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Abstract
In cone-beam computed tomography (CBCT), reconstructed images are inherently degraded, restricting its image performance, due
mainly to imperfections in the imaging process resulting from detector resolution, noise, X-ray tube’s focal spot, and reconstruction
procedure as well. Thus, the recovery of CBCT images from their degraded version is essential for improving image quality. In this
study, we investigated a compressed-sensing (CS)-based blind deconvolution method to solve the blurring problem in CBCTwhere
both the image to be recovered and the blur kernel (or point-spread function) of the imaging system are simultaneously recursively
identified. We implemented the proposed algorithm and performed a systematic simulation and experiment to demonstrate the
feasibility of using the algorithm for image deblurring in dental CBCT. In the experiment, we used a commercially available dental
CBCT system that consisted of an X-ray tube, which was operated at 90 kVp and 5 mA, and a CMOS flat-panel detector with a
200-μm pixel size. The image characteristics were quantitatively investigated in terms of the image intensity, the root-mean-square
error, the contrast-to-noise ratio, and the noise power spectrum. The results indicate that our proposed method effectively reduced
the image blur in dental CBCT, excluding repetitious measurement of the system’s blur kernel.
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Introduction

Panoramic radiography [1], which was introduced in the
1960s, is the standard clinical examination in dentistry that
provides clinicians with a single comprehensive planar image
of the patient’s jaw and maxillofacial structure. Nevertheless,
there has always been a need for three-dimensional (3D) im-
aging to overcome the inherent limitations of two-dimensional
(2D) images (including magnification, distortion, and super-
imposition), but the technology has only recently become
readily available. Although traditional computed tomography
(CT) [2, 3], which uses a fan-shaped X-ray beam in a spiral
progression to obtain a 3D representation, has been clinically

available in the early 1990s, its use in dentistry has become
limited due mainly to cost, access, and radiation dose consid-
erations. With the recent development of large-area flat-panel
detectors, the advent of cone-beam CT (CBCT) [4, 5] in the
mid-1990s has been extensive advancement in dental imag-
ing, shifting dental imaging from a 2D to a 3D approach to
data acquisition, and image reconstruction with faster scan
time and lower radiation dose than in conventional CT.
Present state-of-the-art CBCT scanners produce 3D images
with excellent high resolution, making dental implant plan-
ning and surgical placement simple and reliable. CBCT is
now becoming another standard examination of dental care,
and its roles in maxillofacial surgery, temporomandibular joint
disorders, orthodontics, and endodontics are widely described
lately [6, 7]. More recent medical applications of the CBCT
have included radiotherapy guidance [8] and mammography
[9] as well as dental imaging.

However, CBCT images are inherently degraded,
restricting its image performance, due mainly to imperfections
in the imaging process resulting from detector resolution,
noise, X-ray tube’s focal spot, and reconstruction procedure.
Thus, the recovery of CBCT images from their degraded

* Hyosung Cho
hscho1@yonsei.ac.kr

1 Department of Radiation Convergence Engineering, Yonsei
University, Wonju 26493, Republic of Korea

2 Division of Convergence Technology, National Cancer Center,
Goyang 10408, Republic of Korea

Journal of Digital Imaging (2019) 32:478–488
https://doi.org/10.1007/s10278-018-0120-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-018-0120-9&domain=pdf
mailto:hscho1@yonsei.ac.kr


version, collectively referred to as image deblurring, is essen-
tial for improving image quality. Various image deblurring
methods have already been established in the literature, in-
cluding Wiener filtering, least squares filtering, and wavelet-
based algorithms [10, 11]. Nevertheless, regarding the afore-
mentioned deblurring problem, a difficulty exists concerning
the presence of noise in the input blurred image, which results
in imperfect image deblurring.

In this study, we investigated a compressed-sensing (CS)-
based blind deconvolution method to solve the blurring prob-
lem in CBCT where both the image to be recovered and the
blur kernel (or point-spread function (PSF)) of the imaging
system are simultaneously recursively identified. The CS is
a relatively new mathematical theory for solving the inverse
problems, which exploits the sparsity of the image with sub-
stantially high accuracy [12, 13]. We implemented the

proposed algorithm and performed a systematic simulation
and experiment to demonstrate the viability of the algorithm
for image deblurring in dental CBCT. In the following sec-
tions, we briefly describe the proposed image deblurring
method and present our simulation and experimental results.

Materials and Methods

Proposed Image Deblurring Method

In most image deblurringmethods, it is necessary to model the
original (or exact) image, f(x,y); the observed (i.e., blurred
noisy) image, g(x,y); and the imaging process in which blur
occurs. Imaging systems are typically assumed to be linear

Fig. 1 Simplified diagram of the proposed blind deconvolution method
where both the image to be restored, f, and the blur kernel, psf, are
simultaneously recursively optimized. The method consisted of two

successive iterative loops based on the CS framework and the CG
solver for seeking optimal solutions of the f and the psf, respectively
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and shift-invariant, and thus, the image formation can be de-
scribed as follows:

g x; yð Þ ¼ f x; yð Þ⊗psf x; yð Þ þ n x; yð Þ; ð1Þ

where psf(x,y) is the 2D PSF of the imaging system, n(x,y) is
the accompanying noise, and the operator ⊗ represents 2D
convolution. The mathematical interpretation of the convolu-
tion modeling leads to a deconvolution operation to remove
the blur in the presence of PSF. To date, most methods

employed in image deblurring may be classified as non-blind
and blind deconvolution. The difference between the two lies
in that whether the PSF is known. In non-blind deconvolution,
the main difficulty has to do with the presence of noise in the
observed image, and the noise, even if very weak, can strongly
contaminate the deblurred image. To overcome this difficulty,
several non-blind deconvolution methods make use of prior
information on the image to be recovered, such as Bayesian or
maximum posteriori methods [14]. Blind deconvolution in-
volves separating two convolved signals, f(x,y) and psf(x,y),

Fig. 2 3D numerical Shepp-
Logan phantom (400 × 400 ×
400) (top left) used in the simula-
tion and the physical phantoms of
skull (model 603A, CIRS Ltd.)
(top right), anchovy (bottom left),
and animal bone (bottom right)
used in the experiment

Fig. 3 The commercially
available dental CBCT system
(Expert7™, Vatech Co.) used in
the experiment. The system
consisted of an X-ray tube, which
was operated at 90 kVp and 5 mA,
and a CMOS flat-panel detector
with a 200-μm pixel size and an
active area of 234 × 288 mm
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when both the signals are either unknown or partially known.
This is challenging because it is an ill-conditioned problem;

the number of unknowns exceeds the number of known image
data. There are two main approaches to the blind
deconvolution. First, one estimates the PSF first from all in-
formation that the observed image provides, and in the later
step, it uses the estimated PSF to recover the original image
using one of several non-blind deconvolution algorithms be-
cause the blur kernel is already known. Second one is to com-
bine the estimate of the PSF and the original image together as
a merging task. This approach can simultaneously recursively
identify both the PSF and the image itself. This usually leads
to more complex algorithms. The comprehensive reviews of
both deconvolution methods can be found in [15, 16].

The PSF is the impulse response of an imaging system that
describes the degree of blur by the system. It is typically mea-
sured using a slit camera with a width of approximately
10 μm. In CBCT, however, it is sometimes difficult to mea-
sure PSF accurately because the reconstruction procedure also
affects the image degradation, which will result in imperfect
deconvolution results. In addition, in most practical situations,
it is repetitious to measure the PSF depending on individual
tasks and X-ray imaging conditions. In this study, we

Table 1 Parameters used in the simulation and experiment

Parameter Dimension

Source-to-object distance 450 mm

Object-to-detector distance 200 mm

Angle step (Δθ) 1o

Number of projections 360

Voxel size 0.15 mm

Voxel dimension 400 × 400 × 400

Pixel size 0.20 mm

Test phantom Shepp-Logan, Skull, anchovy,
animal bone

Reconstruction algorithm FBP-based

Deblurring algorithm CS/CG-based

Balancing parameter (α) in CS 0.01

Tolerance (ε) in CS 10−5

Number of iterations 20 for CS, 10 for CG

Fig. 4 Simulation procedure that we used to verify the accuracy of the
overall blur kernel estimated by the proposed method (i.e., PSFEst). Here,
the image matrix of a PSFDes (standard deviation 1.5 in pixel units, kernel

size 15 × 15) was backprojected at each projection angle after the FBP
filtering, and the PSFRec was then deduced from the central slice image of
the reconstructed image
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investigated a blind deconvolution method based on the CS
framework incorporated with a total-variation (TV) regulari-
zation penalty. The TVis the l2 norm of the gradient image and
is often used as an effective penalty in many image recovery
problems such as denoising, deblurring, and inpainting owing
to its ability to preserve image edges [17].

Figure 1 shows the simplified diagram of the proposed
blind deconvolution method. The method consisted of two
successive iterative loops based on the CS framework and
the CG solver for seeking optimal solutions of the image to
be recovered, f, and the blur kernel, psf, respectively. In brief,
the reconstructed CBCT image of the examined object (g) (①)
and the initial guess of the PSF (psf(0)) (②) enter the CS
framework as the current image (f(k)) and the current PSF
(psf(k)), respectively. The next updated image (f(k + 1)) is then
computed by minimizing the following objective function,
ϕ( f ), as the solution (f*) to a convex optimization problem
(③), given by

φ fð Þ ¼ 1

2
f⊗psf −gk k22 þ α fk kTV ;

fk kTV ¼ ∑
M

i¼1
∑
N

j¼1
j∇ f i; jj ¼ ∑

M

i¼1
∑
N

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f i; j− f i−1; j

� �2
þ f i; j− f i; j−1
� �2

r
;

f * ¼ arg
f ∈Q

minφ fð Þ;

ð2Þ

where 1=2 f⊗psf −gk k 2
2 is the fidelity term, ‖f‖TV is the TV

penalty term, and α is the parameter that balances the two
terms and is chosen so that signal-to-noise ratio is maximized
(α = 0.01 was used in this study);M and N are the numbers of
rows and columns of the image f, respectively, andQ is the set
of feasible f. The next step is to estimate the latent PSF. By

Fig. 5 Example gradient images
of the reconstructed CBCT
images (blurred) and their final
recovered images (deblurred) of
the Shepp-Logan phantom (top)
and the skull phantom (bottom)
used for estimating PSFEst
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Fig. 6 Comparison of the 1D intensity profiles of the designed PSF
(PSFDes), the reconstructed PSF (PSFRec), and the estimated PSF
(PSFEst). The PSFEst well agreed with the PSFRec within approximately
0.1% difference in full width at half maximum
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using the gradient images of g and f(k + 1), the next updated
PSF (psf(k + 1)) is computed efficiently by solving the equation
below using the CG solver (④):

∇ g ¼ ∇ f kþ1ð Þ⊗psf *;
psf kþ1ð Þ ¼ psf *;

ð3Þ

where ∇ is the gradient operator and psf* is the optimal solu-
tion for Eq. (3). The role of the gradient image within the

algorithm is to enhance fine details of the image from which
the latent PSF may be more efficiently estimated than using
other image quantities. The CG solver is an algorithm for the
numerical solution of particular systems of linear equations;
namely, those whosematrix is symmetric and positive-definite
[18]. It is very efficient, rapidly converging, and less time-
consuming in solving Eq. (3). The deblurred image f(k + 1) is
successively updated through the iteration loops to obtain the
final deblurred image until the mismatch between the current
and the next updated images converges to a specified toler-
ance ε (ε = 10–5 was used in this study) (⑤).

Simulation and Experimental Setup

We implemented the proposed algorithm using MATLAB (ver-
sion 8.3) and performed a systematic simulation and experiment
to investigate the image characteristics. Figure 2 shows the 3D
numerical Shepp-Logan phantom (400 × 400 × 400) (top left)
used in the simulation and the physical phantoms of skull (model
603A; CIRS Ltd.) (top right), anchovy (bottom left), and animal
bone (bottom right) used in the experiment. Figure 3 shows the
commercially available dental CBCT system (Expert7™, Vatech
Co.) used in the experiment. The system consisted of an X-ray
tube, which was operated at 90 kVp and 5mA, and a CMOS flat-
panel detector with a 200-μm pixel size and an active area of
234 × 288 mm. The source-to-object distance and the object-to-

Fig. 7 Reconstructed CBCT
images of the Shepp-Logan
phantom in axial (top), coronal
(middle), and sagittal (bottom)
views for the cases of blurring and
deblurring. The corresponding
phantom slices are also shown on
the left as the reference
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Fig. 8 Comparison of the intensity profiles as measured along AB in Fig.
7. The intensity profile of the corresponding phantom slice is also shown
as the baseline
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detector distance were 450 and 200 mm, respectively. In the
simulation, the Shepp-Logan phantom was forward-projected
first using the distance-driven method [19] to produce original
projections, and the projections were then convolved by a 2D
PSF designed to obtain their degraded version. All projections

used in the simulation and experiment were taken with an angle
stepΔθ = 1°, and the CBCT image was reconstructed using the
standard filtered-backprojection (FBP) algorithm with a 150-μm
voxel size. The number of iterations in the proposed algorithm
was set to 20 for saving the processing time. The parameters used

Fig. 9 Reconstructed CBCT
images of the skull phantom in a
axial, b coronal, and c sagittal
views for the cases of blurring and
deblurring. Only three slice
images for each view are
indicated for simplicity
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in the simulation and experiment are listed in Table 1. Although
the implemented algorithm has not yet been accelerated by the
graphics processing unit, the total processing time for image
deblurring in CBCTwas less than 10 min on a normal worksta-
tion (OS Windows 10, CPU 2.13 GHz, RAM 32 GB).

The image characteristics were quantitatively investigated in
terms of the image intensity, the root-mean-square error (RMSE),
the contrast-to-noise ratio (CNR), and the noise power spectrum

(NPS). The RMSEmeasures the error of the restoration ( f̂ ) from
the exact image ( f ), which is defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
f i x; yð Þ− f̂ i x; yð Þ

� �2

N

vuuut
; ð4Þ

where N is the number of the image pixels. The smaller the
RMSE is, the closer to the exact image values. The CNR is a
commonly used indicator of image quality and is expressed as

CNR ¼ jxROI1−xROI2 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ
2

ROI1 þ σ
2

ROI2

r ; ð5Þ

where xROI1 and xROI2 are the mean pixel values of the
predefined regions of interests (ROIs), ROI1 and ROI2, re-
spectively, and σROI1 and σROI2 are the standard deviations
from the corresponding mean values. The larger the CNR is,
the better the image quality achieved. The noise characteristics
of an image are quantified as the NPS, which expresses the
average area occupied by individual photons per unit area
(mm2):

NPS u; vð Þ ¼ < ℑ flat area x; yð Þf gj j2 >
N

d2; ð6Þ

where <|ℑ{flat area(x, y)}|2> represents the ensemble average
of the squares of the Fourier amplitudes of a selected flat-
intensity area, the operator ℑ represents Fourier transform, N
is the number of the image pixels used in the calculation, and d
is the detector pixel size. Detailed description on the NPS
measurement can be found in [20].

Results

Figure 4 shows the simulation procedure that we used to ver-
ify the accuracy of the overall blur kernel estimated by the
proposed method (i.e., PSFEst).

Fig. 10 Enlarged images of the
areas indicated by boxes A, B, and
C in Fig. 9 for the cases of
blurring and deblurring
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Fig. 11 1D normalized NPS curves measured from the background area
indicated by the box D in Fig. 9a for the cases of blurring and deblurring

J Digit Imaging (2019) 32:478–488 485



Fig. 13 The reconstructed CBCT
images of the animal bone for the
cases of blurring (middle) and
deblurring (bottom). The original
projection images are also shown
on the top

Fig. 12 The original (blurred
noisy) X-ray image of the ancho-
vy (top) and its deblurred images
by the proposed method (middle)
and the Wiener filtering (bottom).
Enlarged images of the area indi-
cated by the box A are also shown
on the right
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Figure 5 shows example gradient images of the recon-
structed CBCT images (blurred) and their final recovered im-
ages (deblurred) of the Shepp-Logan phantom (top) and the
skull phantom (bottom) used for estimating PSFEst. Figure 6
shows the comparison of the one-dimensional (1D) intensity
profiles of the designed PSF (PSFDes), the reconstructed PSF
(PSFRec), and the estimated PSF (PSFEst).

Figure 7 shows the reconstructed CBCT images of the
Shepp-Logan phantom in axial (top), coronal (middle), and
sagittal (bottom) views for the cases of blurring and
deblurring. The corresponding phantom slices are also shown
on the left as the reference. Figure 8 shows the comparison of

the intensity profiles as measured along AB in Fig. 7. The
intensity profile of the corresponding phantom slice is also
shown as the baseline.

Figure 9 shows the reconstructed CBCT images of the skull
phantom in (a) axial, (b) coronal, and (c) sagittal views for the
cases of blurring and deblurring. Only three slice images for
each view are indicated for simplicity. Figure 10 shows en-
larged images of the areas indicated by boxes A, B, and C in
Fig. 9 for the cases of blurring and deblurring. Figure 11
shows the 1D normalized NPS curves measured from the
background area indicated by the box D in Fig. 9a for the
cases of blurring and deblurring.

Figure 12 shows the original (blurred noisy) X-ray image
of the anchovy (top) and its deblurred images by the proposed
method (middle) and the Wiener filtering (bottom). Figure 13
shows the reconstructed CBCT images of the animal bone for
the cases of blurring (middle) and deblurring (bottom). The
original projection images are also shown on the top.

Discussion

The key for the success of the proposed algorithm in CBCT is
to estimate the overall blur kernel accurately, which ultimately

determines the deblurring quality of the resultant image. We
performed the simulation procedure indicated in Fig. 4 to verify
the accuracy of the PSFEst. Here, the image matrix of a PSFDes
(standard deviation 1.5 in pixel units, kernel size 15 × 15) was
backprojected at each projection angle after the FBP filtering,
and the PSFRec was then deduced from the central slice image
of the reconstructed image. As shown in Fig. 6, the PSFEst well
agreed with the PSFRec within approximately 0.1% difference
in full width at half maximum, which verifies the accuracy of
the blur kernel estimated by the proposed method. In addition,
the standard deviation of the PSFEst was approximately 1.95 in
pixel units, which is larger by a factor of approximately 1.3 than
that of the PSFDes due to the effect of the reconstruction proce-
dure on the image degradation.

As shown in Figs. 7 and 8, the deblurred CBCT images of
the Shepp-Logan phantom were more clearly visible than the
blurred images, and the difference in intensity between the
deblurred images and the corresponding phantom slices were
very small. The overall RMSE value for the deblurred images
was approximately 1.61, approximately 3.5 times smaller than
that for the blurred images (Table 2).

The experimental image results with the skull phantom
were similar to the simulation results. As shown in Figs. 9
and 10, the deblurred images were more clearly visible than
the blurred images. The overall CNR value for the deblurred
images was approximately 3.07, approximately 2.1 times larg-
er than that for the blurred images (Table 3). The noise char-
acteristic for the deblurred images was improved, compared to
that for the blurred images (Fig. 11), possibly due to the use of
TV regularization penalty in the CS framework in which the
negligible components of the gradient images are assumed to
be nearly zeros. The NPS value evaluated at a spatial frequen-
cy of 1.5 line pairs/mm for the deblurred image was approx-
imately 1.7 × 10−6 mm2, approximately 17.4 times smaller
than that for the blurred image.

We conducted two additional real-life case analyses in order
to support the effectiveness of the proposed algorithm for image
deblurring in radiography and CBCT (Figs. 12 and 13). The
deblurred X-ray image of the anchovy by the Wiener filtering
[21] was also obtained to compare that by the proposedmethod.
As shown in Fig. 12, the deblurred X-ray images by both the
proposed method and the Wiener filtering were improved in
image visibility than that of the blurred image. Note, however,
that the deblurred image by the Wiener filtering was somewhat
noisier than that by the proposed method due to the high-pass
filtering in the deconvolution process. The image result with the
animal bone was nearly similar to that with the skull phantom
(Fig. 13); the overall CNR value for the deblurred images was
approximately 4.07, approximately 2.4 times larger than that
for the blurred images.We therefore conclude that the proposed
blind deconvolution method effectively reduced the image blur
in both radiography and CBCT, improving image visibility as a
result.

Table 2 Results of the RMSE measurement with the Shepp-Logan
phantom

View Blurred image Deblurred image

Axial 5.15 1.01

Coronal 6.10 1.13

Sagittal 5.74 1.07

Table 3 Results of the CNR measurement with the skull phantom

View Blurred image Deblurred image

Axial (at z = +100) 1.75 3.24

Coronal (at y = 0) 0.96 2.77

Sagittal (at x = 0) 1.58 3.19
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One thing that should be addressed is that the CBCT image
results above were based on 2D deconvolution (Eq. (1)), not
3D, and thus, the images were processed slice by slice because
it was simple and easy to be implemented. Note, however, that
the intensity variation among image views that could be
caused by the slice-by-slice processing was not discernably
observed in the resultant deblurred images (see Figs. 9 and
10). It is necessary to perform image deblurring based on 3D
deconvolution in CBCT for further study.

Conclusion

We investigated a CS-based blind deconvolution method to
solve the blurring problem in CBCTwhere both the image to
be recovered and the blur kernel of the imaging system are
simultaneously recursively identified. We implemented the
proposed algorithm and performed a systematic simulation
and experiment to demonstrate the feasibility of using the
algorithm for image deblurring in dental CBCT. Our simula-
tion and experimental results indicate that the phantom’s
structure in the deblurred image was more clearly visible than
in the original blurred noisy image, which demonstrates the
viability of the proposed method for image deblurring in den-
tal CBCT. The overall RMSE value for the deblurred images
was approximately 1.61, approximately 3.5 times smaller than
that for the blurred images (Table 2). The CNR value for the
deblurred images was approximately 3.07, approximately 2.1
times larger than that for the blurred images (Table 3). The
NPS value evaluated at a spatial frequency of 1.5 line pairs/
mm for the deblurred image was roughly 1.7 × 10−6 mm2,
approximately 17.4 times smaller than that for the blurred
image. Consequently, the proposed blind deconvolution meth-
od effectively reduced the image blur in dental CBCT, exclud-
ing repetitious measurement of the system’s blur kernel.
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