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Abstract
Anthropometric parameters like muscle body mass (MBM), fat body mass (FBM), lean body mass (LBM), visceral adipose
tissue (VAT), and subcutaneous adipose tissue (SAT) are used in oncology. Our aim was to develop and evaluate the software
Anthropometer3D measuring these anthropometric parameters on the CT of PET/CT. This software performs a multi-atlas
segmentation of CT of PET/CT with extrapolation coefficients for the body parts beyond the usual acquisition range (from the
ischia to the eyes). The multi-atlas database is composed of 30 truncated CTs manually segmented to isolate three types of voxels
(muscle, fat, and visceral fat). To evaluate Anthropomer3D, a leave-one-out cross-validation was performed to measure MBM,
FBM, LBM, VAT, and SAT. The reference standard was based on the manual segmentation of the corresponding whole-body CT.
A manual segmentation of one CT slice at level L3 was also used. Correlations were analyzed using Dice coefficient, intra-class
coefficient correlation (ICC), and Bland–Altman plot. The population was heterogeneous (sex ratio 1:1; mean age 57 years old
[min 23; max 74]; mean BMI 27 kg/m2 [min 18; max 40]). Dice coefficients between reference standard and Anthropometer3D
were excellent (mean+/-SD): muscle 0.95 ± 0.02, fat 1.00 ± 0.01, and visceral fat 0.97 ± 0.02. The ICC was almost perfect
(minimal value of 95% CI of 0.97). All Bland–Altman plot values (mean difference, 95% CI and slopes) were better for
Anthropometer3D compared to L3 level segmentation. Anthropometer3D allows multiple anthropometric measurements based
on an automatic multi-slice segmentation. It is more precise than estimates using L3 level segmentation.
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Background

Body composition extracted from medical images is increasing-
ly important in oncology. The total skeletal muscle body mass
(MBM) measurement is used to determine muscle depletion,
which is a significant prognostic factor in cancer [1]. It has been
associated with a higher incidence of chemotherapy toxicity, a
shorter time to tumor progression, poorer surgical outcomes,
impaired functional status, and shorter survival, especially in
the case of muscle loss during the treatment [2–4]. Obesity,
which can be assessed by measuring fat body mass (FBM) [5],
is a well-known risk factor for many cancers [6] that can modify

tolerance to chemotherapy [7]. Conversely, adipopenia is a neg-
ative prognostic factor, notably for hematologic cancer [8]. Low
lean body mass (LBM) is a significant predictor of toxicity and
neuropathy in patients treated with folinic acid, fluorouracil, and
oxaliplatin (FOLFOX)-based regimens. Visceral adipose tissue
(VAT) and the ratio of VAT to subcutaneous adipose tissue
(SAT) are prognostic and/or predictive factors for many solid
tumors [9, 10]. For example, because patients with a large
VATmass may not benefit from bevacizumab-based chemother-
apy, measurement of VAT before starting this treatment could be
useful [11]. To summarize, these parameters could reflect the
patient’s health status (notably MBM), but also the distribution
volume of the chemotherapy (notably FBM and LBM), both of
which are important to determine on how to adapt the treatment
and follow-up of the patient.

All these parameters can be accurately measured in three-
dimensional (3D) imaging on computed tomography (CT) or
magnetic resonance imaging (MRI) [12]. Although CT offers
well-defined Hounsfield unit (HU) values and contrast for
muscle and fat voxels easily extracted [13], it exposes subjects
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to ionizing radiation, and it is unethical to perform a CT for
only measuring anthropometric parameters [14]. This limita-
tion is overcome for patients who routinely undergo CT ex-
aminations, alone or combined with positron emission tomog-
raphy (PET), to evaluate and follow the disease [15].
Anthropometric measurement can, therefore, be performed
on these images, in particular, by taking advantage of the large
acquisition range, at least from the ischium to the eyes for
PET/CT, using multi-slice segmentation [16, 17].

It was proposed to estimate MBM, LBM, FBM, VAT, and
SAT from a two-dimensional (2D) segmentation of one slice at
level L3 [15, 18]. Two-dimensional estimates are based onmath-
ematical expressions assuming a strong correlation between
these estimates (2D) and volume quantities (3D). However, 2D
estimates could be less accurate than 3D multi-slice measure-
ments [17]. For example, it has been shown that during weight
loss, changes in visceral and subcutaneous adipose tissue are
poorly evaluated on 2D imaging [19], while 3D imaging gives
good results for intra-abdominal fat [20]. Therefore, multi-slice
segmentation is preferable [21], but needs automatic processing
to avoid a time-consuming manual segmentation [19].

To perform a 3D segmentation of these tissues, few auto-
matic segmentation methods have been proposed [e.g., region
growing, graph cutting, fuzzy C means clustering, and multi-
atlas segmentation (MAS) algorithms] [22]. Most of them are
based on the determination of the muscle boundary between
VAT and SAT [22]. Among them, MAS methods are very
flexible and can capture anatomical variations, notably be-
tween different levels of the body, such as the abdomen or
the pelvis [23], whereas other algorithms must be adapted
according to the anatomical level [24] and are composed of
several methods to cover the whole body. MAS methods have
shown accurate measurement capabilities, particularly in MRI
[25]. However, to our knowledge, there is no software avail-
able to automatically measure all parameters from CTof PET/
CT using multi-slice segmentation, although this is an exam-
ination commonly done for patients with cancer.

The aim of our study was to develop an in-house software,
called Anthropometer3D, allowing the automatic measure-
ments of all these anthropometric parameters from CT of
PET/CT with a limited range of acquisition from the ischium
to the eyes, and to compare these measurements to those ob-
tained by manual segmentation on a whole-body CT, as a
reference, and on a single slice at level L3.

Methods

Population

This is a retrospective, non-interventional study approved by
the institutional review board. All patients were informed that
their anonymized images could be used for research purposes

and that they could object to such use. Thirty random patients
(15 women and 15men) who underwent whole-body PET/CT
(GEDiscovery 710 with Optima 660 CTcomponent) between
June 2016 and July 2017 during follow-up of their disease and
with complete tumor response (no tumor visualized) were
included.

After a 6-h fast and 30 min of rest, patients were injected
with 3.5 MBq/kg of 18F-fluorodeoxyglucose (18F-FDG).
Sixty minutes later, a CT scan in the craniocaudal direction
was performed with the patient’s arms positioned above the
head and the patient breathing freely. CT acquisition parame-
ters depended on the patient’s body mass index (BMI). For
patients with a BMI less than 30 kg/m2, the CT voltage was
100 kV; otherwise, the CT voltage was 120 kV. The CT mAs
was automatically regulated by the manufacturer’s dose re-
duction software based on a noise index. The result was a
mean effective mAs of 89.1 ± 6.7. Each CT scan was acquired
with primary collimation of 16 × 1.25 mm and reconstructed
in 3.75-mm thick slices every 3.27 mm. All images were
resized to obtain a unique voxel size of 1.36 × 1.36 × 5 mm3.

Anthropometer3D

The aim of the Anthropometer3D software is to allow an
automatic measurement of multiple anthropometric parame-
ters. This tool could notably be applied on large clinical data-
bases to explore new prognostic factors, in particular within
the framework of academic collaborations via the website
https://www.anthropometer3d.org [26], where the software
will be released online upon acceptance of this paper.
Figure 1 provides a graphical representation of the
Anthropometer3D software process. Anthropometer3D is a
command line software written in Java language which uses
ImageJ software functions for parts of image processing and
the software Plastimatch for the elastic registration parts. It is
based on a MAS method involving the recording of several
CT atlases corresponding to training images that have already
been labeled into three different masks by an expert. Then,
personalized masks are created on the patient’s CT scan to be
analyzed in order to segment the tissues of interest. The three
masks used by Anthropometer3D are as follows: one for the
body shape used to calculate FBMAnthopo3D and
LBMAnthopo3D (Mask1), one for the abdominal cavity used
to calculate VATAnthopo3D and SATAnthopo3D (Mask2), and
one for the muscles used to calculate MBMAnthopo3D (Mask3).

Considering that the body part from the ischium to the eyes
is usually included in the acquisition range of a PET/CT, the
CT atlases were truncated to keep only this part. During the
segmentation, each truncated CT atlas is rigidly registered to
the analyzed CT. The mutual information between the rigidly
registered CT and the analyzed CT is calculated [27] and the
top ten registered CTatlases are selected. They correspond to a
morphotype quite similar to that of the patient analyzed. These
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ten selected CT atlas are then elastically registered to the an-
alyzed CT and the resulting deformation fields are applied to
the masks. Finally, the three personalized masks are obtained
by a majority voting process. To isolate muscle voxels, a
threshold is applied to Mask3 (HU values between − 29 and
150 [13]). To isolate fat voxels, a threshold applied on Mask1
and Mask2 (HU values between − 190 and − 30 [13]). As fat
and muscle voxels have no HU in common in these windows,
no overlap between these tissues was observed. Moreover,
subcutaneous fat voxels were obtained by subtracting the vis-
ceral fat voxels to the whole-body fat voxels so no overlap
was also observed for these segmentations.

Anthropometer3D automatically extrapolates body parts
beyond the ischium and eyes to obtain an estimate of whole-
body measurements. To account for the underestimation of
segmented volumes on the truncated CT relative to the
whole-body CT, extrapolation factors, kmuscle and kfat, were
calculated. They correspond to the average extrapolation fac-
tors calculated on the data of the CT atlases as being the ratio
between the number of muscle (or fat) voxels determined on
the whole-body CT divided by the number of voxels belong-
ing to the muscle (or fat) determined on the truncated CT. The
extrapolation factors were calculated by using the CT atlases
(whole body and truncated from the eyes to the ischia) man-
ually segmented,

With kmuscle ¼ Nmuscleof whole−body CT atlas

Nmuscleof truncated CT atlas

And

kfat ¼ N fatof whole−body CT atlas

N fatof truncated CT atlas

Then, MBMAnthopo3D, FBMAnthopo3D, LBMAnthopo3D,
VATAnthopo3D, and SATAnthopo3D are calculated as follows:

MBMAnthropo3D ¼ Nmuscle � kmuscle � Vvoxel � ρmuscle

FBMAnthropo3D ¼ N fat � kfat � Vvoxel � ρfat
LBMAnthropo3D ¼ W−FBMAnthropo3D

VATAnthropo3D ¼ N visceral fat � Vvoxel � ρfat
SATAnthropo3D ¼ FBMAnthropo3D−VATAnthropo3D

With Nmuscle and Nfat being the number of voxels of muscle
and fat, respectively, obtained on the truncated CT, W is the
patient’s weight in g, Vvoxel is the volume of one voxel (in mil-
liliters), ρmuscle is the density ofmuscle (equal to 1.06 g/mL) [28],
and ρfat is the density of fat (equal to 0.923 g/mL) [13].

Validation of Anthropometer3D

The segmentation results of Anthropometer3D were com-
pared with two other segmentation methods. The first one is
the reference standard corresponding to the measurement of
MBMREF, FBMREF, LBMREF, VATREF, and SATREF per-
formed on the whole-body CT. Manual segmentation of the
muscles, used to determine MBMREF, and of the abdominal
cavity, used to determine VATREF and SATREF, was performed
by two physicians (one junior physician, D.T., with 3 years of
experience and one senior physician, P.D., with 7 years of
experience) using the software Seg3D 2.4 [29]. A whole-
body-shape mask was obtained by an automatic algorithm
previously described [17] and was used to calculate FBMREF

and LBMREF. To isolate tissue voxels, thresholding was ap-
plied with HU values between − 29 and + 150 for muscles and
between − 190 and − 30 for fat voxels. All the segmentations

Fig. 1 Graphical representation
of the steps of the multi-atlas
segmentation method used by
Anthropometer3D to segment the
muscles
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and masks were checked by the senior physician. The refer-
ence standard was defined as follows:

MBMREF ¼ Nmuscle � Vvoxel � ρmuscle

FBMREF ¼ N fat � Vvoxel � ρfat
LBMREF ¼ W−FBMREF

VATREF ¼ Nvisceral fat � Vvoxel � ρfat
SATREF ¼ FBMREF−VATREF

The second segmentation method is based on measure-
ments obtained from manual segmentation of one CT slice at
level L3 and the use of mathematical extrapolation formulas
given in the literature [15, 18], as follows:

MBML3

for women ¼ 0:141� Area MuscleL3 cm2
� �þ 3:79

� �� ρmuscle

for men ¼ 0:136� Area VATL3 cm2
� �þ 5:944

� �� ρmuscle

FBML3 ¼ 0:042� Area FatL3 cm2
� �þ 11:2

LBML3 ¼ 0:30� Area MuscleL3 cm2
� �þ 6:06

VATL3

for women ¼ 0:026� Area VATL3 cm2
� �þ 0:121

� �� ρ f at

f or men ¼ 0:025� Area VATL3 cm2
� �þ 0:164

� �� ρ fat

SATL3

for women ¼ 0:087� Area SATL3 cm2
� �þ 5:92

� �� ρ fat

f or men ¼ 0:078� Area SATL3 cm2
� �þ 4:487

� �� ρ fat

To evaluate Anthropometer3D, a leave-one-out cross-
validation method was used. MBMAnthopo3D, FBMAnthopo3D,
LBMAnthopo3D, VATAnthopo3D, and SATAnthopo3D of each trun-
cated CT of the 30 patients were obtained by using data (CT
atlas, masks, and extrapolation factors) of the 29 other CTs in
the database.

Statistical Analyses

Descriptive statistics of the population and results were per-
formed with continuous variables reported as mean ± standard
deviation (SD), and categorical variables were reported as
frequencies (percentages).

The agreement between the five outcomes obtained by
Anthropometer3D and the reference standard corresponding
to the whole-body manual segmentation was estimated by
computing the mean of the intra-class coefficient correlation
(ICC) and the corresponding 95% confidence interval
(95%CI) [30]. The agreement between two segmentation
methods was also studied using Bland–Altman plots [31].
Same statistical analyses were performed for the outcomes
obtained by the manual segmentation at level L3. Dice’s co-
efficients between the manually segmented voxels and the
automatically segmented voxels in the common range (from
ischium to eyes) were also calculated [32].

Statistical analyses were performed using the software R,
version 3.4.3 [33].

Results

The characteristics of the 30 patients are provided in Table 1.
The 15 women and 15 men had diverse morphotypes, as
shown by the mean BMI of 27 kg/m2, with a minimum value
of 18 kg/m2 and a maximal value of 40 kg/m2. The descriptive
statistics for all measured parameters are provided in Table 2.
According to the SD, minimal and maximal values, the distri-
bution was very variable for each parameter, in favor of a
heterogeneity of the population.

The resu l t of a pa t ien t ’s segmenta t ion us ing
Antropometer3D is provided in Fig. 2 and the segmentation
of six patients (three women and three men) with different
body shapes (from a BMI of 20.5 kg/m2 to a BMI of
39.9 kg/m2) is presented in Fig. 3.

The whole population’s mean extrapolation factor (calcu-
lated on the 30 patients with whole-body manually segment-
ed) kmuscle was equal to 1.92 (SD ± 0.08, minimal 1.78, max-
imal 2.06), whereas kfat was equal to 1.44 (SD ± 0.10, minimal
1.30, maximal 1.67).

The Bland–Altman plots between the results of the seg-
mentations obtained with Anthopometer3D and the reference
method on the one hand, and with the L3 method and the
reference method, on the other hand, are provided in Fig. 4.
The results of the Bland–Altman analysis and of ICC and the
corresponding 95%CI are presented in Table 3. The ICC be-
tween the reference standard and Anthropometer3D were all
excellent (minimal value of 95%CI of 0.97), whereas the ICC
between the reference standard and the estimation at level L3
were globally lower, notably with FBMManual_L3 (0.84),
VATManual_L3 (0.65), and SATManual_L3 (0.77). However, the
ICC between MBMREF and MBMManual_L3 was good (0.98
with 95% CI of 0.95–0.99). Concerning the Bland–Altman
plots, all mean differences between the reference standard
and Anthropometer3D were small (< 3.5% points or differ-
ence) with narrow 95% CI (maximal range of − 11.8 to +

Table 1 Patient characteristics

Mean (SD) [range],
unless otherwise stated

Age (year) 56.9 (12.8) [23–74]

Weight (kg) 75.7 (15.7) [45–116]

Size (m) 1.67 (0.07) [1.51–1.83]

Body mass index (kg/m2) 27.1 (4.6) [18.4–39.9]

Sex Men, 15 (50%)

Women, 15 (50%)

Diseases Melanoma (14)

Inflammatory disease (9)

Lymphoma (4)

Myeloma (2)

Other (1)
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1 4 . 7% f o r FBMA n t h r o p o 3 D ) . C omp a r e d w i t h
Anthropometer3D, the mean difference between the reference
standard and the manual segmentation at L3 was larger except
for SATManual_L3 (− 1.5% for SATManual_L3 vs + 2.5% for
SATAnthropometer3D), and the 95%CIs were globally larger for
all the parameters (up to − 78 to 69% for VATManual_L3).

Dice’s coefficients between the reference method and
Anthropometer3D for the three types of segmented voxels
were excellent with mean ± SD (min-max) of 0.95 ± 0.02
(0.90–0.97) for muscles, 1.00 ± 0.01 (0.97–1.00) for fat, and
0.97 ± 0.02 (0.90–0.99) for visceral adipose tissue.

Discussion

We have developed and validated a new software allowing the
automatic measurement in multi-slices of several anthropomet-
ric parameters: fat, lean, and muscle body mass, but also sub-
cutaneous and visceral adipose tissue. Anthropometer3D is
based on a multi-atlas segmentation method from CT of PET/
CT with a large range of acquisition, from the ischium to the
eyes. The measurements performed by Anthropometer3D gave
very consistent results compared with the reference method,
which was a manual segmentation of the CT over the whole

Fig. 2 Visual representation of the multi-slice and automatic segmentation of voxels of fat (green and red), muscle (purple), and visceral adipose tissue
(red) from the ischium to the eyes on a frontal, b sagittal, and c axial views of a whole-body CT

Table 2 Mean, standard
deviation, and minimal and
maximal values for LBM, FBM,
MBM, VAT, and SAT measured
manually on a whole-body CT,
estimated by Anthropometer3D
and estimated by using a slice
segmented manually at L3

Mean in kg (SD)
[min-max]

Reference standard: whole-body
manual segmentation

Anthropometer3D Manual segmentation
at level L3

LBM 47.3 (10.6) [31.6–71.9] 47.5 (10.1) [33.8–72.1] 50.6 (11.7) [34.3–82.9]

FBM 28.1 (10.2) [14.1–58.4] 27.9 (10.5) [12.2–55.2] 29.2 (6.9) [17.0–42.4]

MBM 37.8 (10.1) [22.5–63.9] 37.0 (9.8) [21.2–61.9] 43.2 (10.1) [29.0–69.4]

VAT 4.2 (2.1) [1.2–9.1] 4.3 (2.0) [1.4–8.8] 4.4 (2.2) [1.1–10.0]

SAT 23.9 (9.1) [12.5–54.8] 23.5 (9.6) [10.7–53.8] 24.4 (9.5) [10.8–53.3]

FBM fat body mass, MBM muscle body mass, LBM lean body mass, SAT subcutaneous adipose tissue, VAT
visceral adipose tissue
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body. The ICC values between the two methods were close to
1, and the Bland–Altman plots showed a small mean difference
and a narrow 95%CI for the five parameters measured com-
pared with manual whole-body segmentation. These good re-
sults can be explained by the accuracy of the MAS, but also by
the use of extrapolation factors (kmuscle and kfat), which were
relatively stable between the patients.

For patients with cancer, the measurement of anthropomet-
ric parameters is becoming increasingly important, particular-
ly to explore prognosis or to adapt treatment [34]. However,
body composition generally requires segmentation of medical
images. Multi-slice measurement is more accurate than mea-
surement of one slice, but it also takes longer when the seg-
mentation is performed manually [19]. A compromise must,
therefore, be found between the duration of the segmentation
and the accuracy of the measurement, justifying the develop-
ment of Anthropometer3D.

Many algorithms already exist to segment anthropometric
parameters on CT or MRI. Most of them are based on a 2D
segmentation method, notably at level L3 [22, 35], and their
accuracy is, therefore, limited due to the use of one slice.
Moreover, they cannot theoretically be better than a manual
mono-slice segmentation, which was used in this study to
evaluate the accuracy of a mono-slice measurement. To per-
form a 3D segmentation of these parameters, few automatic
segmentation methods have been proposed (e.g., region grow-
ing, graph cutting, fuzzy C means clustering, and MAS algo-
rithms) [22]. Most of them are based on the determination of
the muscle boundary between VAT and SAT [22]. MAS
methods have been shown to be very flexible, allowing them
to capture anatomical variations, notably between different
levels of the body, such as the abdomen and the pelvis [23],
whereas other algorithms must be adapted according to the
anatomical level [22, 24, 36].

Therefore, MAS algorithms have been used successfully to
segment multiple anthropometric parameters on MRI images
[37]. Those measurements, however, require a dedicated ex-
amination with, for example, a specific dual-echo Dixon Vibe
protocol covering the neck to the knees. Rather than using a
dedicated examination (MRI or CT), our method was devel-
oped and validated on an already existing CT of a PET/CT
acquisition, which is frequently available for patients with
cancer, avoiding an additional cost in time, personnel, money,
and potentially, radiation exposure [16]. Furthermore, the use
of a CTallows the creation of a more simplified, and therefore
robust, algorithm as the Hounsfield units of the fat and muscle
tissue are well standardized and easily isolated by
thresholding [13]. In contrast, the isolation of tissues on
MRI requires a more complex pre-processing, notably linked
to the inhomogeneities of the signal [22].

MAS can also be associated with other segmentation
methods to improve segmentation. Xu et al. have, therefore,
proposed an augmented active shape model by integrating
MAS and level set techniques into the traditional active shape
model framework [38]. On 20 CT scans, their segmentation
method on the whole abdominal wall allowed subcutaneous
and visceral fat measurement. High correlations were ob-
served between their method and the measurement derived
from manual segmentation (Pearson’s correlation coefficient
of 0.94 for the subcutaneous tissue and 0.96 for the visceral
tissue) [38] with a good Dice coefficient (0.86 ± 0.09).

With MAS algorithms, the segmentation accuracy depends
on the initial database, the registration process, the labeled
parts of the atlases, and the selection of the label. The good
performances of Anthropometer3D show that our methodo-
logical choices were relevant. The use of a rigid registration
followed by an elastic registration is a classical registration
method [23]. However, we improved this model significantly

Fig. 3 Visual representation of
the multi-slice and automatic
segmentation of voxels of
subcutaneous fat (yellow), muscle
(purple), and visceral fat (red) of
six patients (three women and
three men) with different body
mass index (BMI)
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by using the rigid registration part to calculate the extrapola-
tion factors of the body parts beyond the eyes and the ischium
and to select the ten more similar CTs having subsequent
elastic registration, therefore saving processing time. For the
elastic registration, we used the registration software
Plastimatch, which is freely available and has an implementa-
tion of the demons algorithm [39]. The results were good with
this tool, but other software and algorithms, such as Elastix
with the B-splines algorithm, could be used [17]. As the

labeled part of the atlas, we used three different types of mask
(body shape, abdominal cavity, and muscles) corresponding
more to regions than organs. The combination of multi-atlas
segmentation of regions followed by windowing based on HU
values of fat and muscle allows a better segmentation, as these
parts are anatomically more stable than organs between all
patients [17]. As shown by Morsbach et al. [40], it has to be
noted that changing the CT’s kV can have an impact on HU
values. In their study, they found that the mean attenuation

Figure 4 Bland-Altman plots of
LBM, FBM, MBM, VAT, and
SAT computed using
Anthropometer3D and a slice
segmented manually at L3 with
respect to the whole-body CT
segmented manually as the
reference standard
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coefficient for muscle was 48± 11 HU at 80 kV vs 41 ± 9 HU
at 140 kV (p < 0.01). Fat mean attenuation coefficient was −
84± 10 HU at 80 kV vs − 69± 6 HU at 140 kV (p < 0.01).
However, the impact of these differences on the surfaces mea-
sured at level L3 were quite limited, notably for the adipose
tissue: the mean total muscle area was 117 ± 35 cm2 at 80 kV
vs 123 ± 35 cm2 at 140 kV (p<0.01) and the adipose tissue
index was 54.5 ± 31.3 cm2/m2 at 80 kV vs 54.2 ± 32.6 cm2/m2

at 140 kV (p = 0.39). Yamada et al. [41] found also that vis-
ceral adipose surface was not statistically different between
standard-dose and low-dose CT. In a study evaluating the
muscles at the L3 level, Fuchs et al. found that low tube cur-
rent significantly decreased the mean total muscle by 4.79%
(6.44 cm2; minimum 3.78, maximum 9.10) [42]. However,
the impact of the tissue thresholds according to the change
of kV has yet to be evaluated for multi-slice segmentations,
an adaptation of the threshold according to kV being possibly
useful. For the selection of voxel label, we used majority vot-
ing, which is common. Other methods, such as the SIMPLE
algorithm, could be used, but the potential improvement could
be minor at the detriment of computation time [17]. We chose
a pixel size of 1.36 × 1.36 × 5 mm3 as a compromise to get a
good anatomical resolution with fast processing time. Other
pixel sizes are possible, smaller pixels being, however, prone
to increase the calculation time and larger pixels may be sub-
ject to a decrease in anatomical resolution.

Our population was morphologically very heterogeneous
with different BMIs, ages, and gender. This heterogeneity is
an advantage for the MAS method as it helps to capture mor-
phological variability. We have chosen to take normal exam-
inations to create the Anthopometer3D atlas, as this offers

better adaptability for the segmentation of new CT data (nor-
mal or with tumors).

Moreover, the Dice coefficient was maximal for fat voxels
with a mean value of 1.0. This value can be explained by the
rather similar fat voxel isolation method between the reference
standard [16] and Anthropometer3D which are notably based
on a Hounsfield threshold between − 190 and – 30 HU to
isolate fat tissues. Compared to the reference standard,
Anthropomer3D is however fully automatic and associated
with the segmentation of other tissues like muscle and visceral
adipose tissue.

Finally, if the MAS method can be quite time consuming
(approximately 25 min for each patient in our study with a
CPU of 2.5 GHz), this difference has to be tempered, as the
speed of calculation improves year after year, notably when
using graphics processing unit (GPU) implementation.
Moreover, this automatic processing time remains is not com-
parable with the manual segmentation of a whole-body CT
which, in this study, it took more than 6 h for each patient.
To improve the processing time, we are considering the use of
a 3D neural network segmentation method based on a GPU
implementation. However, this type of segmentation needs,
for the training, a far higher number of whole-body CT man-
ually segmented than MAS method which gave good results
in our study with only 30 patients manually segmented. To
compare, Lee et al. [35] used a neural network for the auto-
matic segmentation of a 2D unique abdominal slice with 250
manually segmented image slices needed for the training and a
comparable number of time consuming manually segmented
whole-body CT can be expected for a 3D whole-body
segmentation.

Conclusion

Anthropometer3D allows automatic measurement of multiple
anthropometric parameters based on a multi-slice segmenta-
tion. It is more precise than estimates generally made using
segmentation at the L3 level. This tool could be applied auto-
matically on large clinical databases, notably to explore new
prognostic factors.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

1. Prado CMM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB,
Martin L et al.: Prevalence and clinical implications of sarcopenic
obesity in patients with solid tumours of the respiratory and gastro-
intestinal tracts: A population-based study. Lancet Oncol 9:629–
635, 2008

Table 3 ICC and Bland–Altman plot results (mean difference and
95%CI) for FBM, LBM, MBM, VAT, and SAT estimated by
Anthropometer3D and a slice segmented manually at L3 with respect to
the whole-body CT segmented manually as the reference standard

Anthropometer3D Manual segmentation at L3

ICC between the reference standard and the tested method

LBM 0.99 (0.97–0.99) 0.93 (0.86–0.97)

FBM 0.99 (0.97–0.99) 0.84 (0.68–0.92)

MBM 0.99 (0.97–0.99) 0.98 (0.95–0.99)

VAT 0.99 (0.98–1.00) 0.65 (0.39–0.82)

SAT 0.99 (0.98–1.00) 0.77 (0.57–0.88)

Bland–Altman plot: mean difference (in %) [95%CI]

LBM − 0.7 [− 8.5; 7.2] − 6.7 [− 21.4; 8.1]

FBM 1.5 [− 11.8; 14.7] − 6.9 [− 38.9; 25.2]

MBM 1.8 [− 7.1; 10.8] 14.3 [− 27.4; − 1.3]

VAT − 3.3 [− 13.9; 7.2] − 4.4 [− 78.2; 69.3]

SAT 2.5 [− 10.2; 15.2] − 1.5 [− 55.9; 52.9]

FBM fat body mass,MBMmuscle body mass, LBM lean body mass, SAT
subcutaneous adipose tissue, VAT visceral adipose tissue

248 J Digit Imaging (2019) 32:241–250



2. Bye A, Sjøblom B, Wentzel-Larsen T, Grønberg BH, Baracos VE,
Hjermstad MJ, Aass N, Bremnes RM, Fløtten Ø, Jordhøy M:
Muscle mass and association to quality of life in non-small cell lung
cancer patients. J Cachexia Sarcopenia Muscle 8:759–767, 2017

3. Lieffers JR, Bathe OF, Fassbender K, Winget M, Baracos VE:
Sarcopenia is associated with postoperative infection and delayed
recovery from colorectal cancer resection surgery. Br J Cancer 107:
931–936, 2012

4. Blauwhoff-Buskermolen S, Versteeg KS: de van der Schueren
MAE, den braver NR, Berkhof J, Langius JAE, et al. loss of muscle
mass during chemotherapy is predictive for poor survival of pa-
tients with metastatic colorectal Cancer. J Clin Oncol 34:1339–
1344, 2016

5. ShenW,Wang Z, Punyanita M, Lei J, Sinav A, Kral JG, Imielinska
C, Ross R, Heymsfield SB: Adipose tissue quantification by imag-
ing methods: A proposed classification. Obes Res 11:5–16, 2003

6. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F,
Straif K: Body fatness and Cancer — Viewpoint of the IARC
working group. N Engl J Med 375:794–798, 2016

7. Gouérant S, Leheurteur M, Chaker M, Modzelewski R, Rigal O,
Veyret C et al.: A higher body mass index and fat mass are factors
predictive of docetaxel dose intensity. Anticancer Res 33:5655–
5662, 2013

8. Camus V, Lanic H, Kraut J, Modzelewski R, Clatot F, Picquenot
JM, Contentin N, Lenain P, Groza L, Lemasle E, Fronville C,
Cardinael N, Fontoura ML, Chamseddine A, Brehar O,
Stamatoullas A, Leprêtre S, Tilly H, Jardin F: Prognostic impact
of fat tissue loss and cachexia assessed by computed tomography
scan in elderly patients with diffuse large B-cell lymphoma treated
with immunochemotherapy. Eur J Haematol 93:9–18, 2014

9. Iwase T, Sangai T, Nagashima T, Sakakibara M, Sakakibara J,
Hayama S, Ishigami E, Masuda T, Miyazaki M: Impact of body
fat distribution on neoadjuvant chemotherapy outcomes in ad-
vanced breast cancer patients. Cancer Med 5:41–48, 2016

10. Gu W, Zhu Y, Wang H, Zhang H, Shi G, Liu X, Ye D: Prognostic
value of components of body composition in patients treated with
targeted therapy for advanced renal cell carcinoma: A retrospective
case series. PLoS One 10:e0118022, 2015

11. Slaughter KN, Thai T, Penaroza S, Benbrook DM, Thavathiru E,
Ding K, Nelson T, McMeekin DS, Moore KN: Measurements of
adiposity as clinical biomarkers for first-line bevacizumab-based
chemotherapy in epithelial ovarian cancer. Gynecol Oncol 133:
11–15, 2014

12. Buckinx F, Landi F, Cesari M, Fielding RA, Visser M, Engelke K,
Maggi S, Dennison E, al-Daghri NM, Allepaerts S, Bauer J,
Bautmans I, Brandi ML, Bruyère O, Cederholm T, Cerreta F,
Cherubini A, Cooper C, Cruz-Jentoft A, McCloskey E, Dawson-
Hughes B, Kaufman JM, Laslop A, Petermans J, Reginster JY,
Rizzoli R, Robinson S, Rolland Y, Rueda R, Vellas B, Kanis JA:
Pitfalls in the measurement of muscle mass: A need for a reference
standard. J Cachexia Sarcopenia Muscle 9:269–278, 2018

13. Chowdhury B, Sjöström L, Alpsten M, Kostanty J, Kvist H:
Löfgren R. A multicompartment body composition technique
based on computerized tomography. Int J Obes Relat Metab
Disord 18:219–234, 1994

14. Malnick SDH,Melzer E: It is not ethical to perform a CTscan purely
for determining visceral fat. J Clin Gastroenterol 50:352, 2016

15. Mourtzakis M, Prado CMM, Lieffers JR, Reiman T, McCargar LJ,
Baracos VE: A practical and precise approach to quantification of
body composition in cancer patients using computed tomography
images acquired during routine care. Appl Physiol Nutr Metab 33:
997–1006, 2008

16. Decazes P, Métivier D, Rouquette A, Talbot JN, Kerrou K: Method
to improve the semiquantification of 18F-FDG uptake: Reliability
of the estimated lean body mass using the conventional, low-dose
CT from PET/CT. J Nucl Med 57:753–758, 2016

17. Decazes P, Rouquette A, Chetrit A, Vera P, Gardin I: Automatic
measurement of the total visceral adipose tissue from computed
tomography images by using a multi-atlas segmentation method. J
Comput Assist Tomogr 42:139-145, 2018

18. Schweitzer L, Geisler C, Pourhassan M, Braun W, Glüer C-C,
Bosy-Westphal A, Müller MJ: What is the best reference site for a
single MRI slice to assess whole-body skeletal muscle and adipose
tissue volumes in healthy adults? Am J Clin Nutr 102:58–65, 2015

19. ShenW, Chen J, GantzM, Velasquez G, PunyanityaM, Heymsfield
SB: A single mri slice does not accurately predict visceral and
subcutaneous adipose tissue changes during weight loss. Obesity
20:2458–2463, 2012

20. Thomas EL, Bell JD: Influence of undersampling on magnetic res-
onance imaging measurements of intra-abdominal adipose tissue.
Int J Obes Relat Metab Disord 27:211–218, 2003

21. Schaudinn A, Linder N, Garnov N, Kerlikowsky F, Blüher M,
Dietrich A, Schütz T, Karlas T, Kahn T, Busse H: Predictive accu-
racy of single- and multi-slice MRI for the estimation of total vis-
ceral adipose tissue in overweight to severely obese patients. NMR
Biomed 28:583–590, 2015

22. HuHH, Chen J, ShenW: Segmentation and quantification of adipose
tissue by magnetic resonance imaging. MAGMA 29:259–276, 2016

23. Iglesias JE, Sabuncu MR: Multi-atlas segmentation of biomedical
images: A survey. Med Image Anal 24:205–219, 2015

24. Kullberg J, Johansson L, Ahlström H, Courivaud F, Koken P,
Eggers H, Börnert P: Automated assessment of whole-body adi-
pose tissue depots from continuously moving bed MRI: A feasibil-
ity study. J Magn Reson Imaging 30:185–193, 2009

25. Karlsson A, Rosander J, Romu T, Tallberg J, Grönqvist A, Borga
M, Dahlqvist Leinhard O: Automatic and quantitative assessment
of regional muscle volume by multi-atlas segmentation using
whole-body water-fat MRI. J Magn Reson Imaging 41:1558–
1569, 2015

26. Anthropometer 3D | Automatic 3D anthropometry from medical
images [Internet]. [accessed 2018 May 28]. Available from:
https://www.anthropometer3d.org/

27. Taha AA, Hanbury A: Metrics for evaluating 3D medical image
segmentation: Analysis, selection, and tool. BMCMed Imaging 15:
29, 2015

28. J Mendez, Keys A. Density and composition of mammalian mus-
cle. Metabolism. 9:184-188, 1960

29. Seg3D [Internet]. [accessed 2018 Feb 5]. Available from: http://
www.sci.utah.edu/cibc-software/seg3d.html

30. Lee J, Koh D, Ong CN: Statistical evaluation of agreement between
two methods for measuring a quantitative variable. Comput Biol
Med 19:61–70, 1989

31. Bland JM, Altman DG: Statistical methods for assessing agreement
between twomethods of clinicalmeasurement. Lancet 1:307–310, 1986

32. Dice LR: Measures of the amount of ecologic association between
species. Ecology 26:297–302, 1945

33. Team RDC: R: A language and environment for statistical comput-
ing [Internet] [accessed 2018 May 28]. Vienna: R Foundation for
Statistical Computing, 2008, Available from: http://www.R-project.
org

34. Jacquelin-Ravel N, Pichard C: Clinical nutrition, body composition
and oncology: A critical literature review of the synergies. Crit Rev
Oncol Hematol 84:37–46, 2012

35. Lee H, Troschel FM, Tajmir S, Fuchs G, Mario J, Fintelmann FJ,
Do S: Pixel-level deep segmentation: Artificial intelligence quan-
tifies muscle on computed tomography for body morphometric
analysis. J Digit Imaging 30:487–498, 2017

36. Kullberg J, Hedström A, Brandberg J, Strand R, Johansson L,
Bergström G, Ahlström H: Automated analysis of liver fat, muscle
and adipose tissue distribution from CT suitable for large-scale
studies. Sci Rep 7:10425, 2017

249J Digit Imaging (2019) 32:241–250

https://www.anthropometer3d.org/
http://www.sci.utah.edu/cibc-software/seg3d.html
http://www.sci.utah.edu/cibc-software/seg3d.html
http://www.R-project.org
http://www.R-project.org


37. Middleton MS, Haufe W, Hooker J, Borga M, Dahlqvist Leinhard
O, Romu T, Tunón P, Hamilton G,Wolfson T, Gamst A, LoombaR,
Sirlin CB: Quantifying abdominal adipose tissue and thigh muscle
volume and hepatic proton density fat fraction: Repeatability and
accuracy of an MR imaging-based, Semiautomated analysis meth-
od. Radiology 283:438–449, 2017

38. Xu Z, Conrad BN, Baucom RB, Smith SA, Poulose BK, Landman
BA: Abdomen and spinal cord segmentation with augmented active
shape models. J Med Imaging (Bellingham) 3:036002, 2016

39. Sharp GC, Peroni M, Li R, Shackleford J, Kandasamy N:
Evaluation of plastimatch B-spline registration on the EMPIRE10
data set. Medical Image Analysisfor the Clinic: A Grand Challenge
99–108, 2010

40. Morsbach F, ZhangY-H,Nowik P,Martin L, Lindqvist C, Svensson
A, Brismar TB: Influence of tube potential onCT body composition
analysis. Nutrition 53:9–13, 2018

41. Yamada Y, Jinzaki M, Niijima Y, Hashimoto M, Yamada M, Abe T,
Kuribayashi S: CT dose reduction for visceral adipose tissue mea-
surement: Effects of model-based and adaptive statistical iterative
reconstructions and filtered Back projection. AJR Am J Roentgenol
204:W677–W683, 2015

42. Fuchs G, Chretien YR, Mario J, Do S, Eikermann M, Liu B, Yang
K, Fintelmann FJ: Quantifying the effect of slice thickness, intra-
venous contrast and tube current on muscle segmentation:
Implications for body composition analysis. Eur Radiol 28:2455–
2463, 2018

250 J Digit Imaging (2019) 32:241–250


	Anthropometer3D: Automatic Multi-Slice Segmentation Software for the Measurement of Anthropometric Parameters from CT of PET/CT
	Abstract
	Background
	Methods
	Population
	Anthropometer3D
	Validation of Anthropometer3D
	Statistical Analyses

	Results
	Discussion
	Conclusion
	References


