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Bone-Cancer Assessment and Destruction Pattern Analysis
in Long-Bone X-ray Image

Oishila Bandyopadhyay1 · Arindam Biswas2 · Bhargab B. Bhattacharya3

Abstract
Bone cancer originates from bone and rapidly spreads to the rest of the body affecting the patient. A quick and preliminary
diagnosis of bone cancer begins with the analysis of bone X-ray or MRI image. Compared to MRI, an X-ray image provides
a low-cost diagnostic tool for diagnosis and visualization of bone cancer. In this paper, a novel technique for the assessment
of cancer stage and grade in long bones based on X-ray image analysis has been proposed. Cancer-affected bone images
usually appear with a variation in bone texture in the affected region. A fusion of different methodologies is used for the
purpose of our analysis. In the proposed approach, we extract certain features from bone X-ray images and use support
vector machine (SVM) to discriminate healthy and cancerous bones. A technique based on digital geometry is deployed
for localizing cancer-affected regions. Characterization of the present stage and grade of the disease and identification of
the underlying bone-destruction pattern are performed using a decision tree classifier. Furthermore, the method leads to the
development of a computer-aided diagnostic tool that can readily be used by paramedics and doctors. Experimental results
on a number of test cases reveal satisfactory diagnostic inferences when compared with ground truth known from clinical
findings.

Keywords Bone cancer · Bone X-ray · Connected component · Decision tree · Ortho-convex cover · Runs-test ·
Support vector machine

Introduction

X-ray image analysis provides one of the cheapest primary
screening tools for the diagnosis of bone cancer. As reported
in the medical literature [16], a primary bone tumor usually
appears with unsuspecting symptoms such as fracture of
a bone, swelling around a bone, a new bone growth, or
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swelling in the soft tissues surrounding a bone. Oftentimes,
an X-ray image of cancer-affected bone appears different
from its surrounding healthy bones and flesh region. The
X-ray absorption rate of bone cells in the cancer-affected
region differs from that in healthy bone cells [16]. As a
result, the image of cancer-affected bones appears in the
form of a “ragged” surface (permeative bone destruction),
tumor (geographic bone destruction), or holes (moth-eaten
pattern of bone destruction) [7].

Grading of bone cancer and identification of the underly-
ing bone-destruction pattern are two essential components
needed for treatment of the disease. The stage and grade
of bone cancer represent a measure of the severity of the
disease. Progressive identification of destruction pattern
in a cancer-affected bone also helps doctors to estimate
the rapidity of growth of the disease, or prognosis of the
treatment. Hence, automated classification of bone-cancer
stage, grade, and destruction pattern will be useful to medi-
cal practitioners in order to plan for the course of treatment.

In the past few years, researchers have proposed different
approaches for bone-tumor detection. Conventional image-
analysis techniques such as thresholding, region growing,
classifiers, and Markov random field model have been used
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for the detection of tumor region in X-ray and MRI1 images
[11]. Frangi et al. [12] have used multi-scale analysis of
MRI perfusion images for bone-tumor segmentation. They
proposed a two-stage cascaded classifier for hierarchical
classification of healthy and tumor tissues, and subse-
quently, to discriminate viable and non-viable tumors. Ping
et al. [23] have proposed an approach based on intensity
analysis and graph description for the detection and clas-
sification of bone tumor from clinical X-ray images. The
method analyzes a graph representation to locate the sus-
pected tumor area. It can also classify the benign and malig-
nant tumor depending on the number of pixels extracted
from the analysis of brightness values.

Bone CT images have also been widely used for frac-
ture detection and disease diagnosis. A fusion between
CT2 and SPECT3 images is proposed for the identification
of cancerous regions in bone image [22]. Yao et al. [28]
have designed an automated lytic bone metastasis detection
system. The procedure uses adaptive thresholding, morphol-
ogy, and region growth for the segmentation of spine region.
An approach based on watershed model is used for the
detection of lytic bone lesions, and a support vector machine
(SVM) classifier is used for feature classification and to
diagnose the affected lesions. Automated diagnosis of sec-
ondary bone cancer from a CT image of bone vertebrae
was proposed by Huang et al. [18]. Their technique involves
texture-based classifiers and an artificial neural network
(ANN), which are used for the detection of abnormality.
Fuzzy-possibilistic classification and variational model are
also utilized for multimodal bone cancer detection from CT
and MRI images [6]. Most of the researchers have focused
on the identification of bone tumor or cancer-affected
region from CT or MRI. To the best of our knowledge, no
automated method for determining the destruction pattern
caused by bone cancer along with classification of its stage
and grade is yet known.

In this paper, we have proposed a computer-aided
diagnostic method that can perform an automated analysis
of bone X-ray images and identify the cancer-affected
region. Our method can be used to localize the destruction
pattern and to assess the severity of the disease based on its
stage and grade.

The rest of the paper is organized as follows. “Methods”
discusses various phases of the proposed method and the
features used for bone cancer detection. An algorithm for
localizing the cancer-affected zone is presented in “Local-
ization of Cancer-Affected Region.” Procedures for classi-
fying stage and grade of the disease are described in “Cancer
Severity Analysis.” Results on test cases and performance

1Magnetic resonance imaging
2Computed tomography
3Single photon emission computed tomography

of the proposed method are reported in “Identification of
Bone-Destruction Pattern.” Discussions of test results and
concluding remarks appear in “Results” and “Discussion,”
respectively.

Methods

The method described in this work has three major compo-
nents: (i) diagnosis of bone cancer in anX-ray image, if any,
(ii) localization of the affected zone, and (iii) estimation of
severity of the disease. Figure 1 depicts different phases of
the proposed model. In order to detect the presence of bone
cancer, certain diagnostic features are extracted from a pre-
processed X-image based on the analysis of connected
components and bone texture. Next, we make use of a
support vector machine [8, 27] to localize cancer-affected
portions in an X-ray image. The exact boundary of the
cancerous zone is determined using the concept of isothetic
ortho-convex covering [21]. Various feature parameters
such as area of the affected zone (in pixel count), concavity
index [3], and continuity attributes of the zone boundary
are extracted. Finally, given these features as input, a
classifier based on decision tree [9] is used to recognize
bone-destruction pattern, stage, and grade of the disease.

Preprocessing

The first step in our analysis is to segment the bone region
from its surrounding tissues and muscles. In cancer-affected
bone X-ray image, pixels appear with heterogeneous
intensity values. In order to segment the affected region,
the proposed method relies on a method based on entropy-
standard deviation discrimination [4].

The entropy of an image represents the uncertainty asso-
ciated with the pixel values belonging to a region. The value
of local entropy in the image is larger for a heterogeneous
region compared to that of a homogeneous region. Thus,
transition regions will have higher local entropy compared
to other homogeneous regions. If local entropy for each
pixel of the image is multiplied by local standard deviation
of intensity values (for n×n window), the resulting product
becomes significantly high at transition regions, and this fact
can be used to identify bone-boundaries from the surround-
ing homogeneous regions comprising flesh and tissues.

In the proposed approach, entropy-standard deviation
product (E-S) image is produced to locate the affected
region along with the bone boundary. A window size of 9×9
is chosen for computation of local entropy. A smaller win-
dow size (5 × 5 or 7 × 7) increases the computation time at
the cost of marginal improvement in the quality of a seg-
mented image. Hence, we have used 9 × 9 as the window
size for computing local entropy. Figure 2a shows the bone

301J Digit Imaging (2019) 32:300–313



Feature
vector for

SVM (cancer
detection)

Input
Healthy Bone

ROI
Segmentation

Cancer
affected
bone

Cancer stage,
grade and
destruction
pattern
detection

Continuity
analysis of
the bone
contour

Compute
area of the
affected
region

Bone
segmentation

Edge detection

Texture
analysis

Connected
component
analysis

Concavity
index

analysis

Preprocesssing

Feature
Detection

Bone Cancer
Detection

Decision
Tree (Stage
and Grade
Classifica-

tion)

Decision
Tree

(Destruction
Pattern

Classifica-
tion)

Severity Analysis

Fig. 1 Block diagram of the proposed technique

X-ray image. The entropy-standard deviation (E-S) image
(with 9 × 9 window) corresponding to the input X-ray
image is shown in Fig. 2b and the contour of the segmented
bone image is shown in Fig. 2c. Histogram-based intensity
thresholding and morphological thinning are applied on the
E-S image to generate the single-pixel binary image.

Feature Extraction

With the development of bone cancer, the contour of the
bone and the texture of the bone surface get affected [16].
The deformity of the bone contour and the changed texture
are analyzed to identify the features to be used for decision
making.

Bone Contour Analysis

The presence of multiple connected components in the left
and right sides of bone contour or on the bone surface

indicates abnormality in the bone. We perform connected
component analysis (CCA) [10] of the single-pixel image of
the bone contour. Our analysis on training-set images shows
that a healthy long bone contains very few edges on the
bone surface, whereas cancer-affected bones have multiple
connected components (Fig. 3c).

According to the medical literature [16], cancer-affected
region appears with a different structure compared to the
healthy bone in its X-ray image. The affected area may
have ragged surface (Fig. 3a), small holes on the surface, or
a giant hollow region at the interior of the bone. In some
cases, the hollow region expands and corrupts bone bound-
aries. In such situations, few edges may appear on the bone
surface. Figure 3c shows the distribution of total number
of surface lines (connected components on bone surface)
and their total size (pixel) for healthy and cancer-affected
images. Thus, the multiplicity of connected components
on the bone surface of an X-ray image can be utilized to
identify the presence of cancer in the bone.

Fig. 2 Bone contour generation.
a Bone X-ray image. b E-S
image of (a). c Single-pixel
contour of (b)
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Fig. 3 a X-ray of
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Runs-Test for Bone Texture Analysis

The cancer-affected bone surface exhibits an irregular
texture where structural and geometrical texture analysis
approaches may not be very useful in such a situation as the
texture has no specific pattern. It is observed that the pixels
have homogeneous intensity distribution in the healthy
bone region and heterogeneous intensity distribution in the
cancer-affected regions. Hence, they can be differentiated
on the basis of a measure that reflects the randomness
of pixel intensities. Here, the runs-test [19] is applied to
detect the randomness of intensity values in cancer-affected
regions.

The distribution of different data items in a data set
can be tested for randomness in their order by using one-
sample runs-test. A run is a sequence of data with the same
characteristics. The sequence can be preceded and followed
by data with different characteristics, or by no data. If R be
the observed number of runs, μR be the expected number of
runs, n1 be the number of occurrences of data item 1 with
characteristic 1, and n2 be the number of occurrences of data
item 2 with characteristic 2, then the test statistics can be
represented as

Z = R − μR

SR

(1)

where SR denotes the standard deviation of the number of
runs. The mean of R statistics μR and standard deviation
SR can be computed as μR = 2n1n2

n1+n2
+ 1 and S2

R =
2n1n2(2n1n2−n1−n2)

(n1+n2)
2(n1+n2−1)

. The null hypothesis is that the sequence
of occurrences of data item 1 (n1) and data item 2 (n2) in an
observation appears in random order, against the alternative
that the occurrence is not random. The runs-test rejects null
hypothesis if |Z| > Z1−α/2 where α = 5% significance
level. In a gray scale image, a pixel can have any intensity
value lying between 0 and 255. The intensity distribution
will be random in the case of a heterogeneous intensity

region and uniform in the region of homogeneous intensity.
The proposed method uses runs-test to detect the region that
has heterogeneous intensity distribution on the bone surface
of the pre-processed image (as shown in Fig. 4). It divides
the entire ROI (identified using CCA) in small blocks
(5 × 5) and performs runs-test for pixels in each of these
blocks. To determine the nature of intensity distribution in a
small block, the median of pixel-intensity values therein is
considered as the threshold. Intensities below the threshold
value are grouped as Characteristic 1 and those above the
threshold are grouped as Characteristic 2. The number of
occurrences of Characteristic 1 (n1) and Characteristic 2
(n2) are used to calculate μR and SR . The rejection of null
hypothesis (RH) indicates the presence of homogeneous
intensity distribution in the ROI, whereas the acceptance
of the hypothesis (AH) implies heterogeneous distribution

A

(b)(a)

Fig. 4 Randomness detection of intensity. a Bone X-ray image. b
Heterogeneous pixel-intensity distribution (colored pixels) detected
via runs-test
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of pixel intensities in the ROI. Table 1 shows the results
of runs-test performed on ROI of different cancer-affected
bone images. This table shows the percentage of pixels
that reject the null hypothesis (RH), and the percentage
of pixels that accept the null hypothesis (AH) within
ROI. Experiments on several cancer-affected X-ray images
(Fig. 11) show that healthy regions exhibit homogeneous
intensity distribution on the bone surface, whereas cancer-
affected regions show heterogeneous intensity distribution
in the affected area.

Detection of Bone Cancer

In this work, we have used a support vector machine to
detect the presence of cancer-affected region in the X-
ray image. SVM is a machine learning tool that is widely
used for data analysis and pattern recognition [27]. SVM
was originally developed as two-class pattern recognition
problem, and later it was extended to multi-class recognition
problem [8, 20].

Let a vector x denote the pattern to be classified, and
y (scalar for binary classification and vector for multi-
class classification) denote the class labels. If {(xi, yi),
i = 1, 2, 3, . . . , l} represents a set of training examples,
then SVM constructs a classifier with a suitable decision
function f (x) that can correctly classify an input pattern
x. In binary classification, for a new pattern x ∈ R

n, the
classifier predicts the corresponding class y ∈ {±1}. SVM
creates a non-linear decision boundary by projecting the
data through a non-linear function φ to higher dimension.

Table 1 Results on runs-test

Figure no.a ROI (pixels) RH b (%) AH c (%)

Figure 11(a1) 3500 31.51 76.31

Figure 11(c1) 4387 13.83 51.62

Figure 11(d1) 12285 17.53 56.77

Figure 11(e1) 19313 5.23 15.45

Figure 11(f1) 26499 17.41 41.45

Figure 11(c5) 25764 16.47 55.8

Figure 11(a3) 15435 24.63 59.75

Figure 11(b3) 18981 14.83 44.41

Figure 11(d3) 17934 18.81 57.02

Figure 11(d5) 12654 23.66 19.75

a
Figure 11 is given in “Results”

b
RH, rejection of null hypothesis (implies homogeneous intensity
distribution)
c
AH, acceptance of null hypothesis (implies heterogeneous intensity
distribution)

The objective function of SVM classifier can be represented
by the following minimization problem:

min[J (w, ξ)] = 1

2
(wT w) + C

l∑

i=1

ξi (2)

subject to yi

(
wT φ (xi) + b

)
� 1−ξ , ξ � 0, i = 1, 2, . . . , l

where w is the weight vector and b is the bias. C is a user-
specified, positive, regularization parameter that determines
the trade-off between maximizing the margin, and the num-
ber of training data points within that margin. A very high
value of C (C → ∞) represents a “hard margin” (con-
straints hard to ignore, narrow separation gap), and a finite
small value of C represents the “soft margin” (constraints
easy to ignore, large separation gap) among the training
data.

While working with binary SVM classifier with “linear”
kernel function and “soft margin” (here, we choose C = 1),
we performed fivefold 6cross validation (CV) and computed
the average classification accuracy to evaluate the proposed
method. In each iteration of fivefold CV, the database is
divided into training data Ti and test data ti [14, 17]. This
process is applied to avoid over-fitting problem due to small
size of the dataset. The feature parameters used in the SVM
are taken from the results of CCA and texture analysis (runs-
test). The number of connected components (s) present
on the surface of the bone image is considered as one of
the feature parameters. The percentage of ROI pixels with
heterogeneous intensity distribution (h) is used as another
feature parameter.

Localization of Cancer-Affected Region

Localization of the cancer-affected region is essential to
detect the stage and grade of the disease. CCA and the
bone texture analysis, discussed earlier, help to locate
the cancer-affected region in the bone X-ray image. The
segmentation of ROI mandates identification of a contour
that tightly encloses the pixel clusters of cancer-affected
region along with islands of healthy portion surrounded by
cancer-affected regions. In this work, we have utilized the
property of ortho-convex polygon and proposed a method
to generate 4-staircase ortho-convex cover that encloses the
cancer-affected region on the bone surface.

Required Definitions

Isothetic Curve An isothetic curve is a rectilinear path
consisting of alternating horizontal and vertical line
segments. An isothetic curve is a monotonically rising
staircase (R-stair) if for all pairs of points α = (xα, yα) and
β = (xβ, yβ) and on the curve, xα � xβ implies yα � yβ .
Similarly, in a monotonically falling staircase (F-stair), for
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all pairs of points α = (xα, yα) and β = (xβ, yβ) and on the
curve, xα � xβ implies yα � yβ [21].

Ortho-Convex Polygon An isothetic polygon P is said to
be ortho-convex if for any horizontal or vertical line l, the
number of intersections of P with l is either 0 or 2. In other
words, l intersects no edge or exactly two edges of P .

An ortho-convex polygon is bounded by two R-stairs Rtl

(left-to-top boundary) and Rbr (bottom-to-right boundary),
and two F -stairs Ftr (top-to-right boundary) and Fbl

(bottom-to-left boundary). Figure 5a shows rising stair (R-
stair), and Fig. 5b shows falling stair (F -stair) in an ortho-
convex polygon. Figure 5c shows the ortho-convex polygon
with a pair of R-stair and F -stair with black dots that
represent the object pixels.

Ortho-Convex Covering of ROI

An ortho-convex cover, by inherent constitution, not only
tightly covers the ROI but also encloses the concave portions
appearing on its boundary, as desired. The proposed method
is as follows.

From the set of marked pixels (with heterogeneous
intensity distribution detected using runs-test), M, we
determine the sets of topmost, leftmost, bottommost, and
rightmost pixels stored in the arrays υt , υl , υb, and υr

respectively (Fig. 5). Note that there can be several pixels
in each such υ. Now, in order to generate the R-stair, say
Rtl , the leftmost points in each row of M starting from
the topmost point in υl to the leftmost point in υt are
noted (termed as boundary pixels). These pixels along with
the topmost point of υl and leftmost point of υt form the
array R′

t l . Then, the array R′
t l is lexicographically sorted in

the ascending order of x-coordinates. To generate Rtl , we
process as follows: for each pi ∈ R′

t l , if yi+1 > yi and
xi+1 � xi , then all the pixels starting from p(xi, yi) to
p(xi, yi+1) and those from p(xi, yi+1) to p(xi+1, yi+1) are
added to Rtl . Otherwise, pi+1 is removed from R′

t l and no
pixel is added to Rtl . Using the same principle, Rbr , Fbl ,
and Ftr can be obtained. The cover points υt and υb (υl and
υr ) are augmented by adding all the pixels lying between

the leftmost and the rightmost pixel (bottommost and the
topmost) in each of them, respectively. Finally, the arrays
υt , Rtl , υl , Fbl , υb, Rbr , υr , and Ftr are merged together to
output the ortho-convex cover of the ROI (Fig. 5c).

The proposed method uses CCA and runs-test analysis to
mark the pixels in the ROI and use this pixel cluster to com-
pute the ortho-convex cover for the cancer-affected region
(Fig. 6b). The ortho-convex cover delineates the cancer-
affected region.

Cancer Severity Analysis

Severity of bone cancer depends on the stage and grade
of the disease. Bone-destruction patterns also provide
information regarding severity of the disease [7]. In the
proposed approach, the severity of bone cancer is estimated
by identifying proper feature parameters of the X-ray image
and feeding them in a decision tree. The proposed approach
aids automated estimation of stage, grade, and destruction
pattern caused by bone cancer.

Feature Selection for Analysis

In order to classify the stage, grade, and destruction pattern
of the bone cancer, we have used a few feature parameters.
According to the medical literature [11], the stage of the
bone cancer is decided based on the spread of the disease
in bone whereas grading of cancer indicates the severity of
the disease. Low-grade cancer has slightly abnormal cells
and high-grade cancer shows rapid growth which results
in bone destruction. Hence, the width of the affected area
and gap (discontinuity) in bone boundary play important
roles in cancer stage and grade detection. Classification of
bone-destruction pattern is based on the change in texture
and shape of the bone surface. Cancer-affected bone X-ray
image appears with ragged bone surface. This abnormality
in texture of the bone surface appears as spurious edges
during edge detection process. Hence, the presence of edges
on the bone surface indicates change in bone texture. The
change in bone contour curvature implies the abnormality in
the shape of long bone and helps to classify different bone

Fig. 5 Staircase in an
ortho-convex polygon. a Rising
stair. b Falling stair. c
Ortho-convex cover
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Fig. 6 a Bone X-ray image with
ragged surface. b Ortho-convex
cover for“ragged” bone surface.
c Bone X-ray image with
hollow surface. d Ortho-convex
cover for “hollow” bone surface

(a) (b) (c) (d)

destruction patterns. In view of these scenarios, we have
selected the following feature parameters in our analysis:

(a) Width of the affected area (w). We compute the maxi-
mum width (W ) of the ortho-convex cover enclosing
the cancer-affected region on the bone surface. The
width of the affected region (w) is represented as
the ratio of W to the total bone width (B) (in %).
As w = W

B
represents the proportion of width of

the affected region with respect to the total bone
width, it does not depend on the bone size (wide or
narrow) or size of the X-ray image. It is used as a fea-
ture parameter for cancer stage and grade detection.

(b) Contour gap (c). It represents the discontinuity
of bone contour around the affected area. High-
grade bone cancer usually spreads up to the bone
boundary and causes boundary destruction. Hence, a
fragmented bone contour indicates a high-grade extra-
compartmental situation. The presence of multiple
components in left and right sides of the bone contour
when observed during connected component labeling,
indicates fragmented bone boundary. The proposed
method computes the gap C (in pixels) between
fragments present in each side (left or right). The pixel
counts for the left and right contour indicate the gap
(discontinuity) present in the respective side of the
contour. The ratio of the gap C to the total contour
length L (in %), i.e., c = C

L
, is used as a feature

parameter.
(c) Concavity change rate (�CI ). The concavity index

represents a geometric property of a digital curve
(DC), which can be computed during its traversal. The
direction of traversal of pixels in a DC is represented
using chain code (values 0 . . . 7 for 8 possible
directions of move) [5, 13]. While traversing an
image contour, each point pi is assigned a concavity
index, αi where α0 and α1 are initialized to 0 and 1,
respectively.

αi+1 = αi + (di+1 − di)mod 8 (for clockwise
traversal)

αi+1 = αi − (di+1 − di)mod 8 (for counter-
clockwise traversal)

On the other hand, if the curve continues in
the same direction, the concavity index remains
unchanged. The count of change in concavity index
(�CI ) with respect to the total number of pixel
traversed (n) can be represented as

�CI =
∑n

i=1 countδ

n
(3)

where δ = αi+1 − αi and δ �= 0. It is observed that
for a smooth contour curvature, αi changes between
{0, 1, −1} over a short traversal whereas for any
abnormality in shape, this change occurs over a long
traversal (with large value of n). Hence, a small value
of �CI indicates some sudden and abnormal change
in the contour curvature.

In this work, we traverse the left and right side
of the contour of the segmented bone image while
computing concavity change rate (�CI ).

(d) Surface edge length (el). The maximum length of the
connected component on the bone surface (apart from
contour) represents the longest portion of the cancer-
affected region. We use el as a feature parameter.

(e) Number of edges (en). The total number of connected
component on the bone surface (apart from contour)
represents the edges detected in the heterogeneous
region (cancer-affected). This is also used as a feature-
parameter.

We use a set of training images to compute the feature
parameters mentioned above. We have computed infor-
mation gain (IG) and entropy (H ) [15] for each feature
parameter set. Information gain (IG) of a feature parame-
ter measures the amount of information that it can provide
about the class prediction, if the only information available
is the presence of that feature in the corresponding class dis-
tribution [2, 26]. The entropy (uncertainty associated with
a random feature) of a system reduces when the elements
are homogeneous and increases when the elements are
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heterogeneous. Hence, information gain measures the
reduction in entropy for each feature. It estimates the depen-
dence between features and class labels. IG between the i-th
feature fi and the class labels C as

IG(fi, C) = H(fi) − H(fi |C) (4)

where H(fi) is the entropy of fi and H(fi |C) is the entropy
of fi after observing C.

H(fi) =
∑

j

−p(xj )log2(p(xj )),

H(fi |C) =
∑

k

−p(ck)
∑

j

−p(xj |ck)log2(p(xj |ck)) (5)

We select the features with high information gain as the
nodes of the decision tree.

Cancer Stage and Grade Detection

The stage and grade of bone cancer play an important role
in the treatment of the disease. Among the two different
staging systems (Enneking system and AJCC classification)
[11], the proposed method uses the former system, and
assesses the severity of cancer based on that. In this work,
we have focused on the primary bone cancer that originates
in bone. In secondary bone cancer, the disease spreads in
bone from other parts of the body (may be from lungs,
prostate, or elsewhere).

The Enneking staging system grades cancer in G0, G1,
and G2, where G0 is non-cancerous tumor, G1 is low-
graded cancer, and G2 is high-graded cancer. The stage of
cancer is categorized as Stage 1, Stage 2, and Stage 3, where
Stage 1 is low grade and Stage 2 and Stage 3 represent
higher grades. Stage 3 means metastasized situation where
cancer has spread in bone from other parts of the body. In
most of the such cases, cancer originates in other regions
of the body and then spreads to bone in a later stage. As
such cases are clinically identified as secondary bone cancer
[16], we have considered only Stage 1 and Stage 2 in this
study. The proposed method categorizes cancer severity
based on the stages mentioned in Table 2. In this table,
intra-compartmental implies the situation when the affected
region is completely confined within the bone boundary, and
extra-compartmental indicates the scenario where cancer
has grown out of the area (compartment) of the bone [1].

Table 2 Cancer stages and grades (Enneking System)

Stage Description Grade

Stage 1A Intra-compartmental and low grade G1

Stage 1B Extra-compartmental and low grade G1

Stage 2A Intra-compartmental and high grade G2

Stage 2B Extra-compartmental and high grade G2

The stage of bone cancer describes the size of the
affected region and whether and how far it has spread.
This information is important to doctors as they plan
their treatment according to the stage of the disease. The
geometry of cancer-affected bone region can be estimated
from the maximum width of the affected region and the
extent of spread of the disease outside the bone, as seen
from an X-ray image. We compute information gain with
respect to the features such as width of the affected area
(w), concavity rate change (�CI ), surface edge number
(el), contour gap (c), and surface edge length (en). Table 3
shows that the information gain of the feature set (affected
area, contour gap) is more prominent compared to other
features. So this feature set is selected for stage and grade
identification.

Identification of Bone-Destruction Pattern

An X-ray image of cancer-affected bone may reveal
different bone-destruction patterns such as geographic,
moth-eaten, and permeative. The presence of giant cyst
or calcification may also occur in some cases [7]. Each
of these bone-destruction patterns can be identified by
certain geometric feature parameters present in the image.
Figure 7 shows different types of destruction patterns that
can be found in cancer-affected bones. Table 4 shows the
mapping of each pattern with geometric feature parameters.
In this work, we have used the training-set images to
learn the behavior of feature parameters and calculate the
information gain for different feature sets. Features with
high information gain (concavity change rate, surface edge
length, and the number of surface edges) are selected
as decision tree features to identify the specific bone-
destruction pattern present in the input X-ray image.

We have used contour fragment count (cf), concavity
change rate (�CI ), the number of edges on the bone sur-
face (en), length of the surface edges (el), and width of
the affected region (w) as feature parameters and form the
decision tree using training X-ray images (Fig. 8). Each
leaf node in the decision tree represents a particular classi-
fication of test images. The root node and all internal nodes
represent feature values used to train the sample images.

Table 3 Feature selection for stage and grade analysis

Width of Concavity Contour Surface Surface Information

affected change rate gap (c) edge no. edge length gain

area (w) (�CI ) (en) (el) (IG)

√ √ × × × 0.7589√ × √ × × 0.9163√ × × √ × 0.2706√ × × × √
0.1663
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Fig. 7 Cancer-affected bones. a
Geographic pattern. b
Moth-eaten pattern. c
Permeative pattern. d
Calcification. e Giant cyst

(a) (b) (c) (d) (e)

Results

Data Collection

The proposed method has been evaluated on the data
sets of cancer-affected long-bone X-ray images. Most of

the images are collected from different publicly avail-
able datasets and websites such as TCIA dataset (https://
wiki.cancerimagingarchive.net/display/Public/Wiki), web-
site of Radiology Assistant (www.radiologyassistant.nl),
Radiopedia (http://radiopaedia.org), and Bone and Spine
(http://boneandspine.com/bone-tumors-images-and-xrays/).

Table 4 Bone-destruction characteristics

Destruction property Clinical feature (X-ray image) Image feature (X-ray image after pre-processing)

Geographic pattern (Fig. 7a) 1. Abnormal bone contour shape • Multiple (≥ 3) connected components in left or
right contour line

2. Small zone of transition • Low-valued concavity change rate on left or
right contour line

• Few long surface lines

• Small length of spread

Moth-eaten pattern (Fig. 7b) 1. Area of destruction with ragged
border

• Multiple (≥ 3) connected components with
in-between gap in left or right contour line

2. Multiple scattered holes • High concavity change rate value for left and
right contour line

2. Longer transition zone • Multiple small surface lines

• Wide length of spread

Permeative pattern (Fig. 7c) 1. Poorly demarcated border • Single or multiple (≥ 2) connected components
with very small in-between gap in left or right
contour line

2. Numerous elongated holes • High concavity change rate value for left and
right contour line

3. Long transition zone spread paral-
lel to long-bone axis

• Few small surface lines

• Wide length of spread parallel to bone axis

Presence of calcification (Fig. 7d) 1. Flecks of calcification appear • Single connected component in left and right
contour line

2. Small transition zone • High concavity change rate value for left or right
contour line

• Few long surface lines

• Small length of spread

Presence of giant cyst (Fig. 7e) 1. Irregular or fragmented bone con-
tour

• Multiple (≥ 3) connected component in left and
right contour line

2. Large affected area appears as
transparent to X-ray

• High concavity change rate value for left and
right contour line

• Very few (≤ 5) small surface lines

• Wide length of spread
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Fig. 8 Decision tree for
classifying bone-destruction
patterns

Clinical findings and comments available with these images
are used as ground truth for respective image. The com-
plete database for all these images used in this work can

be accessed from the webpage (https://drive.google.com/
open?id=0B5M6Y0ylgFnSalduRnJJNG5QQlE). It consists
of a set of 150 long-bone X-ray images (50 for healthy

Table 5 Detection of cancer stage (S), grade (G), and destruction patterns (P)

Figure no.
Diagnosis (CAD) Diagnosis (clinical) Remarks

S G P S G P S G P

Figure 11(a1) S1A G1 Calcification S1A G1 Calcification
√ √ √

Figure 11(b1) S2A G2 Permeative S2A G2 Permeative
√ √ √

Figure 11(c1) S2A G2 Geographic S2B G2 Geographic × √ √
Figure 11(d1) S2A G2 Geographic S2B G2 Geographic × √ √
Figure 11(e1) S2B G2 Cyst S2B G2 Cyst

√ √ √
Figure 11(a3) S2A G2 Geographic S2A G2 Geographic

√ √ √
Figure 11(b3) S1A G1 Calcification S1B G1 Calcification × √ √
Figure 11(c3) S1B G1 Moth-eaten S1B G1 Calcification

√ √ ×
Figure 11(d3) S2A G2 Moth-eaten S2A G2 Moth-eaten

√ √ √
Figure 11(e3) S2A G2 Moth-eaten S2A G2 Cyst

√ √ ×
Figure 11(a5) S2A G2 Permeative S2A G2 Permeative

√ √ √
Figure 11(b5) S2B G2 Geographic S2A G2 Moth-eaten

√ √ ×
Figure 11(c5) S2B G2 Moth-eaten S2B G2 Moth-eaten

√ √ √
Figure 11(d5) S2B G2 Cyst S2B G2 Cyst

√ √ √
Figure 11(e5) S1A G1 Calcification S1A G1 Calcification

√ √ √

Note: Entries in Bold indicate the cases where diagnosis using proposed approach differs from clinical diagnosis
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Fig. 9 SVM (binary) for bone cancer diagnosis (points in rectangle
represent misclassification)

persons and 100 for cancer-affected patients). We have used
fivefold cross-validation strategy to evaluate the average
accuracy of the classifier. In the data selection process, we
have performed stratified sampling to maintain an equal
proportion of healthy and diseased images in each selected
set. In our experiments, we have used gray-tone X-ray
images. Table 5 shows the severity level of bone cancer in
the X-ray images shown in Fig. 11.

Classification of Healthy and Cancer-Affected Bones

We have trained the binary SVM with healthy and cancer-
affected X-ray image dataset and use the test dataset for

diagnosis. The number of connected components (s) present
on the surface of the bone image and the percentage of ROI
pixels with heterogeneous intensity distribution (h) are used
as feature parameter of the binary SVM model. Figure 9
shows the distribution of training images in the feature
space. Each (s, h) pair in the feature space represents a bone
X-ray image from our medical database. The points marked
with the red circle represent correctly classified test images.

Figure 11 shows the images generated by the proposed
approach with the cancer-affected region enclosed by the
ortho-convex cover. Several types of bone cancer X-
ray images have been used for validating the proposed
technique. In Fig. 11, the first and third columns show the
input boneX-ray images and the second and fourth columns
show the final output images. In these images, the pixels
(with heterogeneous intensity values) belonging to cancer-
affected area, as identified by runs-test, are marked with
purple color. The ortho-convex cover enclosing the affected
region is also shown (in blue) in each output image.

Results of Caner Severity Analysis

Diseased bone images identified by SVM are used for
cancer severity analysis. This analysis is performed in
two phases. In the first phase, stage and grade of the
disease are identified using decision tree classifier. Width
of affected area (w) and contour gap (c) are used as the
feature parameters for this classification. Figure 10 shows
the distribution of w and c for cancer-affected bone images
(training set) and test images in the feature space. Here, each
(w, c) pair represents the X-ray image of a cancer-affected
bone (from medical database). The images in the training
set are classified in four stage-grade combinations: S1AG1,

Fig. 10 Stage and grade
classification using decision tree
(points in rectangle represent
misclassification)
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Fig. 11 (a) Column-1, column-3, and column-5: input X-ray image. (b) Column-2, column-4, and column-6: ortho-convex cover of affected
region with heterogeneous pixels marked by runs-test

S2AG2, S1BG1, and S2BG2 (as mentioned in Table 2).
Test images are classified by the decision tree. Note that
90% of the test images have been classified correctly
(shown by “S&G” marker). The misclassified test images
(Fig. 11(c1, d1, b3)) are marked with blue rectangular boxes
(M1, M2, and M3).

In the second phase of cancer severity analysis, we have
used decision tree classifier to identify the bone-destruction
patterns. Features such as concavity change rate, surface
edge length, and the number of surface edges are used for
this classification.

The stage, grade, and bone-destruction pattern of the dif-
ferent input images, as determined by the proposed method,

are shown in Table 5. Note that in most of the cases, the
cancer stage and grade have been correctly identified. While
detecting the bone-destruction pattern, misclassification
occurs in three scenarios (Fig. 11(c3, e3, b5)). A lower value
of concavity change rate identifies the bone-destruction
pattern as geographic (Fig. 11(c1, d1, a3)), whereas an
increase in surface-edge-count identifies the situation as
calcification (Fig. 11(a1, b3)). The presence of few surface
edges indicates the possibility of single giant cyst in the
bone (Fig. 11(e1, d5)). In permeative-destruction pattern,
cancer spreads along the long-bone axis. Thus, a longer
surface edge implies the presence of permeative pattern
(Fig. 11(b1, a5)). Moth-eaten destruction pattern creates
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(a) (b) (c)

Fig. 12 aMean ROC curve for bone cancer detection (using SVM). bMean ROC curve for cancer stage and grade detection (using decision tree).
c Mean ROC curve for bone-destruction pattern detection (using decision tree)

small holes on the bone surface. Hence, the presence of
multiple small length surface edges with medium concavity-
difference indicates the possibility of moth-eaten pattern
(Fig. 11(c5, d3)). The image shown in Fig. 11(c1) shows
that one side of the bone wall is deformed due to tumor
and hole. The proposed method detects the stage wrongly as
being intra-compartmental. In Fig. 11(b5), though the bone
boundary has become thin due to the tumor and hole, it is
not totally disconnected. Thus, the actual stage of cancer
is intra-compartmental. Our method identifies this case
wrongly as being extra-compartmental. However, the grade
of the disease for each of these cases is detected correctly.

Discussion

The efficiency of the proposed approach is evaluated
by computing the receiver operating characteristic curve
(ROC) [25] for SVM result (bone cancer detection),
decision tree result for cancer stage and grade detection, and
decision tree result for bone-destruction pattern (Fig. 12).
We have selected the classifier parameters that maximize the
area under the ROC curve (AUC). For every classification
scenario, we have considered all true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)
cases to generate the mean ROC [29]. In the case of stage
and grade detection, ROC curve (Fig. 12b) shows higher

AUC for grade B images compare to grade A cases. As
larger bone area gets affected in grade B cases, the proposed
approach detects those cases more accurately than grade
A images. Figure 12c shows the ROC curve for bone
destruction pattern. Various performance parameters used
for classification such as accuracy, sensitivity, specificity,
precision, and F -measure [24] are listed in Table 6. The
observations are based on test samples obtained using
fivefold cross validation on 150 X-ray images. The same
procedure is applied while analyzing stage and grade of the
disease and bone-destruction patterns.

We have also developed a graphical user’s interface
(GUI) where a demonstration with four different X-ray
images can be viewed. The display boxes for viewing the
output image are also provided. The tool allows the user
to select a demonstration option among four available
examples. After selection, the user may click on the “show
demonstration” button. This will initiate the background
process and display the input image in the leftmost box.
As the execution continues, the entropy-standard deviation
image and bone contour are shown on the GUI platform.
Finally, the cancer-affected region is identified, enclosed
in the ortho-convex cover, and displayed on the screen.
The GUI developed for the proposed automated bone
cancer detection technique is available in the linked page
https://drive.google.com/folderview?id=0B5M6Y0ylgFnSb
HRMUUZJU0Q4d00&usp=sharing.

Table 6 Performance matrix
for different classifications Classification type Accuracy Sensitivity Specificity F-measure

Bone cancer 0.84 0.87 0.8 0.88

Bone cancer (stage and grade) 0.85 0.88 0.82 0.86

Bone-destruction pattern 0.83 0.86 0.81 0.87
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Conclusions

In this work, we have proposed a technique for automated
long-bone cancer diagnosis for the first time that is solely
based on the analysis of an input X-ray image. The pro-
posed method integrates several interdisciplinary concepts
such as statistical runs-test, local entropy- and standard
deviation-based tools, digital-geometric analysis, SVM
classification, and decision tree. The notion of ortho-convex
cover of a cluster of marked pixels is used for convenient
visualization and diagnosis of the disease and for grading
the severity of cancer-affected regions. The use of digital-
-geometric tools leads to a fast estimation of the area of ROI
as the required computation needs only integer-domain
operations. Experimental results on a medical database of
healthy and cancer-affected X-ray images reveal that the
proposed method is fairly accurate as AUC for bone cancer
detection is more than 0.85. Further, in 85% of cases, the
bone-destruction pattern, stage, and grade of cancer pre-
dicted by the automated tool correctly match with the actual
findings as judged by the doctors and medical professionals.
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