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Abstract
The volume of pelvic hematoma at CT has been shown to be the strongest independent predictor of major arterial injury requiring
angioembolization in trauma victimswith pelvic fractures, and also correlateswith transfusion requirement andmortality.Measurement
of pelvic hematomas (unopacified extraperitoneal blood accumulated from time of injury) using semi-automated seeded region
growing is time-consuming and requires trained experts, precluding routine measurement at the point of care. Pelvic hematomas are
markedly variable in shape and location, have irregular ill-defined margins, have low contrast with respect to viscera and muscle, and
residewithin anatomically distorted pelvises. Furthermore, pelvic hematomas occupy a small proportion of the entire volume of a chest,
abdomen, and pelvis (C/A/P) trauma CT. The challenges are many, and no automated methods for segmentation and volumetric
analysis have been described to date. Traditional approaches using fully convolutional networks result in coarse segmentations and
class imbalance with suboptimal convergence. In this study, we implement a modified coarse-to-fine deep learning approach—the
Recurrent Saliency Transformation Network (RSTN) for pelvic hematoma volume segmentation. RSTN previously yielded excellent
results in pancreas segmentation, where low contrast with adjacent structures, small target volume, variable location, and fine contours
are also problematic. We have curated a unique single-institution corpus of 253 C/A/P admission trauma CT studies in patients with
bleeding pelvic fractures with manually labeled pelvic hematomas. We hypothesized that RSTNwould result in sufficiently high Dice
similarity coefficients to facilitate accurate and objective volumetric measurements for outcome prediction (arterial injury requiring
angioembolization). Cases were separated into five combinations of training and test sets in an 80/20 split and fivefold cross-validation
was performed. Dice scores in the test set were 0.71 (SD± 0.10) using RSTN, compared to 0.49 (SD± 0.16) using a baseline Deep
Learning Tool Kit (DLTK) reference 3D U-Net architecture. Mean inference segmentation time for RSTN was 0.90 min (± 0.26).
Pearson correlation between predicted and manual labels was 0.95 with p < 0.0001. Measurement bias was within 10 mL. AUC of
hematoma volumes for predicting need for angioembolization was 0.81 (predicted) versus 0.80 (manual). Qualitatively, predicted
labels closely followed hematoma contours and avoided muscle and displaced viscera. Further work will involve validation using a
federated dataset and incorporation into a predictive model using multiple segmented features.
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Introduction

Arterial hemorrhage associated with pelvic fractures is a lead-
ing but reversible cause of death following blunt trauma, with
mortality rates of 5–15% in initially hemodynamically stable
patients [1, 2] and up to 54% in patients with initial hemody-
namic compromise [3–5]. Early detection of arterial hemor-
rhage at contrast-enhanced CT promotes timely intervention,
typically with angioembolization [6]. Objective and accurate
radiologist prediction ofmajor arterial bleeding is challenging.
Active arterial extravasation may be intermittent for a variety
of reasons, including episodic vascular thrombosis, hypoten-
sion, tamponade, and vessel spasm, and contrast extravasation
(CE) may not be present on CT [7]. Several studies have
shown that pelvic hematoma volume (i.e., the total amount
of accumulated blood in the pelvis from the time of injury to
CT), segmented using manual [8] and semi-automated label-
ing [9], is a highly accurate predictor of the need for
angioembolization and correlates with transfusion require-
ment and mortality. In a multivariable CT prediction model
of major arterial injury (including hematoma volume, CE,
pelvic fracture patterns, and degree of atherosclerosis), hema-
toma volume was the strongest predictor [9]. However, man-
ual labeling requires substantial time effort that precludes use
at the point of care in a busy trauma referral center setting,
while semi-automated region-growing methods are user-
dependent and technical proficiency is uncommon.
Shorthand diameter-based size estimates have been shown to
be inaccurate [10]. Qualitative assessment (e.g., small, mod-
erate, large) is commonly employed in the clinical setting but
is highly subjective.

Deep learning using convolutional neural networks
(CNNs) has become the most widely used and robust method
for image segmentation and classification tasks [11, 12].
CNNs capture low-level multidimensional imaging data from
input images by a series of linear operations (filters or ker-
nels). The receptive field of the filter convolves along succes-
sive positions of the image matrix to produce feature maps,
which serve as the input for deeper convolutional layers. The
contracting path of a convolutional neural network employs
downsampling (pooling) operations that increase the receptive
field of the filter providing global, contextually rich informa-
tion, but information about local dependencies and fine detail
is lost. Both low-level semantic information (e.g., edges, gra-
dients, texture, and intensity) and contextually rich high-level
information related to gross structure and location must be
preserved for accurate segmentation [13]. Fully convolutional
neural networks (FCNs) such as U-Net and V-Net use an
expanding path of deconvolutional (upsampling) operations
and skip connections which bypass deeper layers to restore
anatomic detail lost in the contracting path [14–16], however
max-pooling layers, which increase the receptive field of fil-
ters allowing learning from large-scale contextual cues, also

cause information loss, result in coarse segmentations [13].
Furthermore, class imbalances inherent to the large datasets
of abdominopelvic CTscans result in suboptimal convergence
and limit the ability to achieve accurate fine detail segmenta-
tions with conventional FCN architectures.

There are numerous applications of CNNs for segmenta-
tion of solid organs and masses [17–25], however automatic
segmentation of complex free fluid in the abdomen or pelvis
poses unique challenges, particularly on CT, and we are not
aware of relevant deep learning implementations. Problems
specific to the segmentation of traumatic pelvic hematomas
include their highly irregular, ill-defined, and intricate con-
tour, variable multi-compartmental location (including along
the pelvic sidewalls, suprapubic space, presacral space, and
retroperitoneum), anatomic distortion of the fractured pelvis,
and closely overlapping attenuation of hematoma with a vari-
ety of adjacent structures such as genitourinary and reproduc-
tive organs, bowel, and muscles [9, 10, 26, 27]. A successful
network architecture requires learning from global contextual
information to account for the large scan volume, variable
location of hematoma, and positional shifts in the setting of
trauma, as well as local dependencies for segmentation of fine
contours and weak boundaries. C2F is a tri-planar 2D UNet-
based network trained using two identical sequential FCN
base architectures in an end-to-end fashion. Initially, a
coarse-scaled network is applied to the entire volume to local-
ize smaller volumes of interest from axial, coronal, and sagit-
tal images. The smaller volume is encapsulated with bounding
boxes and cropped, then fine-scaled networks are applied.
This method has been successfully employed for segmenta-
tion of the pancreas on CT—a task which faces similar chal-
lenges related to the small size of the organ with respect to the
imaged volume, low contrast with adjacent anatomy, fine lob-
ulated margins, and variable position [23]. A recent state-of-
the-art modification of C2F (the recurrent saliency transfor-
mation network—RSTN) further improves fine contour ex-
traction (saliency) of the pancreas target [28]. In this work,
we demonstrate the feasibility of RSTN as a solution for seg-
mentation and volumetric analysis of pelvic hematomas which
occupy a relatively small proportion of an entire trauma CT
volume, vary in location, are susceptible to positional shifts
from pelvic ring distortion, and have weak boundaries.

CT Data and Ground Truth Labeling

The work is part of an IRB-approved and HIPAA-compliant
study. The de-identified dataset consisted of chest, abdomen,
and pelvis trauma CT scans routinely acquired in the arterial
phase from 253 patients (144,881 images) with pelvic ring
fractures, and hematoma volumes greater than 30 ml (1/10th
of one unit of blood) [29]. Patients with small hematomas (less
than 80–200 mL) are considered at negligible to small risk for
major arterial bleeding and would warrant conservative
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management [8, 9]. Our dataset included a substantial number
of patients in a low range (Fig. 1) to ensure a successful algo-
rithm would have the intrinsic ability to assist decision-
making by discriminating patients that would require obser-
vation alone from those with progressively higher likelihood
of requiring intervention. Baseline patient characteristics in-
cluded mean age of 49.6 (standard deviation (SD) ± 19.7),
gender distribution (70% male, n = 178; 30% female, n =
75), mean injury severity score (ISS) of 26.5 (SD ± 13.9),
and mean pelvic-extremity abbreviated injury scale (AIS)
score of 3.0 (SD ± 0.79). Using the Tile classification for pel-
vic instability (A—mechanically stable, B—rotationally un-
stable, and C—globally unstable), 110 patients (42%) had
mechanically stable (Tile A) pelvic fractures, 83 patients
(33%) had rotationally unstable (Tile B) pelvic fractures (as-
sociated with distortion primarily in the x- and y-axes), and 60
patients (24%) had globally unstable (Tile C) pelvic fractures
(associated with severe distortion in x-, y-, and z-axes). A total
of 109 of the 253 patients (43%) required angioembolization
to control arterial bleeding.

The images were axial in orientation with either 1.5 mm or
3 mm reconstruction thickness. Manual labeling was per-
formed by one board-certified radiologist with 7 years of ded-
icated experience in trauma imaging. Labeling of hematoma
was performed using 3D Slicer (version 4.8.1, www.slicer.
org) with the spherical paint tool thresholded between − 20
and 100 Hounsfield Units. This allowed segmentation within
the range of hematoma, accounting for lower pixel values
from image noise while avoiding fat. A small (3–5 mm)
region of interest (ROI) was used to delineate the interface
with structures with overlapping density including pelvic or-
gans and muscle. Larger ROIs (up to 20 mm) were used else-
where. Quality check by a second board-certified radiologist
with 3 years of experience involved careful inspection for
errors and editing as needed.

Image and Label Preprocessing

Both the DICOM images and ground truth masks were con-
verted to NIFTI format. All axial images and manually labeled
masks were resampled to 1 mm section thickness and recon-
structed in sagittal and coronal planes, yielding an isotropic
volume. Following resampling, the corpus consisted of a total
of 447,238 images with a 512 × 512 matrix. No other pre-
processing steps were performed.

Deep Learning Method: Recurrent Saliency
Transformation Network

A flow diagram of the recurrent saliency transformation net-
work (RSTN) implemented for pelvic hematoma segmenta-
tion is shown in Fig. 2a. A detailed technical explanation of
RSTN is offered in the work of Yu et al. RSTN is a modifica-
tion of the coarse-to-fine algorithm (C2F) described by Zhou
et al. that uses 2D-FCNs in three planes (axial, coronal, and
sagittal) for training and inference [23]. The algorithm first
employs a coarse-scaled U-Net-based network with the entire
volume as its input to localize smaller volumes of interest. The
coarse segmentation is used to automatically generate a
bounding box around which the image is cropped, and this
volume is then fed to a fine-scaled U-Net-based network that
achieves dense segmentation of fine details within the smaller
volume. The results of FCNs from the three planes are fused
[23]. Within each plane, FCN prediction is based on three
consecutive slices. This three-slice segmentation model opti-
mizes training from contextual cues in neighboring slices. In
RSTN, improved preservation of large-scale contextual cues
and fine spatial dependencies is achieved by simultaneous
optimization of coarse and fine images using a global Dice
loss function and use of a Bsaliency transformationmodule^ in
the coarse stage [28]. The saliency transformation module
repeatedly transforms the segmentation probability map from
previous iterations of the coarse-scaled FCN as spatial priors,
resulting in a more refined segmentation in the coarse stage
that enhances dense segmentation by the downstream fine-
scaled FCN [28]. The method has similar advantages to recur-
rent neural networks for retaining local and global information
by propagating label masks through multiple iterations
[30–32], however in RSTN, training is end-to-end using si-
multaneous coarse and fine inputs [28]. The saliency transfor-
mation module and joint optimization of coarse and fine-
scaled images using a single Dice loss function enhance learn-
ing based on both global contextually rich information and
fine spatial dependencies [28]. The U-Net-like FCN base ar-
chitecture used for both coarse and fine segmentations has a
collapsing arm that uses a series of 3 × 3 convolutional filters
with initial stride length of 1, input matrix size of 512 × 512 ×
3, and padding of 100. The architecture consists of blocks of
convolutional layers followed by ReLU activation and max-

Fig. 1 Histogram showing distribution of manual volumes by number of
patients
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pooling, with dropout and deconvolutions (upsampling) in
deeper layers (see Fig. 2b). The final convolutional layer uses
sigmoid activation for pixelwise classification.

The algorithm was developed in Python (version 3.6.6).
The PyTorch (version 0.4.0) deep learning platform was
employed for training and validation using our bleeding pelvic
fracture dataset. All experiments were performed using a Titan
Xp GPU with 12 GB of memory, running on Ubuntu. The

RSTN network was previously initialized using weights from
prior work on the PascalVOC image segmentation task [16,
28]. The network base architecture configuration and all
hyperparameters were inherited from work by Yu et al. using
RSTN for pancreas segmentation [28]. The network was
trained using six epochs, with a learning rate of 10^-5 for
the first five epochs, followed by 10^-6 during for a 6th epoch,
with a minibatch size of 1. For training and validation, fivefold

Fig. 2 a RSTN adapted for pelvic hematoma segmentation. RSTN is a
coarse-to-fine deep learningmethod that employs two identical sequential
U-Net-like networks (base architecture is shown in b). Initially, the entire
volume is used as input for the coarse network and the coarse segmenta-
tion is then used to localize smaller volumes of interest. A bounding box
is generated around the coarse segmentation and the volume is cropped.
The cropped volume is then fed to the fine-scaled network to achieve
dense segmentation of fine details within the smaller volume.Within each
plane, FCN prediction is based on three consecutive slices. This three-
slice segmentation model optimizes training from contextual cues in
neighboring slices. The results of FCNs from the three planes are fused
using majority voting [23]. During the training phase (shown), the salien-
cy transformation module repeatedly transforms the coarse-scaled seg-
mentation probability map from previous iterations of coarse-scaled seg-
mentation as spatial priors resulting in a more refined input that enhances

subsequent fine-scaled segmentation [28]. The fine and coarse-scaled U-
Net-based segmentations are jointly optimized by a single global Dice
loss function (see formula for total loss, right). b FCN base architecture
used during both coarse- and fine-stage segmentation. The FCN architec-
ture has five major downsampling blocks, with each block consisting of
2~3 convolution modules (3 × 3 kernels with ReLU activation), followed
by 1 max-pooling layer (2 × 2 kernels). In addition, three major
upsampling blocks are employed where the first two deconvolution layers
use 4 × 4 kernels with a stride of two and the last deconvolution uses 16 ×
16 kernels with a stride of eight. Skip connections are used to combine the
low-level and high-level features for better localization quality. The final
convolutional layer uses a 1 × 1 kernel with sigmoid activation. Both the
input and the output are of the same 512 × 512 resolution. Prediction is
based on three consecutive slices, which optimizes training from contex-
tual cues in neighboring slices
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cross-validation was employed with the implementation using
an 80% training, 20% validation split (i.e., the model was
trained on four of the five subsets and tested on the remaining
subset for each of the five possible combinations). As there is
no published prior art for comparison, fivefold cross-
validation Dice similarity coefficient results of pelvic hemato-
ma segmenta t ion us ing the Recur ren t Sa l i ency
Transformation Network were compared using the same pel-
vic fracture dataset to 1) the coarse to fine network architec-
ture without the saliency transformation module, and 2) a
publicly available 3D U-Net implementation from the Deep
Learning Tool Kit (DLTK) [33], which provides popular base-
line reference implementations for efficient experimentation
tailored to medical image analysis (3D U-Net implementation
details follow work by Ronneberger, He, and Cicek [14, 34,
35]) .

Statistical Analysis

Segmentation Accuracy

Summary statistics for segmentation accuracy included voxel
by voxel comparisons of spatial overlap using the Dice simi-
larity coefficient (DSC), defined as:

DSC ¼ 2 TP

2 TPþ FPþ FN

Where true positive (TP), true negative (TN), false positive
(FP), and false negative (FN)–predicted segmentations for
each voxel are compared to the manual ground truth label.
The closer the value to 1, the greater the segmentation overlap,
with a value of 1 indicating perfect overlap.

Volumetric Comparisons

Ultimately, volumes alone are used for clinical prediction. The
Pearson’s coefficient (r) was used to assess correlations be-
tween manual and predicted RSTN segmentations.
Comparison of means was performed using Student’s t test.
The between method similarity of manual and RSTN-
generated volumes was assessed with the single-measures
intraclass correlation coefficient (ICC), with ICC > 0.75 consid-
ered to indicate excellent concordance [36]. Measurement bias
and 95% limits of agreement were interrogated using Bland-
Altman plots. One-way analysis of variance (ANOVA) was
used to compare Dice similarity coefficients between the three
Tile groups to assess whether the degree of pelvic distortion
affected RSTN segmentation accuracy. Finally, accuracy of pre-
diction of major bleeding requiring angioembolization was
assessed for both manual and automated RSTN volume mea-
surements using ROC analysis, with p values for comparisons
determined using the Hanley-McNeil method [37]. All

volumetric analyses were performed using SPSS Statistics ver-
sion 25 (IBM corporation; Armonk, NY).

Results

We achieved a mean Dice similarity coefficient for RSTN of
0.71 (± SD of 0.10) for predicted segmentation of pelvic he-
matomas in fivefold cross-validation. The mean DSC of
RSTN compared favorably to results obtained for the coarse
to fine network with the saliency transformation module re-
moved (DSC of 0.65 ± 0.12) and using a DLTK baseline ref-
erence 3D U-Net architecture [33] (DSC of 0.49 ± 0.16). The
mean inference time for RSTN segmentation in the five vali-
dation groups was 0.90 min (± SD of 0.26). Pearson’s corre-
lation between manual ground truth label volumes and pre-
dicted volumes using RSTN are shown in Fig. 3. Bland-
Altman plot showing measurement bias and 95% limits of
agreement are shown in Fig. 4. AUC curves for manual and
automated RSTN-derived volumes for predicting major arte-
rial injury requiring angioembolization are presented in Fig. 5.
Visual results are illustrated in Figs. 6 and 7. Qualitatively, the
predicted RSTN segmentations appear highly concordant with
manual segmentations despite the markedly irregular nature
and variable locations of hematomas. Pelvic viscera and mus-
culature of the pelvic floor, sidewall, and suprapubic space
were routinely avoided in the predicted labels despite substan-
tial displacement and distortion of these anatomic structures
by space-occupying hematoma and pelvic ring disruptions.
Mean manual hematoma volume measurements were
(390.5 mL ± SD of 342.5 mL) and mean predicted volumes
were (399.9 ± SD of 344.8) (p = 0.76). Correlations between
manual and predicted label volumes were strong and highly
significant (r = 0.948; p < 0.0001; see Fig. 2). Measurement
bias between manual and predicted hematoma volumes was
low (9.4 mL over-measurement in predicted labels), 95%
limits of agreement were relatively narrow (− 227.9 to
209.1 mL), and between-method intraclass correlation coeffi-
cient for manual and predicted volumes was in the excellent
range (ICC = 0.95; 95% confidence interval 0.93–0.96). The
Dice score showed a statistically significant but weak increase
(Pearson’s r = 0.29, p < 0.0001) proportional to the size of
hematoma (i.e., larger hematomas had slightly improved
Dice scores overall), which has clinical relevance since larger
hematomas correspond with more dire outcomes and greater
probabilities of requiring urgent angioembolization, while
small hematomas are managed conservatively. In principle,
less accurate segmentations are not as important with small
hematomas, provided that volume measurements correlate
closely with manual segmentations (see Fig. 2). There was
no significant difference in Dice scores between the three
Tile grades of pelvic instability using ANOVA (p = 0.11).
AUCs for predicting major arterial injury requiring
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angioembolization was 0.80 with manual segmentation versus
0.81 with the automated method (p = 0.92).

Discussion

Manual and semi-automated methods for pelvic hematoma
segmentation have been described and clinically validated.
Despite evidence that pelvic hematoma volumes are the stron-
gest independent predictor of major arterial injury, widespread
point of care use is precluded either by time effort involved or
lack of widespread familiarity with semi-automated tech-
niques. Typically, volumes are instead assessed heuristically

using coarse terms (e.g., small, medium, or large). Human
prediction of major arterial bleeding has suboptimal accuracy
and is highly subjective. To our knowledge, our work repre-
sents the first fully automated algorithm for segmentation of
traumatic pelvic hematomas. The automated method results in
reliable and objective volumetric measurements which are
qualitatively acceptable, avoiding viscera and muscle even
with substantial distortions. Automated and manual volume
measurements had excellent between-method intraclass corre-
lation (0.95) with minimal measurement bias (− 9.39mL), and
AUCs for predicting angioembolization need that are not sig-
nificantly different from manual measurements (AUC 0.81—
automated versus 0.81 manual, p = 0.92). There was no

Fig. 4 Bland-Altman plot demonstrates minimal over-measurement bias for predicted RSTN labels (9.4 mL difference between predicted and manual),
with 95% limits of agreement of − 227.9 and 209.1 mL

Fig. 3 Scatter matrix of manual
label volumes (x-axis) plotted
against RSTN-predicted label
volumes (y-axis) with best-fit
line. Pearson correlation between
manual and predicted hematoma
volumes was very strong (r =
0.95) and highly significant
(p < 0.0001)
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significant difference between groups based on degree of in-
stability using ANOVA analysis (p = 0.11), suggesting that the
degree of pelvic ring distortion did not have a meaningful
effect on algorithm performance.

Future Avenues

Our hematoma segmentation method can be modified and
trained to detect sources of hemorrhage in other body regions
but is currently meant to be applied only in patients with
pelvic fractures. We have begun development of detection
algorithms to first identify pelvic fractures on CT. The algo-
rithms could then be incorporated into an imaging analytics
pipeline that could improve the clinical workflow in a number
of ways. Once developed, we propose to deploy the algo-
rithms onto a secure cloud- or workstation-based virtual

machine client platform [38]. The algorithms would prepro-
cess all CTscans that include the pelvis sent to the client based
on trauma resuscitation unit ordering location. This could trig-
ger alerts for our trauma radiologists and surgeons when a
patient is at high risk for life-threatening bleed or prioritize
studies in the unread worklist according to the size of predict-
ed hematoma, which may substantially decrease time to inter-
vention in the emergent trauma setting. We also plan to assess
generalizability of our algorithm to other institutions and scan
parameters (e.g., different CT makes and models, reconstruc-
tion algorithms, filters, and slice thickness) in a multicenter
study. Clinical impact could then be measured based on inter-
pretation turnaround times, time to intervention, patient out-
come, and cost-effectiveness. The ability to visualize and even
interactively fine-tune the predicted segmentation is another

SB

BL

C

M

R

Fig. 7 3D surface rendering of automated RSTN prediction label
superimposed on the CT dataset, displayed in three orthogonal planes
in a 42-year-old man following a motorcycle collision (DSC = 0.85, man-
ual volume = 316.5 mL; automated volume = 334.9 mL). The patient was
managed conservatively. Notice that the label avoids the displaced blad-
der (BL), rectus abdominis muscle (M), colon (C), small bowel (SB), and
rectum (R)

Fig. 5 Area under the receiver operating characteristic curves (AUCs) of
hematoma volume for predicting major arterial injury requiring
angioembolization are shown. AUC for manual volumes (blue) was
0.80 and AUC for automated RSTN volumes (red) was 0.81, with no
significant difference in performance between the two groups (p = 0.92)

Fig. 6 Axial images through traumatic pelvic hematoma in a 79-year-old
man following a motor vehicle collision (RSTN DSC = 0.86; manual
volume = 1287.7 mL; automated volume = 1327.0). The patient

underwent angioembolization for arterial bleeding. The automated pre-
diction label closely follows the contours of the hematoma, avoiding
muscle, viscera, and bone
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important workflow option that would potentially improve
precision and provide additional training data to further refine
the algorithm. Quantitative assessment of change over time
could also be made with repeat scans to determine whether a
pelvic hematoma is changing in size and may warrant re-in-
tervention. Increasingly accurate clinical prediction might be
achieved by incorporating multiple volumetric features in-
cluding contrast extravasation, pelvic fracture grade, and fea-
tures of body composition along with clinical and laboratory
values [9, 39, 40].

Quantitative imaging research, mature in other areas, has
received relatively little attention in abdominopelvic trauma as
measurements of hemorrhage volumes, which can exceed 1 L
after severe injuries, are labor intensive, and previously with-
out a clear avenue toward practical point-of-care use [8]. The
automated algorithm also has the potential to accelerate clin-
ically relevant scientific discovery for CT-based outcome pre-
diction in pelvic trauma and objective measurements will al-
low meaningful comparison between scientific studies. The
relatively robust results of our method are expected to have
broader implications such as for automated segmentation of
hemoperitoneum after solid organ injuries, and segmentation
of abdominal free fluid from a variety of non-traumatic pa-
thologies including perforated bowel, pancreatitis, abdominal
compartment syndrome, and ascites in cirrhotic patients.
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