageous to various brain MR image-
processing applications.
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Introduction

During the acquisition process, images acquired from
magnetic resonance imaging (MRI), functional MRI
(fMRI), diffusion-weighted MRI (DWI), and diffusion
tensor MRI (DTI) are inevitably corrupted by various
sources of random noise, which includes physiological
motion and patient movement as well as eddy-current dis-
tortions and instabilities of the MRI scanning hardware.
Such corruption introduces different levels of ambiguities

in the formation and measurement of quantitative attri-
butes that hinders the understanding and estimation of
essential characteristics in the inspected tissues. In addi-
tion, the noise not only disturbs the visual inspection in
medical diagnostic procedures but also deteriorates a
number of computerized processes such as structure visu-
alization, image segmentation, image registration, and tis-
sue classification [1].

One typical solution to this dilemma is to directly aver-
age multiple acquisitions in the scanner and consequently
reinforcing the signal-to-noise ratio (SNR). However, it re-
quires a longer acquisition time to achieve a desired SNR at
high spatial resolution. Practically, this time is restricted due
to consideration of system throughput, patient comfort, and
physical constraints arising in dynamic applications such as
fMRI. As such, there is a pragmatic limitation on the SNR of
acquired MR images in most applications [2]. In the
postprocessing stages for brain MR images, noise reduction
approaches have been conventionally applied in a wide va-
riety of subsequent processing applications.
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In spite of notable advances in imaging techniques, noise
reduction in brain MR images remains challenging. This is
mainly because the nonlinear operation on the real and imag-
inary components in the k-spacemakes the noise in magnitude
MR images Rician distributed, which is signal-dependent [3].
Consequently, in single-coil systems, the noise in magnitude
MR images is modeled as a Rician distribution [4]. A number
of image denoising algorithms based on the Rician noise mod-
el have been proposed [5–9]. In particular, Aja-Fernandez et
al. [5] proposed a close-form solution of the linear minimum
mean square error (LMMSE) estimator for the Rician distri-
bution and demonstrated its effectiveness in noise removal
and feature conservation. Pizurica et al. [10] introduced a ver-
satile wavelet domain (VWD) method for noise filtration. By
empirically estimating image features and noise types, the
authors demonstrated its usefulness in noise suppression.
Nonetheless, for its simplicity, the Gaussian filter has been
extensively adopted in many MR image processing applica-
tions [7, 11, 12]. Intrinsically, this filter calculates a weighted
average of pixel intensities in the neighborhood so that the
weight diminishes with the distance from the kernel center.
Although Gaussian filters smooth noise satisfactorily, edges
are blurred indubitably.

With intrinsically nonlinear characteristics, the anisotropic
diffusion filter [13] has been proposed. This approach aver-
ages pixel intensities from the neighborhood, whose shape
and dimension relies upon local image fluctuations that are
estimated at every point [14]. On the other hand, the bilateral
filter [15] is a promising technique that adopts a non-iterative
strategy for edge preserving and overcomes the shortages of
Gaussian filters for brainMR image restoration. Extending the
concept of the Gaussian filter, this framework aims to associ-
ate gray value similarity in the range domain with geometric
closeness in the spatial domain as a nonlinear filter for image
restoration. The bilateral filter has been shown performing
adequately in various image noise removal applications,
which made it the subject of many further studies [16–20].

For example, Walker et al. [21] compared the usage of
Gaussian filters and bilateral filters in smoothing fMRI data

and concluded that the bilateral filter more precisely located
brain activation and increased the understanding of activation
bordering sharp transitions. Rydell et al. [22] presented bilat-
eral filtering of fMRI with improved detection of activated
regions by manually tuning all parameters to optimize the
performance. Hamarneh and Hradsky [23] extended the bilat-
eral filter to perform edge-preserving smoothing of DTI data.
McPhee et al. [24] demonstrated the treatment of the bilateral
filter in improving image characters at the cortical areas with-
out demolishing contrast in the brain. Recently, Jaramillo et al.
[25] proposed a wavelet domain bilateral filter to reduce the
noise inMR images. Wells and Dobbins [26] implemented the
bilateral filter to study the amplitude modulation and wave-
form distortion properties of nonlinear systems. Kala and
Deepa [27] introduced a fuzzy membership function into the
bilateral filtering scheme to improve the denoising efficiency.

As objects consist of various kinds of texture appearances,
image texture has been playing an essential role in image
processing and pattern recognition [28]. In essence, those tex-
ture features can reveal typical regularities of biological struc-
tures in brain MR images [29]. Depending on the parameter
values being used, the restoration process may blur edges of
important anatomy structures while removing noise as illus-
trated in Fig. 1. Unfortunately, empirical settings and manual
adjustments have been adopted in many existing bilateral fil-
teringmethods for MR image restoration [26, 30]. To facilitate
the burdensome adjustments of the filter parameters, some
approaches adopted a fixed parameter value in the spatial do-
main while relating the parameter in the range domain to the
noise variance [21, 24, 25]. Optimization of the bilateral filter
parameters remains an open question. Strategies through the
aid of artificial intelligence techniques seems an achievable
solution. Among the diverse machine learning approaches,
artificial neural networks (ANNs) [31] are exceptionally ap-
propriate for this ambition.

An ANN is a computational prototype or mathematical
model that is motivated by the structure and/or functional
perspective of biological neural networks. Consisting of an
interconnected aggregate of artificial neurons, a neural

Fig. 1 Illustration of the problem
of manual restoration process. a
Noisy brain MR image. b
Denoised image with heavily
blurred structures due to improper
parameter settings
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network encompasses many links that connect neurons to
both inputs and outputs. Being regarded as a distributed,
parallel, and adaptive information processing scheme, the
neural networks perform the estimation of optimal outputs.
ANNs have been extensively exploited in many medical
applications both academically and clinically. For example,
Younis et al. [1] presented an artificial immune-activated
neural network that is controlled through an energy measure
to ensure accurate recognition. This model was applied to
segment volumetric brain MRI data and achieved high ac-
curate results, especially at low levels of noise. Virmani et
al. [32] proposed a neural network ensemble-based comput-
er-aided diagnostic system to assist radiologists to differen-
tiate focal liver lesions. The principal component analysis
(PCA) was adopted to reduce the dimensionality of the fea-
ture space prior to classifier design. Wang et al. [33] intro-
duced ANN modeling to estimate volumetric breast density
from full-field digital mammography.

To the best of our knowledge, the application of ANNs
to estimate filter parameters and automate filtering pro-
cesses is rare in the literature. Indeed, an essential key
to a successful bilateral filtering system based on ANNs
is the quality as well as the quantity of input arguments.
This brings on a fundamental problem of exploring rele-
vant characteristics among a wide variety of image texture
features for the automation process, which has been in-
vestigated in our previous study [34]. Another critical
issue is the considerable amount of repeated computations
of the bilateral filter in the training phase. One way to
accelerate the filter computation is through the employ-
ment of parallel computing based on the graphics process-
ing unit (GPU), which is known as general purpose com-
putation on GPU (GPGPU) [35]. The adoption of the
GPU as an alternative computation platform rather than
the central processing unit (CPU) is to achieve accelera-
tion for computationally excessive tasks that are intrinsi-
cally parallel and have neighboring data accesses for each
data element. All in all, image processing has been one of
the major applications that involve high computing com-
plexity, especially for image filtering algorithms [36].

The objective of this article is in an attempt to investi-
gate the automation as well as the acceleration of the
conventional bilateral filter. A GPU-based bilateral filter-
ing framework with parallel computing is uniquely de-
signed. We address optimization techniques to accelerate
computation in either memory resources or thread usages.
Based on the investigation of significant texture features
in our earlier study, a fully automatic and parameter-free
restoration framework for the accelerated bilateral filter
associated with ANNs is developed and established.
Finally, a wide variety of brain MR images are utilized
to validate the proposed scheme regarding acceleration
performance and restoration efficacy.

The major contributions of the current work are summa-
rized as follows:

1. Awide variety of image texture features including wavelet
transform and gray level variation methods have been
investigated regarding the discrimination ability between
brain MR slices.

2. A GPU-based acceleration technique based on the usage
of shared memory for bilateral filtering has been
developed.

3. An efficient ANN model for training and predicting the
bilateral filter parameters has been established.

4. The connection between significant image texture fea-
tures and the ANN system for filter parameter prediction
has been created.

5. Extensive experiments with massive MR images in com-
parison with several state-of-the-art methods have been
conducted to evaluate the proposed framework.

Analysis of Image Texture Features

We shall start by describing the exploitation of image texture
features for the automation of bilateral filtering. Three possi-
ble categories with different aspects of texture feature extrac-
tion are considered, which has been investigated in our earlier
study [34]. The first category belongs to fundamental statistic
features including mean, standard deviation, variance, and en-
tropy [37], where the original brain MR image is directly
adopted for the computation. The second category is com-
posed of wavelets [38] as described in the subsequent section.

2D Wavelet Transform

Wavelet transforms present a marvelous mechanism for fea-
ture extraction with the representation of an image at different
levels of scales [39]. Traditionally, wavelet coefficients have
been widely adopted to estimate noise variance, which are
favorable feature candidates for the proposed filter parameter
decision task. Among various families of wavelets, the Haar
wavelet transform is utilized for its simplicity and effective-
ness [40]. Introducing a family of wavelet functions and its
associated scaling functions, the hierarchical wavelet trans-
forms decompose an image in the spatial domain into various
subbands in the frequency domain.

To overcome intensity varieties across various brain MR
images, the input of the wavelet transform in this study is a
normalized image defined as

Î̂ i; jð Þ ¼ I i; jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

m¼1∑
N
n¼1I m; nð Þ2=MN

q ð1Þ
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where I(i, j) is the original M ×N image and Î i; jð Þ is the nor-
malized image. The resulting 2D array of the wavelet coeffi-
cients comprises four subbands of the transformed data. These
four subbands are labeled as LL1 (low-low), HL1 (high-low),
LH1 (low-high), and HH1 (high-high), where the subscript 1
indicates that they are sequentially obtained by the first-order
vertical and horizontal transformations. Each subband con-
tains different levels of resolution with LL representing the
approximate image, HL the horizontal details, LH the vertical
details, and HH the diagonal details. The decomposition pro-
cedure is repeatedly exploited to the LL1 subband to produce
the next level of the hierarchy, namely, LL2, LH2, HL2, and
HH2, where the subscript 2 represents the second-order
transformations.

Three different kinds of energy measures are subsequently
computed for both order subbands using [39]

Norm−1 energy : e1 ¼ 1

MsNs
∑Ms

m¼1∑
Ns
n¼1 x m; nð Þj j ð2Þ

Norm−2 energy : e2 ¼ 1

MsNs
∑Ms

m¼1∑
Ns
n¼1 x m; nð Þj j2 ð3Þ

Standard deviation : e3 ¼ 1

MsNs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Ms

m¼1∑
Ns
n¼1 x m; nð Þ−�xj j2

q

ð4Þ
whereMs and Ns are the dimension of the subband, x(m, n)

is the subband under consideration with 1 ≤m ≤Ms and 1 ≤
n ≤ Ns, and �x is the arithmetic mean of x(m, n). With 8
subbands and 3 energy signatures, 24 different features are
computed in this category.

Gray-Level Co-Occurrence Matrix

The gray level co-occurrence matrix (GLCM) [41] constitutes
the final category, where second-order statistics are extracted
based on the replicated occurrence of some gray-level compo-
sition in an image. The essential characteristic is that with
respect to distance the GLCM varies quickly in fine texture
images and slowly in coarse texture images. GLCM-based
texture features have been exploited for detection, classifica-
tion, and segmentationmissions such as discriminating benign
areas from malignant lesions [42].

From the perspective of mathematics, the GLCM is a ma-
trix of repetitions at which two pixels are separated by a dis-
tance vector in an image. For a brain MR image of L gray
levels, the allocation in the L × Lmatrix is built upon the gray
tone spatial relationship between two pixels with a specified
distance and angle using

G i; jð Þ ¼ ∑Wx−dx
x¼1 ∑Wy−dy

y¼1
1; if F x; yð Þ ¼ i and F xþ dx; yþ dy

� � ¼ j
0; otherwise

�

ð5Þ

where G(i, j) is the quantized gray tone at location (i, j)
with i = 0, 1, …, L − 1 and j = 0, 1, …, L − 1, F(x, y) is the
gray level intensity in the kernel at (x, y), Wx and Wy are
the lengths of the resolution kernel in the image ordered
by their row-column assignations, and dx and dy are the
spatial separation between two computed pixels defined
by a distance d and an angle θ from the kernel origin.

Varying the distance vector in Eq. (5) enables the ex-
traction of different image texture characteristics. There
are eight adjoining pixel-pairs in four isolated directions
with θ= 0°, 45°, 90°, and 135° for the distance, d. The
matrix of relative frequencies P(i, j) is defined as the
probability of the pixel-pair occurrence of two correlated
gray levels i and j normalized by the total counts as

P i; jð Þ ¼ G i; jð Þ
∑L−1

i¼0∑
L−1
j¼0G i; jð Þ ð6Þ

To achieve best discriminating abilities and maximal
distinguishing strength, the difference image ID between
the input image I and its Gaussian-filtered image IG is
adopted as the input image for the computation. This dif-
ference image roughly represents the gray level edges of
anatomical structures in the brain. Once P(i, j) is created,
four groups of features are computed: statistics, informa-
tion theory, information measures of correlation, and vi-
sual texture characteristics [42–45]. In short, there are 8
basic features multiplied by 4 directions that result in 32
different texture features in this category.

Significant Texture Features

According to the three image texture feature categories, a
large number of 60 different features are computed in
each individual image. To reduce the complexity of the
problem and to realize the most important texture fea-
tures, a paired-samples t test [46] is applied to every fea-
ture for evaluating the distinguishing capacity in both
noise levels and slice positions. The noise level reflects
the degree of Rician noise in the image, and the slice
position indicates the variation of brain tissues in the im-
age. Based on our experience, the noise level alone is not
adequate to produce the best filter parameter values for
slices that have exactly the same noise variance. This is
because that the brain has quite various anatomical struc-
tures and sizes among the slice positions. For example,
the best filter parameters for the middle slice are usually
not the best filter parameters for other slices with the same
noise variance.

In order to obtain the significant texture features, each
of the 60 texture feature candidates is computed in every
image. The p value of all features in each two-image set is
calculated using the paired-samples t test procedure. The
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two compared images are sequentially selected based on
either different noise levels or distinct slice positions.
Subsequently, the average p value for each feature in ei-
ther group is computed and ranked. To understand the
optimal combination and the corresponding features, the
decision tree of the classification and regression tree
(CART) algorithm [47] is exploited to 34 out of 60 fea-
tures, whose average p values are less than 0.05. Our
earlier study [34] suggests that the seven features of
e1(LL1) , e1(LL2) , e2(HL1) , e3(LH1) , e3(HL2) ,
CON(90°), and DIS(90°) accomplish the most accurate
results among all combinations. The first five features
belong to the wavelet category and the last two features
are in the GLCM category, where CON represents con-
trast with

CON ¼ ∑L−1
i¼0∑

L−1
j¼0P i; jð Þ � i− jð Þ2 ð7Þ

and DIS represents dissimilarity with

DIS ¼ ∑L−1
i¼0∑

L−1
j¼0 i− jj jP i; jð Þ ð8Þ

Acceleration and Automation of Bilateral
Filtering

Rician Noise and Bilateral Filter

As described previously, Rician noise exists in single-coil
scanned MR images. When the SNR approaches zero, the
Rician distribution simplifies to a Rayleigh distribution. On
the contrary, when the SNR is high, the Rician distribution
becomes a Gaussian distribution. Thereupon, in the low SNR
regions such as the background in an MR image, the noise is
apt to be a Rayleigh distribution; while in the high SNR re-
gions such as the brain structures, the noise can be modeled as
a Gaussian distribution. Since the denoising purpose is mainly
to improve the SNR in the brain structures, filters based on the
Gaussian noise model have been exploited in the MR image
denoising framework as is the bilateral filter [15].

The bilateral filter integrates gray levels in favor of near
values to distant values in both range and domain. Let (θx, θy)
θx, θy be the position of the pixel centered in a (2Nk +
1) × (2Nk + 1) neighborhood with Nk a positive integer and

Ψθx;θy ¼ μx;μy

� �
: μx;μy

� �
∈ θx−Nk ; θx þ Nk½ � � θy−Nk ; θy þ Nk

� 	n o

ð9Þ
be the pixels in the neighborhood of (θx, θy). A Gaussian func-
tion with respect to the Euclidean distance between the argu-
ments is utilized for the spatial component WS

θx;θy and the

radiometric component WR
θx;θy , which are defined as

WS
θx;θy μx;μy

� �
¼ exp −

μx;μy

� �
−
�
θx; θy

�


 


2
2σ2

S

2
64

3
75 ð10Þ

and

WR
θx;θy

μx;μy

� �
¼ exp −

I μx;μy

� �
−I
�
θx; θy

�


 


2
2σ2

R

2
64

3
75 ð11Þ

where I(·, ·) is the intensity of the input image at the given
position (·, ·).

In Eqs. (10) and (11), the parameters σS and σR are adopted
to adjust the influence ofWS

θx;θy
andWR

θx;θy
, respectively. They

can be treated as approximate thresholds for classifying neigh-
boring pixels that are adequately close or similar to the center
pixel. The overall weight WSR

θx;θy
is defined as

WSR
θx;θy μx;μy

� �
¼ WS

θx;θy μx;μy

� �
WR

θx;θy μx;μy

� �
ð12Þ

Essentially, the image is filtered and normalized by the sum
of the ensemble weight WSR

θx;θy
using

~I θx; θy
� � ¼ ∑ μx;μyð Þ∈ΨWSR

θx;θy
μx;μy

� �
I μx;μy

� �

∑ μx;μyð Þ∈ΨWSR
θx;θy

μx;μy

� � ð13Þ

where ~I θx; θy
� �

is the restored image at location (θx, θy). The
computation complexity with the CPU implementation is
O N 2

kMN
� �

. IfM =N, the complexity is quadratic with respect
to the product of the kernel length and the image width, i.e.,

O N 2
kM

2
� �

.

GPU-Based Bilateral Filtering with CUDA

To address the computational burden in the ANN training
phase with the bilateral filter, we propose the employment of
the compute unified device architecture (CUDA) technology,
which is a special programming architecture for GPGPU on
NVIDIA graphics cards [48]. A CUDA compliant device is a
set of multiprocessor cores that is capable of concurrently
executing a huge number of threads. Every CUDA enabled
GPU provides several different types of memory. Registers are
the fastest but have a limited amount of space around 32–
64 KB. Global memory supports a much larger space but is
sluggish so that the memory latency affects the performance.
A compromise between these two is a parallel cache of shared
memory, which is shared by all cores in each multiprocessor
and is limited to 16–64 KB [49]. In CUDA design, the chal-
lenge is how to optimally manipulate shared memory to
achieve the maximum performance.
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Before dealing with the employment of CUDA, recall the
spatial component in Eq. (10), which indicates numerous du-
plicated computations of the distance in the numerator. To
reduce the computational load, Eq. (10) is reformulated as

DS dx; dy
� � ¼ exp −

dx2 þ dy2

2σ2
S

� �
ð14Þ

where 0 ≤ dx = |μx − θx| ≤ Nk and 0 ≤ dy = |μy − θy| ≤ Nk are
the spatial distances in the x- and y-axes, respectively. To
make use of shared memory, all possible spatial component
values are computed in advance and stored in a memory
buffer defined as

WSB dx; dy
� � ¼ DS dx; dy

� �jdx; dy∈ 0;…;Nk½ � � ð15Þ

whereWSB is the spatial weight buffer with respect to Nk for
looking up. Henceforward, the spatial component is rapidly
obtained by looking up the weight buffer based on the dis-
tances, which is stored in shared memory.

To further accelerate the computation, GPU-based parallel
computing with CUDA architecture is developed. Rather than
executing the filter one pixel after another, a large number of
filtering pixels are executed simultaneously. In our approach,
the image pixels are split into several separate blocks indexing
block(i, j), which has its own shared memory that can be
accessed by the 16 × 16 threads in each block. As the band-
width of shared memory is wider than regular GPU memory,
and the access time is faster and closer to cache, it is advanta-
geous to manipulate shared memory to avoid repeated ac-
cesses to the same pixel element from different threads and
to raise read/write speed. Accordingly, theWSB in Eq. (15) is
stored in shared memory of each block for rapid computation.
As illustrated in Fig. 2 for a 5 × 5 filter with Nk = 2, the spatial
component DS(1, 1) is retrieved from WSB by computing the
distance between (θx, θy) = (2, 2) and (μx, μy) = (3, 3). The

obtained spatial component weight is then utilized for compu-
tation in a parallel fashion with CUDA architecture using

~I θx; θy
� � ¼ ∑ μx;μyð Þ∈ΨWSB dx; dy

� �
WR

θx;θy
μx;μy

� �
I μx;μy

� �

∑ μx;μyð Þ∈ΨWSB dx; dy
� �

WR
θx;θy μx;μy

� �

ð16Þ
where Eq. (16) is the shared memory-based accelerated bilat-
eral filter of Eq. (13).

The pseudo code of the proposed GPU-based algorithm is
presented in Table 1. In this CUDA implementation of the
bilateral filter, the computation complexity of a single thread
isO N 2

k

� �
. Practically, the computation time is inversely propor-

tional to the number of threads running in parallel in the GPU,
which has a complexity of O N2

kMN=T
� �

, where T is the max-
imum number of concurrent threads executing in the GPU. In a
perfect GPU that is able to spawn MN threads executing in
parallel, the complexity of the GPU-based bilateral filter re-
duces to O N2

k

� �
. Nevertheless, the ensemble computation time

includes the running time of threads, memory transfer latencies,
and thread block and grid block management latencies.

Quasi-Optimal Filter Parameter Computation

As shown in Eqs. (9) to (11), there are three parameters, Nk,
σS, and σR, in the bilateral filter. To realize the quasi-optimal
values of these parameters on each individual image for the
neural network training phase, a brute-force approach is con-
ducted by restoring the image based on the peak signal-to-
noise ratio (PSNR):

Fig. 2 Illustration of using shared memory for CUDA-based bilateral
filtering

Table 1 Pseudo code of the proposed GPU-based bilateral filter

int i = blockIdx.x,

j = blockIdx.y,

tx = threadIdx.x,

ty = threadIdx.y,

x = tx + blockDim.x * i,

y = ty + blockDim.y * j;

Create an array in shared memory forWSBi, j in each block(i, j); if tx ≤Nk

and ty ≤Nkdo:

Compute the spatial distance DS(tx, ty) using Eq. (14),

Store DS(tx, ty) in shared memory bufferWSBi, j based on Eq. (15);end;

All threads wait until completion of saving WSBi, j in the array in
block(i, j); for (nx, ny) is in Ψx, y of (x, y) do:

Retrieve the spatial component WSBi, j(nx − x, ny − y);
Calculate the radiometric component WR(nx, ny) using Eq. (11);

Compute the product W′(nx, ny) of the two components;

Sum up W′(nx, ny) and stored in sum1;

Sum up W′(nx, ny) ∗ I(nx, ny) and stored in sum2; end;

Bilateral filtering at location (x, y) is sum2/sum1 based on Eq. (16);
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PSNR ¼ 10∙log
MNImax

2

∑M
i¼1∑

N
j¼1

~I i; jð Þ−I i; jð Þ



 


2

2
64

3
75 ð17Þ

where ~I i; jð Þ is the filtered image and Imax is the maximum
possible intensity. The higher the PSNR values, the better the
restoration results. A large number of combinations of the
different parameter values are incorporated into one single
parameter set to restore the same image, from which the com-
bination with the highest PSNR score is considered as the
quasi-optimal parameter set for that image. The values of Nk

are arranged from 1 to 3, σS 1 to 6, and σR 1 to 100 with an
incremental interval equal to 1 for all computation. The quasi-
optimal parameter sets for all tested images are then retrieved
in the learning stage to train the neural network system and for
the evaluation of the proposed bilateral filter.

Back-Propagation Network

Among the diverse ANN systems, the back propagation net-
work (BPN) [50–52] with multilayer feedforward and error
back propagation is utilized in our automatic decision frame-
work. A three-layer BPN model is exploited that consists of
input layer, hidden layer, and output layer. The seven texture
features computed earlier constitutes the input layer. There are
30 neurons in the hidden layer. The transfer function between
the input layer and the hidden layer is the hyperbolic tangent
function, while the linear transfer function is employed be-
tween the hidden layer and the output layer. The output nodes
correspond to the three filter parameters and the desired output
values of these three parameters are obtained using the brute-
force approach as described previously. The famous
Levenberg-Marquardt (LM) learning algorithm [53, 54] is
adopted to train this parameter prediction system [55]. The
training of the proposed BPN model is accomplished when
the ensemble error of the three output values is less than a
prescribed tolerance.

Overall Procedure

As shown in Fig. 3, the proposed automatic parameter de-
cision framework associated with the BPN model based on
image texture features has two major phases: training and
testing. The purpose of the training phase is to establish the
architecture of the proposed BPN model while the function
of the testing phase is to estimate the filter parameters,
which are subsequently adopted by GPU-based bilateral
filtering for automatic denoising. In both phases, the same
image texture features are computed for the BPN training
and predictive models.

Performance Evaluation

For the evaluation of prediction accuracy of the GPU-based
bilateral filter parameters, the mean absolute deviation
(MAD), the mean squared error (MSE), and the mean absolute
percentage error (MAPE) metrics are employed with

MAD ¼ 1

K
∑K

k¼1 v kð Þ−v0
kð Þ

 

 ð18Þ

MSE ¼ 1

K
∑K

k¼1 v kð Þ−v0
kð Þ

h i2
ð19Þ

MAPE ¼ 1

K
∑K

k¼1

v kð Þ−v0
kð Þ

v kð Þ










� 100% ð20Þ

where v(k) represents the expected filter parameter value, v′(k)
represents the predicted output value, and K is the number of
data being evaluated. The smaller the three scores, the smaller
the error, and the higher the prediction accuracy. In general,
the grade of MAPE is divided into four predictive ability
levels: high accuracy when MAPE < 10%, good when
1 0 % ≤ MA P E < 2 0 % , r e a s o n a b l e w h e n
20% ≤MAPE < 50%, and incorrectwhenMAPE ≥ 50% [56].

An estimation ratio r is adopted to measure the variation
level of the predicted values using

r ¼ v
0
kð Þ

v kð Þ ð21Þ

The closer the ratio to unity is, the higher the estimation
accuracy. To further understand the performance of the pro-
posed BPN framework associated with automatic parameter
decision, the k-fold cross validation method [57] is
exploited. The benefit of this approach is that all samples
are processed for both testing and training, and the k results
are averaged to provide a single evaluation. Herein, tenfold
cross validation is adopted.

Fig. 3 Flowchart of the computer-aided filter parameter decision system
based on the BPN model associated with image texture feature analysis
for automatic denoising. a Training scheme. b Testing scheme
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Results

Experimental Data

Two open-access datasets, the Internet Brain Segmentation
Repository (IBSR) [58] and the BrainWeb: Simulated Brain
Database (SBD) [59], were adopted to validate the proposed
automatic filter parameter decision system associated with the
GPU-based bilateral filter for their availability. The SBD data
were extensively utilized because corresponding noiseless im-
ages are provided that allows for systematic development and
quantitative analysis in both training and testing phases. As
the IBSR dataset consists of clinical images, there is no noise-
less image for quantitative evaluation but they are suitable for
qualitative analysis. The SBD contains a set of realistic MRI

data, which is made up of ten volumetric datasets that define
the spatial distribution for different tissues where voxel inten-
sity is proportional to the fraction of tissue within the voxel.
More specifically, the images are generated using an MRI
simulator, developed at the McConnell Brain Imaging
Centre, McGill University, Canada, which enables users to
obtain realistic MR images of the brain.

In the SBD, there are two anatomical models: normal and
multiple sclerosis (MS). In each model, there are six noise
levels: 0, 1, 3, 5, 7, and 9% and three levels of intensity non-
uniformity: 0, 20, 40%, which result in 18 different combina-
tions. For the experiments, 15 combinations derived from five
noise levels (except 0%) multiplied by three intensity non-
uniformities of normal scans with the same 1 mm slice

Table 2 Speed-up performance analyses

Dimension Pixel number Time CPU(s) Time GPU(s) Speed-
up

3360 × 2100 7,056,000 24.559846 0.121328 202

2880 × 1800 5,184,000 20.794152 0.137199 152

2560 × 1600 4,096,000 13.664997 0.128550 106

2304 × 1440 3,317,760 13.143704 0.125897 104

2048 × 1280 2,621,440 9.449557 0.120690 78

1920 × 1200 2,304,000 8.735963 0.120157 73

1680 × 1050 1,764,000 8.141209 0.116730 70

1440 × 900 1,296,000 4.486673 0.112241 40

1280 × 800 1,024,000 3.785856 0.111283 34

1152 × 720 829,440 2.975752 0.108985 27

1024 × 640 655,360 2.288589 0.108521 21

512 × 360 184,320 0.669917 0.104038 6

256 × 160 40,960 0.218749 0.103786 2

Fig. 4 Speed-up of the GPU-
based bilateral filtering compared
to the CPU version

Table 3 Comparison of parameter prediction accuracy through the
tenfold cross validation

Fold PCA T-test

MSE MAPE (%) MSE MAPE (%)

1 623.2695 6.5036 432.2291 5.7483

2 575.4106 7.2860 408.4445 6.4652

3 609.2034 7.8746 447.0797 7.0630

4 586.0387 7.2246 441.7850 6.5599

5 486.3807 7.2785 356.7186 6.1740

6 561.2248 8.0697 391.0463 7.1365

7 671.6028 7.5229 400.1218 5.3932

8 776.2598 6.9716 470.4942 5.1927

9 673.8009 7.0192 389.0304 5.5014

10 678.8799 6.7686 471.0705 5.7315

Avg. 624.2071 7.2519 420.8020 6.0966

Std. 76.0538 0.4537 35.8323 0.6552
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thickness were employed as the training dataset, which had
2250 images. All images with 1 mm MS and 5 mm normal
and MS scenarios were employed for the testing purpose,
which resulted in 3330 images in total. The entire system
has been implemented and programmed in MATLAB 2017a
(The MathWorks Inc. Natick, MA, USA) associated with C
for GPU-based acceleration.

GPU-Based Bilateral Filter

For the efficiency evaluation of the proposed GPU-based bi-
lateral filter, the experiments were performed on an Intel®
Xeon(R) CPU E5–2620 v3 2.40GHz equipped with a Tesla
K40c GPU card. The Tesla K40c is based on the Kepler ar-
chitecture, which contains 15 multiprocessors with 192 cores
for each multiprocessor that results in 2880 cores altogether.
Its memory size is 12 GB with a maximum bandwidth
288 GB/s and 48 KB of shared memory. Each block has
65,536 registers and the maximum number of threads is
1024. Assigning 16 × 16 threads in a block and a 3 × 3 filter
size with the CUDA driver version 7.5, a wide variety of
images with various dimensions were utilized for evaluation.
Table 2 presents the performance of the bilateral filter based
on the CPU architecture and the accelerated version with the
GPU architecture on the same images with different scenarios.
It is obvious that as the pixel number increases, the speed-up is
becoming apparent, which can also be realized in Fig. 4.

Tenfold Cross Validation

As described previously, the seven most significant fea-
tures were used as the BPN input arguments. For com-
parison, the PCA [60] was implemented to convert the
texture features into seven principal components, which
had the same number of attributes as the proposed t
test. The tenfold cross validation method was then ap-
plied to understand the effectiveness of the proposed
BPN system associated with the corresponding charac-
teristics obtained from both approaches. The training
image data were arbitrarily divided into 10 sets, each
of which had the same number of 225 images. Each
set was utilized as the testing images exactly once and
as the training images nine times. Table 3 demonstrates
the prediction accuracy analyses for the three parameters
in terms of MSE and MAPE. The average MAPE scores
for both methods were less than 10%, which were clas-
sified as the best predictive ability level of Bhigh
accuracy.^ Nevertheless, the MAPE scores of all folds
and the average MAPE score of the proposed t test
scheme were smaller than the PCA method.

Filter Parameter Prediction

To further understand the abilities of both methods in
predicting the filter parameters, 150 MS brain MR im-
ages were randomly selected from the 1-mm thickness
dataset with five different noise levels of equal proba-
bility. Moreover, 75 images in either anatomical model
with the same 5-mm thickness were also arbitrarily cho-
sen for performance evaluation. Table 4 presents the
parameter prediction results of the PCA and t test
methods. While the average MAPE score of the PCA
method exceeded 35%, the average MAPE score of the
proposed t test was still below 20%, which was classi-
fied as Bgood^ level. The corresponding parameter pre-
diction results in terms of the ratio defined in Eq. (21)
using the proposed automation framework were summa-
rized in Table 5. It is evident that most ratios of the
three parameters were considerably close to unity, which
indicated that the predicted parameters reasonably
matched the expected values.

Table 4 Comparison of
parameter prediction accuracy on
the testing datasets

Testing dataset PCA T test

MAPE (%) MSE MAD MAPE (%) MSE MAD

1 mm MS 4.9467 372.5095 7.6496 5.9101 341.2912 7.8905

5 mm normal 50.7767 9332.5345 45.7303 29.9516 5036.9879 29.4145

5 mm MS 49.8130 10,077.2403 46.0156 24.1097 5631.1893 32.2132

Avg. 35.1788 6594.0948 33.1318 19.9905 3669.8228 23.1727

Table 5 Parameter prediction analyses in terms of the ratio r in Eq. (21)

Dataset parameter Noise level (%) Avg.

1 3 5 7 9

1 mm MS Nk 1.0000 1.1000 1.0000 1.0000 1.0000 1.0200

σS 0.9931 1.0164 0.9948 0.9854 0.9755 0.9930

σR 1.1197 0.9769 0.9786 0.966 1.0057 1.0094

5 mm normal Nk 1.0000 1.4000 1.0667 1.0000 1.0000 1.0933

σS 1.2274 1.0514 0.984 0.9944 0.8884 1.0291

σR 1.4567 0.8525 0.843 0.8873 0.9736 1.0026

5 mm MS Nk 1.0000 1.4000 1.0667 1.0000 1.0000 1.0933

σS 1.2412 1.0347 0.9918 0.9977 0.8877 1.0306

σR 1.4559 0.8151 0.8251 0.8636 0.9588 0.9837
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Automatic Bilateral Filtering with GPU

Various combinations of noise levels, slice thicknesses, inten-
sity non-uniformities, and anatomical models were adopted to
assess the restoration abilities of the proposed bilateral filter
with automatic parameter decision and GPU-based accelera-
tion, which was denoted as BILAP. The bilateral filter with
noise variance estimation strategies (denoted as BILNE) [21,
24, 25, 27], LMMSE [5], and VWD [10] methods were also
performed for comparison. Twenty randomly selected restora-
tion results based on the PSNR scores in the 1 mmMS dataset
with 3 and 5% noise were demonstrated in Table 6. All com-
puted values of BILAP were approximately equal to the corre-
sponding quasi-optimal values of BILBP with negligible er-
rors, where BILBP represents the bilateral filter with the
brute-force manner. The BILAP outperformed the other three
methods with higher PSNR scores in all scenarios. Table 7
presents the quantitative restoration results on another 5-mm
normal dataset with 7 and 9% noise levels. Not only did
BILAP closely match BILBP, but it also produced the highest
PSNR score in each scenario comparing to VWD, LMMSE,
and BILNE.

Restoration results with preserved sharp anatomical edges
in 3D visualization were demonstrated in Figs. 5 and 6 for the
5-mm normal image volume with 5% noise and the 1-mmMS
image volume with 7% noise, respectively. Magnified views

of the selected areas are shown on the right-hand side of the
corresponding images. Obviously, apparent cortical structures
with appropriate noise reduction were acquired after applying
the proposed framework. Finally, Fig. 7 illustrates the visual
restoration results on clinical adult MR images with
Alzheimer’s disease. Zoom in views of the selected areas are
displayed below the corresponding images. It is evident that
the grainy noise pattern in originally scanned MR images was
effectively removed while maintaining clearer anatomical
structures in all illustrations.

Discussion

To overcome the laboriously manual tuning of the bilateral
filter parameters, an automatic decision system based on the
BPN associated with image texture features for brain MR
images was uniquely developed and introduced. Five of the
seven features were the wavelet coefficients with two e1 en-
ergies, one e2 energy, and two e3 deviations. The two e1
energies provided the approximate intensity magnitudes of
images in two different scales. The e2 energy further supplied
discrimination with horizontal edge strength information. The
e3 deviations additionally produced comparative edge devia-
tions in different scales and directions. The remaining two
GLCM features were contrast and dissimilarity both in the

Table 6 Performance comparison
of restoration results in PSNR on
the 1 mm MS dataset

PSNR 3% Noise 5% Noise

Slice VWD LMMSE BILNE BILAP BILBP VWD LMMSE BILNE BILAP BILBP

1 31.90 35.40 34.51 36.71 36.71 28.15 31.37 31.17 32.96 32.96

21 32.19 36.89 36.56 37.10 37.12 29.30 33.19 32.06 32.98 32.98

32 32.23 34.62 33.52 36.08 36.08 27.67 30.63 29.34 32.94 32.94

55 32.66 36.10 35.87 36. 69 36.70 28.95 32.23 32.49 33.37 33.38

66 32.61 35.19 35.40 36.43 36.43 29.54 32.51 32.51 33.32 33.33

96 32.39 34.08 33.33 36.78 36.78 29.37 32.06 32.22 33.42 33.43

105 33.83 36.51 36.12 37.13 37.13 29.10 32.42 32.07 33.93 33.93

118 32.43 35.05 35.32 37.02 37.03 29.10 31.91 31.96 33.52 33.52

126 33.52 36.80 36.32 37.29 37.30 28.93 32.99 32.31 33.61 33.61

140 32.72 36.33 35.90 37.35 37.36 27.14 32.48 31.79 33.81 33.82

Table 7 Performance comparison
of restoration results in PSNR on
the 5-mm normal dataset

PSNR 7% Noise 9% Noise

Slice VWD LMMSE BILNE BILAP BILBP VWD LMMSE BILNE BILAP BILBP

2 26.32 29.21 29.06 31.31 31.31 25.23 29.02 27.40 29.29 29.29

7 26.05 30.04 29.45 31.10 31.12 24.10 28.36 27.82 29.44 29.44

12 26.32 30.66 30.62 31.33 31.35 24.11 28.76 29.01 30.17 30.18

18 26.51 29.74 29.35 31.04 31.05 25.22 28.28 27.94 29.01 29.01

22 24.69 27.02 26.93 31.46 31.47 23.96 27.24 27.76 30.36 30.36
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anterior/posterior direction. While the contrast offered vari-
ance between adjacent gray tones, the dissimilarity presented
divergence between contiguous gray tones. Based on these
seven significant texture features, we investigated the acceler-
ation and automation of the bilateral filter, which was the
major argument of the current study.

To accelerate the computation of the bilateral filter, a GPU-
based parallel computing architecture with CUDA was pro-
posed and established. We addressed optimization techniques

to accelerate computation in both thread usages and memory
allocations. By exploiting shared memory, the computation
speed was further expedited. As presented in Table 2 under
the same kernel length, the computation time of the CPU was
linearly proportional to the pixel number, while the computa-
tion time of the GPU was roughly identical between 0.1 and
0.15 s as the number of pixels grew. The speed-up rose dra-
matically to hundreds when the pixel number was increasing
over millions. For the pixel number of 9,175,040 that was

Fig. 5 Automatically GPU-based bilateral filtering the 5-mm normal image volume with 5% noise in 3D visualization. Left column: noisy image
volume. Right column: restored image volume

Fig. 6 Automatically GPU-based bilateral filtering the 1 mm MS image volume with 7% noise in 3D visualization. Top row: noisy image volume.
Bottom row: restored image volume
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Fig. 7 Automatically bilateral filtering clinical adult MR images with
Alzheimer’s disease. a Scanned slice 55. b Scanned slice 63. c Scanned
slice 85. d Scanned slice 88. e Denoised image of a. f Denoised image of

b. g Denoised image of c. h Denoised image of d. i Difference image
between a and e. jDifference image between b and f. kDifference image
between c and g. l Difference image between d and h
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equivalent to a common 256 × 256 brainMR image volume of
140 slices, the speed-up was approximately 208.

As described previously, the reason for utilizing the bilat-
eral filter by numerous researchers and physicians was its
efficient performance regardless of inherited Gaussian noise
assumption. Nevertheless, the optimal performance of this
filter has been an open question since its invention. One pop-
ular manner (BILNE) to semi-automate the filtering process
was to estimate the noise variance level, which pertained to
some specific parameter in the filter, say σR [7, 29]. By auto-
matic setting for each of the three parameters, this paper dem-
onstrated its excellent superiority over the BILNE, VWD, and
LMMSE approaches as presented in Tables 6 and 7. To un-
derstand the best filter parameters in the training phase, a
brute-force approach was employed with the kernel size being
3 × 3, 5 × 5, and 7 × 7, σS being 1 to 6, and σR being 1 to 100.
The obtained filter parameter values were the best among
these 1800 combinations for each image. In our experience,
these quasi-optimal filter parameters based on the described
setting were adequate for the automation task as tiny adjust-
ments resulting in negligible difference based on the PSNR.

To address the fully automatic parameter setting issue, we
exclusively proposed the usage of image texture features as-
sociated with the BPN. While the theoretical foundation be-
tween the texture features and filter parameters has been lack-
ing, we have established their connection through the BPN.
The outcome is a brilliant parameter-free filter, whose resto-
ration results have been demonstrated in both simulated and
clinical scenarios. Not only has the system eliminated the
burden of tuning the parameter values, but the denoised im-
ages have also provided clear vision of anatomical structures
for inspection. This can considerably facilitate subsequent im-
age processing procedures for further analysis and diagnosis.
For example, to more accurately delineate the cortical struc-
tures for neurology study and to more correctly identify the
brain tumor lesions for treatment planning.

Conclusions

In conclusion, a new GPU-based bilateral filter based on the
BPN model associated with image texture features has been
developed to automatically restore brain MR images. The
CUDA architecture was exploited to accelerate the bilateral
filter computation with optimal thread arrangements and
memory allocations. A speed-up factor of 208 was achieved
for processing an entire brain MR image volume.
Experimental results indicated that our parameter prediction
model achieved a MAPE score of 6%, which was classified as
Bhigh accuracy.^ This fully automatic bilateral filter effective-
ly removed noise in a wide variety of brain MR images and
outperformed the state-of-the-art LMMSE, VWD, and BILNE
methods. The usage of image texture features associated with

the BPN to estimate the GPU-based bilateral filter parameters
and to automate the denoising process was feasible and vali-
dated. We believe that this automatic filter is advantageous to
image interpretation and quantitative assessment where clean
images are required. Further research in the acceleration and
automation of direct 3D filtering is worth investigating.
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