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Abstract
Deep learning for MRI detection of sports injuries poses unique challenges. To address these difficulties, this study examines the
feasibility and incremental benefit of several customized network architectures in evaluation of complete anterior cruciate
ligament (ACL) tears. Two hundred sixty patients, ages 18–40, were identified in a retrospective review of knee MRIs obtained
from September 2013 to March 2016. Half of the cases demonstrated a complete ACL tear (624 slices), the other half a normal
ACL (3520 slices). Two hundred cases were used for training and validation, and the remaining 60 cases as an independent test
set. For each exam with an ACL tear, coronal proton density non-fat suppressed sequence was manually annotated to delineate:
(1) a bounding-box around the cruciate ligaments; (2) slices containing the tear. Multiple convolutional neural network (CNN)
architectures were implemented including variations in input field-of-view and dimensionality. For single-slice CNN architec-
tures, validation accuracy of a dynamic patch-based sampling algorithm (0.765) outperformed both cropped slice (0.720) and full
slice (0.680) strategies. Using the dynamic patch-based sampling algorithm as a baseline, a five-slice CNN input (0.915)
outperformed both three-slice (0.865) and single-slice (0.765) inputs. The final highest performing five-slice dynamic patch-
based sampling algorithm resulted in independent test set AUC, sensitivity, specificity, PPV, and NPV of 0.971, 0.967, 1.00,
0.938, and 1.00. A customized 3D deep learning architecture based on dynamic patch-based sampling demonstrates high
performance in detection of complete ACL tears with over 96% test set accuracy. A cropped field-of-view and 3D inputs are
critical for high algorithm performance.
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Background

Anterior cruciate ligament tear is a common, important sports
injury in adolescents and young adults. A recently published
cohort study spanning over two decades discovered an inci-
dence of 68.6 per 100,000 person-years in the general popu-
lation with peak incidence in adolescents and young adults
[1]. Sports injuries are the main source of ACL tears which
result in surgery and, in the general population, males have a
higher incidence of ACL ruptures than females [2]. This seri-
ous diagnosis often requires surgical intervention such as

reconstruction or enhanced primary repair to mitigate the risk
of subsequent osteoarthritis and chronic instability [3–6].
Furthermore, even with surgical repair, return to sport may
be compromised [7].

Accurate, reproducible diagnosis of a complete ACL tear is
important for therapeutic decision-making. While a clinical
exam, including Lachman and Pivot Shift tests, by an experi-
enced sports medicine physician is essential in post injury
evaluation, magnetic resonance imaging is routinely used to
confirm suspected diagnosis and to assess for concomitant
injuries. MRI imaging is sensitive, specific, and accurate in
diagnosing ACL tears [8], especially for an experienced,
musculoskeletal-trained radiologist. However, making an ac-
curate diagnosis may still be challenging for a non-MSK ra-
diologist, a trainee on call, or a clinician in a rural area without
access to subspecialty radiology. Accordingly, one purpose of
this study is to demonstrate feasibility of a fully automated
tool for detection of complete ACL tears.

Deep learning is a powerful, emerging branch of machine
learning that has in recent years yielded breakthroughs in
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computer vision benchmarks [9]. The primary advantage of
deep learning through convolutional neural networks (CNN)
is the ability of the algorithm to learn high-order, semantically
meaningful patterns in data without any explicit human pro-
gramming. Instead, through repeated exposures of input data
and desired output, the algorithm is able to iteratively readjust
its own neural connections until an abstract, complex repre-
sentation of the data is learned. This technology underlies
almost all of the most recent advances in artificial intelligence
over the past several years, from self-driving cars to voice and
facial recognition—tasks that just a decade ago would have
been impossible.

Given the potential of deep learning technology, there has
been a surge of interest to apply it in the healthcare field.
However, application of deep learning for MRI detection of
sports injuries poses several unique challenges. First, many
sports injuries such as ligament and meniscal tears are subtle
abnormalities that represent only a small fraction of the overall
3D imaging volume. Second, the abnormality itself may be
difficult to assess on a single 2D image slice, as the 3D orien-
tation of the ligament fibers is an important consideration
when making the diagnosis. Given these challenges, we hy-
pothesize that a standard network classifier trained slice-by-
slice will demonstrate suboptimal performance in this specific
interpretative task. Accordingly, this study evaluates the incre-
mental benefit of several customized network architectures
with variations in input field-of-view (full slice, cropped slice,
dynamic patch-based sampling) and dimensionality (single
slice, three slices, five slices) for detection of complete ACL
tears. While semi-automated detection of anterior cruciate lig-
ament injuries using support vector machine and random for-
est techniques has recently been described [10], to the best of
our knowledge, this study is the first to use deep learning to
assess the ACL.

Methods

Patient Selection and Annotation

After IRB approval, an institutional database was queried for
knee MRIs obtained between September 2013 and
March 2016. Based on keyword search, patients between 18
and 40 years old with a complete ACL tear were identified. A
corresponding control group of normal patients in the same
age range but with noACL pathology was identified. All ACL
diagnoses were confirmed through visual inspection by a
board-certified subspecialist musculoskeletal radiologist
(MJR). Cases with other ACL pathology such as partial tears
or mucoid degeneration were excluded.

For each exam, the coronal proton density (PD) non-fat
suppressed sequence was downloaded. Each exam containing
an ACL tear was manually annotated by a board-certified

subspecialist musculoskeletal radiologist (MJR) to delineate
(1) a bounding box for each slice containing cruciate liga-
ments and (2) slices containing a complete ACL tear. All
ACL tears were manually annotated using 3D Slicer software
(version 4.6).

Our tertiary medical center has MR scanners from General
Electric and Siemens. Imaging parameters for a 3T Coronal
PD fast spin echo (FSE) sequence include: field-of-view =
16 cm, TE = 20, TR = 3000, slice thickness = 3 mm, gap =
0.3 mm, echo train length = 7, flip angle = 90, frequency =
320, phase = 224, and NEX = 1–4. Imaging parameters for a
1.5T Coronal PD FSE sequence include: field-of-view =
16 cm, TE = min, TR = 3000, slice thickness = 3 mm, gap =
0.3 mm, echo train length = 7, flip angle = 90, frequency =
384–320, phase = 256, NEX = 1–4.

Image Preprocessing

All rawMRI volumes were resampled to an in-plane (coronal)
resolution of 256 × 256 voxels, without change in the overall
number of slices in each series. Subsequently, all volumes
were independently normalized using a simple z-score map
by subtracting the mean intensity value and dividing by the
standard deviation. The histogram metrics for mean and stan-
dard deviation were calculated after excluding all outlier in-
tensity values below the 1st percentile or above the 99th
percentile.

Convolutional Neural Network

To evaluate differences in algorithm accuracy with respect to
the input field-of-view, three different architectures were cre-
ated comprising of several shared networks and blocks shown
in Fig. 1 (A–B). First, the entire uncropped MRI slices were
used in a simple CNN classifier for determining presence or
absence of ACL tear on a slice-by-slice basis. This network
was based on a custom ResNet-derived architecture (Fig. 1
(C)) [11]. For the second network, a two-part architecture
was implemented whereby an initial localization network
was used to detect and generate cropped images of the cruciate
ligaments, and a subsequent classifier network was used to
determine presence or absence of an ACL tear. The object
localization CNN was implemented as a fully convolutional
network based on U-net architecture [12], while the classifier
CNN was implemented with only minor modifications to the
custom ResNet-derived architecture used in the first network
(Fig. 1 (D)).

The third network was identical to the second network;
however, for the classification CNN, dynamically sampled
randomly cropped patches without cruciate ligaments were
also used as a new, third class for training (Fig. 1 (E)).
Accordingly, this classification network was required to
choose from one of three labels: ACL with tear, ACL without
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tear, and non-ACL image. Given the small number of training
cases in this dataset, the addition of patches without cruciate
ligaments significantly increases the diversity of training cases
for network learning.

For the classifier network and the contracting pathway of
the localizer network, a common shared residual block was
defined by a series of 3 × 3 convolutions whose input and
outputs were connected by a residual addition operation
(Fig. 1 (A)). In each residual block, the second 3 × 3 convo-
lution is applied with a stride of 2 along the image height and
width to decrease corresponding feature maps by 50% along
each dimension. In order to match the input and output feature
maps, a 2 × 2 average pool is applied to the input feature map
prior to addition. For the expanding pathway of the localizer
network, the strided convolutions are replaced by
convolutional transpose operations to expand (rather than de-
crease) feature map size.

The highest performing of these initial three architectures
was then used as the base for experiments to evaluate

differences in algorithm accuracy with respect to image di-
mensionality. In addition to the original 2D (single slice) in-
put, additional networks were created using three-slice and
five-slice inputs. For these 3D architectures, feature map di-
mensionality was decreased in the out-of-plane (anterior-
posterior) direction using occasional convolutions with valid
padding.

Implementation Details

The network was trained from random weights initialized
using the heuristic described by He et al. [13]. The final loss
function included a term for L2 regularization to prevent
overfitting of data by limiting the squared magnitude of the
convolutional weights. Gradients for backpropagation were
estimated using the Adam optimizer, an algorithm for first-
order gradient-based optimization of stochastic objective
functions based on adaptive estimates of lower-order mo-
ments [14]. An initial learning rate of 0.001 was used and
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Fig. 1 Overview of network architectures. Two convolutional neural
networks (classifier, localizer) and common shared operational blocks
are used in various combinations to create three different algorithms for
detection of ACL tear. (a) The classifier is defined using a single 7 × 7
convolutional filter with stride 2, followed by a series of residual blocks.
The resulting 4 × 4 feature map is collapsed using an average pool oper-
ation. (b) The localizer is a fully convolutional U-Net–derived architec-
ture composed primarily of the same residual blocks used by the

classifier. In the expanding pathway, the strided convolutions are replaced
by convolutional transpose operations to increase feature map size. (c) In
the first algorithm, entire MRI slices were used by the classifier alone to
predict ACL tear. (d) In the second algorithm, an initial localizer was used
to generate cropped images of the cruciate ligaments, and a subsequent
classifier was used to predict ACL tear. (E) In the third algorithm, dy-
namically sampled randomly cropped patches without cruciate ligaments
were used as an additional class for training to promote image diversity



annealed (along with an increase in mini-batch size) whenever
a plateau in training loss was observed.

Software code for this study was written in Python 3.5
using the open-source TensorFlow r1.2 library (Apache 2.0
license) [15]. Training was performed on a GPU-optimized
workstation with a single NVIDIA GeForce GTX Titan X
(12GB, Maxwell architecture).

Statistics

Algorithm accuracy was assessed using per-patient binary
classification of presence (one or more abnormal slices) or
absence of ACL tear. Additional performance statistics are
reported for sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV).

During the training phase, a fivefold cross-validation para-
digm was used whereby 80% of the data was randomly
assigned into the training cohort while the remaining 20%
was used for validation. This process was then repeated five
times until each exam in the entire training dataset was used
for validation once. Final results below are reported for the
cumulative validation set statistics across the entire training
dataset. Additionally, statistics for the top-performing network
are also reported for a third independent test set.

Results

Cohorts

A total of 260 patients were included in the analysis, 130 of
which had an ACL tear and 130 of which were without ACL
pathology. These 260 MRI volumes yielded a total of 4144
coronal PD slices, 624 slices of which contained an ACL tear.
Of these, 200 cases (100 each of normal and torn ACLs) were
used for initial training and validation, while a separate group
of 60 cases was used as a final independent test set.

Accuracy Stratified by Field-of-View

Overall, cross-validation accuracy for detection of ACL injury
was higher for networks using images cropped to the cruciate
ligaments (0.720–0.765) compared to networks using un-
cropped full slice inputs (0.68). For the two networks with
cropped inputs, addition of dynamically sampled non-ACL
patches overall improved algorithm performance, with accu-
racy, sensitivity, specificity, PPV, and NPV of 0.765, 0.790,
0.740, 0.752, and 0.779 respectively. By comparison, without
dynamic sampling, performance statistics for the samemetrics
were 0.680, 0.670, 0.690, 0.684, and 0.676 respectively. Full
cross-validation performance statistics are shown in Table 1.

Accuracy Stratified by Dimensionality

The top-performing network based on cropped images with
dynamic sampling was used as the base architecture for ex-
periments to evaluate algorithm accuracy with respect to input
image dimensionality. Overall, algorithm performance im-
proved with incremental increase in number of input slices,
with cross-validation accuracy of the five-slice network
(0.915) better than the three-slice (0.865) or single-slice
(0.765) models. Corresponding sensitivity, specificity, PPV,
and NPV of the five-slice model was 0.940, 0.890, 0.895,
and 0.937, respectively. Full cross-validation performance sta-
tistics are shown in Table 1.

Finally, the top-performing five-slice network with dynam-
ic sampling was evaluated on the independent test set of 60
new patients. Performance statistics for corresponding accu-
racy, sensitivity, specificity, PPV, and NPVof this model was
0.967, 1.00, 0.933, 0.938, and 1.00, respectively.

Algorithm Training

The CNN models were trained for an average of 500 epochs
with a batch size of 32. During inference, the final trained
networks can generate predictions in approximately 1.4 s per
patient.

Discussion

In this study, we demonstrate the feasibility of training a deep
learning CNN algorithm to identify the presence of a complete
ACL tear with over 96% test set accuracy. Furthermore, we
explore various network architectures customized to address
the unique challenges of MRI detection of sports injuries.
First, we demonstrate the importance of limiting the input
field-of-view to the intercondylar region for high algorithm
performance. Second, we demonstrate the incremental value
of contextual information of adjacent image slices in improv-
ing network classification accuracy.

Limiting the input field-of-view through image cropping
improves algorithm performance in detection of subtle MRI
abnormalities by reducing the image search space. Compared
to non-medical image interpretation tasks which tend to rely
primarily on global features, pathology on MRI is often local-
ized to small image regions. This is especially true for MRI
evaluation of musculoskeletal injuries where many relevant
anatomic structures including ligaments, tendons, and menisci
are relatively small or have a thin morphology. While deep
learning is a very powerful technique, in theory capable of
identifying even subtle imaging patterns, increasing amounts
of training data are required for detection of progressively
smaller image features. Due to the scarcity of high-quality
annotated medical images, including the relatively small
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dataset in this study, cropping the MRI slices to known ana-
tomic landmarks significantly improves algorithm perfor-
mance (0.680 versus 0.720–0.765).

Another unique feature of medical cross-sectional imaging
volumes is the evaluation and interpretation of 3D data. While
for certain applications a simplified 2D approach may be ap-
propriate, musculoskeletal injuries are often dependent on
synthesis of 3D contextual information. This is especially true
for ACL tears, where the oblique 3D orientation of the liga-
ment fibers is a critical consideration in making the diagnosis
(e.g., identifying fiber discontinuity requires assessing the tra-
jectory of the ligament on multiple contiguous slices). This
hypothesis was confirmed in our study, showing that incre-
mental addition of extra slices for network input yielded pro-
gressive improvement in accuracy, from 0.765 (1-slice) to
0.865 (3-slice) to 0.915 (5-slice).

In general, the top-performing five-slice network architec-
ture demonstrated very few classification errors. During initial
cross-validation, only 6/100 ACL tears were missed, with 11/
100 normal patients misclassified as having a ligament injury.
During final test set evaluation, all 30/30 ACL tears were
correctly identified, with only 2/30 normal patients
misclassified as false positives. Based on visual assessment
of the false negatives, some cases of missed ACL tears dem-
onstrated intermediate signal disrupted fibers rather than a
more obvious high signal gap in the fibers. In addition, in
some missed cases, the tear occurred at the notch origin
(Fig. 2). The notch origin tears are more difficult to detect

by human readers and occur less frequently, including in our
training dataset. Based on visual assessment of the false pos-
itives, some cases demonstrated intermediate signal but intact
fibers along a segment of the ACL which may have reflected
mild focal intrasubstance degeneration rather than a tear
(Fig. 3).

Despite the overall high algorithm performance of cross-
validation and test set cohorts, there remain several key limi-
tations of this study. First, given the relatively low prevalence
of complete ACL tears, the identified patient cohorts used in
this study were balanced such that an equal number of injured
and normal knee MRIs were used for algorithm development
and testing. Given this, the overall PPV for this algorithm
would be much lower in an unbalanced patient population
reflective of the true prevalence of ruptured ACLs.
Furthermore, because of the relatively small number of slices
containing an ACL tear even in a balanced patient population
(624 out of 4144 slices), classifier networks were trained with
stratified sampling such that approximately an equal number
of abnormal and normal slices (or patches) were present in
each mini-batch. The consequence of this strategy is that, in
general, most networks were slightly biased towards high sen-
sitivity (Table 1). A high-sensitivity algorithm, however, may
be desired in certain clinical use case scenarios, as highlighted
in final test set performance where the algorithm did not miss
any ACL tears but identified two false-positive cases.

We used coronal PD non-fat suppressed images for training
and testing the network. We chose the coronal imaging plane

Table 1 Network accuracies
Slices Set Accuracy Sensitivity Specificity PPV NPV

Uncropped 1 CV 0.680 0.670 0.690 0.684 0.676

Cropped 1 CV 0.720 0.710 0.730 0.724 0.716

Cropped + dynamic 1 CV 0.765 0.790 0.740 0.752 0.779

3 CV 0.865 0.890 0.840 0.848 0.884

5 CV 0.915 0.940 0.890 0.895 0.937

5 Test 0.967 1.00 0.933 0.938 1.00

CV, cross-validation; Test, test set; PPV, positive predictive value; NPV, negative predictive value
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Fig. 2 Deep learning predictions, false negatives. Coronal PD images of
the knee demonstrating false negative network predictions. Some cases of
missed ACL tear demonstrated intermediate signal disrupted fibers (a–c)

or tear at the notch origin of the ACL (d). Notch origin tears occur less
frequently and are more difficult for human readers to diagnose



because it allows the radiologist to trace ACL fibers from
origin to insertion in every case regardless of the differences
in obliquity of the prescribed plane. Network performance
may change if it is trained on images of knees acquired in
other planes. Future experiments could examine performance
of the network trained on images acquired in sagittal and axial
planes, with and without fat suppression.

The proposed deep learning solution for identification of
complete ACL tears is presented as proof of concept for ap-
plication of this new technology to MRI evaluation of muscu-
loskeletal sports injuries. Further research will focus on appli-
cation of deep learning to more subtle injuries including
sprains, partial-thickness tendon and ligaments tears, chondral
defects, bone contusions, and meniscal tears which would
make it more clinically useful. Eventually, we hope to synthe-
size detection of these individual image findings using deep
learning approaches to generate a coherent overall diagnosis
of an injured joint. Furthermore, to improve generalizability
on a variety of magnetic field strengths, scanning protocols,
and MRI vendors, the work may be expanded to include mul-
tiple academic institutions and smaller community hospitals.
Developing new algorithms on these larger datasets, with im-
aging at multiple time points and with various clinical data
inputs, may also yield insight into patient outcome and prog-
nosis based on the initial injury pattern.

While the detection of complete ACL tears is not a diag-
nostic challenge for subspecialized musculoskeletal radiolo-
gists, there are nonetheless several potential clinical use case
scenarios for the proposed fully automated deep learning al-
gorithm. First, an accurate diagnostic software tool may assist
non-MSK trained radiologists, trainees and clinicians in low-
access medical settings to evaluate injured knees for ACL
ruptures, providing a Bsecond-reader opinion^ when subspe-
cialty radiology interpretation is not readily available.
Furthermore, while optimal timing of ACL reconstruction
post injury remains controversial, evidence suggests that de-
layed surgery increases the risk of chondral and meniscal
damage [16, 17]. In this context, a fully automated deep learn-
ing tool could help to triage acute knee injuries for expedited
orthopedic surgical evaluation.

Deep learning technology offers tremendous potential to
significantly improve the diagnostic accuracy and
workflow of radiologists [18]. In this study, we demon-
strate the feasibility of a high-performing CNN tool to de-
tect complete ACL injury with over 96% test set accuracy.
However, given the unique challenges of automated sports
injury detection on MRI, deliberate customized network
architectural choices are required for high algorithm per-
formance, which in this study included a dynamic patch-
based sampling strategy with a five-slice 3D input. Future
directions include further algorithm development on ex-
panded datasets for comprehensive evaluation of sports-
related musculoskeletal pathologies.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.
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