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Abstract
To perform a multicenter assessment of the CT Pneumonia Analysis prototype for predicting disease severity and patient 
outcome in COVID-19 pneumonia both without and with integration of clinical information. Our IRB-approved observa-
tional study included consecutive 241 adult patients (> 18 years; 105 females; 136 males) with RT-PCR-positive COVID-19 
pneumonia who underwent non-contrast chest CT at one of the two tertiary care hospitals (site A: Massachusetts General 
Hospital, USA; site B: Firoozgar Hospital Iran). We recorded patient age, gender, comorbid conditions, laboratory values, 
intensive care unit (ICU) admission, mechanical ventilation, and final outcome (recovery or death). Two thoracic radiologists 
reviewed all chest CTs to record type, extent of pulmonary opacities based on the percentage of lobe involved, and severity 
of respiratory motion artifacts. Thin-section CT images were processed with the prototype (Siemens Healthineers) to obtain 
quantitative features including lung volumes, volume and percentage of all-type and high-attenuation opacities (≥ −200 
HU), and mean HU and standard deviation of opacities within a given lung region. These values are estimated for the total 
combined lung volume, and separately for each lung and each lung lobe. Multivariable analyses of variance (MANOVA) 
and multiple logistic regression were performed for data analyses. About 26% of chest CTs (62/241) had moderate to severe 
motion artifacts. There were no significant differences in the AUCs of quantitative features for predicting disease severity 
with and without motion artifacts (AUC 0.94–0.97) as well as for predicting patient outcome (AUC 0.7–0.77) (p > 0.5). 
Combination of the volume of all-attenuation opacities and the percentage of high-attenuation opacities (AUC 0.76–0.82, 
95% confidence interval (CI) 0.73–0.82) had higher AUC for predicting ICU admission than the subjective severity scores 
(AUC 0.69–0.77, 95% CI 0.69–0.81). Despite a high frequency of motion artifacts, quantitative features of pulmonary opaci-
ties from chest CT can help differentiate patients with favorable and adverse outcomes.

Keywords  COVID-19 pneumonia · CT · Patient outcome · Motion artifacts · Deep learning

Abbreviations
CT	� Computed tomography
COVID-19	� Coronavirus disease 2019
IRB	� Institutional ethical board
RT-PCR	� Reverse transcription polymerase chain 

reaction
ICU	� Intensive care unit
HU	� Hounsfield unit
MANOVA	� Multivariable analyses of variance
AUC​	� Area under the curve
CI	� Confidence interval

DL	� Deep learning
HIPPA	� Health Insurance Portability and Account-

ability Act
DICOM	� Digital imaging and communication in 

medicine
kV	� Kilovolt
LDH	� Lactate dehydrogenase

Introduction

In a global health crisis precipitated by a high prevalence 
infectious disease, it is critical to understand the associated 
morbidity and mortality as well as to anticipate and prepare 
resources needed to mitigate the crises [1–3]. Assessment of 
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disease severity regardless of its etiology requires knowledge  
of at-risk patient demographics, their underlying comor-
bidities, symptoms, vital signs, and laboratory and imaging 
findings. Such clinical information coupled with the epide-
miologic statistics and simulations help understand available 
and needed healthcare resources to mitigate and minimize 
the impact of healthcare crises. Such healthcare resources 
include clinical personnel as well as available hospital and 
ICU beds, personal protective equipment like masks, shields, 
and gowns to life support devices such as mechanical venti-
lators and dialysis units. Even the most advanced nations on 
our planet can become overwhelmed in a pandemic without  
such knowledge and careful planning [1, 3].

The ongoing pandemic from the novel coronavirus 
disease of 2019 (COVID-19) is a textbook example of a 
healthcare crisis that requires such planning and information 
[4]. The reverse transcriptase-polymerase chain reaction 
(RT-PCR) assay is the diagnostic mainstay; imaging use 
is variable, based on availability of RT-PCR assay, and 
extends from diagnosis to assessment of disease severity and 
complications [4–11]. Within weeks of the outbreak, there 
were published data on features and severity assessment of 
the disease on chest radiography and CT, the most frequent 
imaging procedures in the hospital-admitted patients [4–12].

In anticipation of the huge caseload and need to 
diagnose and quantify disease burden, the deep learning 
(DL) community had an early start on the pandemic 
[13–25]. Several studies reported DL algorithms on 
diagnosis, differentiation from other pneumonia, severity 
assessment, and mortality prediction based on imaging 
features [13–25]. However, most studies lack assessment 
with vastly different scanner technologies and geographic 
regions as well as the effect of frequent respiratory motion 
artifacts on the relative performance of DL-generated 
features versus subjective severity assessment and clinical/
laboratory data [13–25]. In this context, we assembled a 
database of clinical and imaging findings from two sites 
with dissimilar races, geography, and healthcare to assess 
a DL-based CT Pneumonia Analysis prototype (Siemens 
Healthineers, Erlangen, Germany) which was trained on 
a separate multicenter COVID-19 data. We performed a 
multicenter assessment of the CT Pneumonia Analysis 
prototype for predicting disease severity and patient 
outcome in COVID-19 pneumonia both without and with 
integration of clinical information.

Methods

Approvals and Disclosures

Our retrospective study was performed following 
institutional ethical board (IRB) approvals with waiver 

of written informed consent at both participating sites. 
De-identified clinical and imaging data were used in 
compliance with guidelines outlined in the Health Insurance 
Portability and Accountability Act (HIPAA). We did not 
receive any research grant or support pertaining to the 
prototype from a for-profit vendor (Siemens Healthineers) 
described in the manuscript. Our institution has received 
unrelated research grants from GE Healthcare, Lunit 
Inc., Riverain Tech and Siemens Healthineers. Four 
coauthors (MM, MZ, FD, and FR), employees of Siemens 
Healthineers, were included to ensure veracity of technical 
description of the prototype; they did not participate in 
subject recruitment, data collection, or data analysis parts 
of the study.

Patients

Our study included 241 adult patients with RT-PCR-positive 
COVID-19 pneumonia from two tertiary care hospitals (site  
A: Massachusetts General Hospital, USA; and site B: 
Massachusetts General Hospital, Iran). Site A contributed 
124 de-identified patients (mean age (± standard deviation) 
76 ± 10 years; 64 females and 60 males). Site B contributed 
data from 117 de-identified patients (mean age 61 ± 17 years; 
41 females, 75 males). These represented consecutive patients 
who underwent non-contrast chest CT for clinically indicated 
reasons such as false-negative or pending RT-PCR assay for 
COVID-19 pneumonia, assessment of moderate or severe 
pneumonia, and suspected complications. Patients with post-
contrast chest CT were excluded since the prototype was 
trained for evaluation of non-contrast chest CT and did not 
recommend use of post-contrast CT.

For each patient, study coinvestigators recorded the 
following information from their medical records: patient 
age, gender, past medical history (presence of hypertension, 
diabetes, cancer, immunosuppressive disease, asthma/
chronic obstructive pulmonary disease, and ischemic heart 
disease), white blood cell counts, platelet counts, and lactate 
dehydrogenase (LDH). In addition, we recorded whether 
patients required intensive care unit (ICU at both study sites) 
and mechanical ventilation (only available for site A) during 
the course of their hospital admission.

Non‑contrast Chest CT

Site A: Using standard-of-care department protocol, all 
non-contrast chest CT examinations were performed 
on one of the following scanners: 64–92-detector-row, 
dual-source CT (Siemens Definition or Force, Siemens 
Healthineers, Forchheim, Germany), 64-detector-
row, single-source CT (Siemens Definition Edge), and 
GE Discovery 750 HD (GE Healthcare, Waukesha, 
Wisconsin, USA). The scan factors included 100–120 kV, 
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automatic exposure control (CARE Dose 4D, Siemens: 
quality reference mAs of 100; Auto mA, GE: 25–35 noise 
index), 0.9–0.984:1 pitch, and 0.5-s gantry rotation time. 
Images were reconstructed with iterative reconstruction 
techniques (Admire, Siemens: iterative reconstruction 
strength of 2 for section thickness of 1 mm; ASIR, GE: 
40% strength of iterative reconstruction technique for 
section thickness of 1.25 mm).

Site B: All non-contrast chest CT examinations 
were performed in accordance with the standard of 
care protocol with a 16-slice, multidetector-row CT 
scanner (Siemens SOMATOM Emotion 16, Siemens 
Healthineers, Forchheim, Germany). The scan factors 
included 110–130  kV, 30–50 mAs (with fixed tube 
current), 1.5:1 pitch, 16 × 1.2 mm detector configuration, 
and 1-s gantry rotation time. Filtered back projection 
reconstruction images with 2-mm section thickness and 
B20f (standard soft tissue) kernel were used for image 
analyses.

Qualitative Evaluation

Two thoracic subspecialty radiologists (SD with 16-year 
experience, MK with 14-year experience) reviewed all 241 
chest examinations in consensus (RadiAnt Dicom Viewer, 
Medixant, Poznan, Poland) in both lung (window level −600 
HU, window width 1500 HU) and soft tissue (window level 
50 HU, window width 350 HU) windows. Both radiologists 
were allowed to change or adjust the display windows 
according to their preference and anatomy of interest.

In each of the five lung lobes, the radiologists 
separately recorded presence, type (1 = ground-glass; 
2 = mixed defined as ground-glass with consolidation 
and/or interlobular septal thickening; 3 = consolidation), 
and extent of pulmonary opacities based on the 
percentage of lobe involved (0—no opacities; 1—less 
than 5% lobe volume involved; 2—5–25% lobe involved; 
3—26–50% lobe involved; 4—51–75% lobe involved; 
5—greater than 75% lobar involvement). This scoring 
system for COVID-19 pneumonia was described in prior 
publications [7, 8]. Overall subjective severity score was 
obtained by adding the lobar involvement scores, and 
then classified into two groups for statistical analyses 
(severe: > 15; non-severe: ≤ 15).

Radiologists also recorded presence and severity of 
respiratory motion artifacts within the lungs for all CTs on 
a 4-point scale (0: no motion artifacts, 1: minimal motion 
affecting less than 10% of the lungs; 2: moderate artifacts 
affecting 10–50% of the lungs without compromising 
assessment of pulmonary opacities, 3: severe artifacts 
affecting > 50% of the lungs and limiting evaluation of 
pulmonary findings).

Quantitative Features From the Prototype

Deidentified DICOM images of patients were processed 
(FH with 2 years of post-doctoral research experience) 
with the deep learning-based prototype, which is an 
offline, standalone software. The research prototype is not 
approved by United States Food and Drug Administration 
for clinical use. The prototype was trained and validated 
separately for detection (on 1371 chest CT exams 
with COVID-19, other viral pneumonia, and ground-
glass and consolidative opacities of other etiologies) 
and quantification (on 1000 chest CT with COVID-
19 pneumonia, 131 with interstitial lung diseases, 113 
bacterial pneumonia, and 559 normal CT scans). The 
training and validation chest CT exams did not belong to 
either of the two sites included in our study. The details of 
the prototype are described in a previous publication [26].

For lung and lobe segmentation, the algorithm first applies 
multi-scale deep reinforcement learning to detect anatomic 
landmarks such as carina and sternal tip. Then, the algorithm 
resamples the isolated lung region of interest to a 2-mm 
isotropic volume and processed with a deep image-to-image 
network (DI2IN) to create lung segmentation. Lastly, the 
segmented lung mask is reconfigured to the original resolution 
of CT input data. For the COVID-19-related abnormality 
segmentation, we trained a DenseUNet with anisotropic 
kernels to covert CT 3D image volume to a semantic 
segmentation mask. Then, a single label is used to define all 
lung voxels with ground-glass or consolidative opacities as 
positive voxels. The remaining regions are defined as negative 
within the network trained as an end-to-end segmentation 
system. The algorithm filters the output 3D segmentation by 
the lung segmentation. All automatically segmented volume 
masks were reviewed to verify their accuracy. Manual 
editing was required for only 2/241 chest CT examinations 
included in our study. In these two exams, generated contours 
included subcutaneous emphysema and pneumothorax as 
lung parenchyma in one patient and stomach air as part of 
the left lower lung in another patient. Upon confirmation 
of the segmented contours, the prototype estimates several 
quantitative features related to the presence of pulmonary 
opacities (binary score based on presence of opacity), opacity 
scores based on percentage of lobe involved (score 0: 0%, 1: 
1–25%, 2: 26–50%, 3: 51–75%, 4 > 75% of lobe involved), 
lung volume (in ml), volume and percentage of all-attenuation 
opacities within a given lung region (as absolute volume and 
relative percentage of opacities), volume and percentage of 
high-attenuation opacities (as absolute volume and percentage 
of pulmonary opacities with attenuation ≥ −200 HU), and 
mean HU and standard deviations for lung parenchyma as well 
as pulmonary opacities within given lung regions. The given 
lung regions imply separate values for both lungs combined as 
well as for each lung and each lung lobe.
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Statistical Analyses

Data were recorded and analyzed for descriptive statistics 
with Microsoft EXCEL (Microsoft Inc., Redmond, 
Washington, USA). We calculated linear correlation 
coefficients between radiologists’ severity score and 
quantitative features with Microsoft EXCEL. Multivariable 
analysis of variance (MANOVA) was performed to 
determine differences in quantitative features and type 
of pulmonary opacities as recorded from radiologists’ 
assessment. Multiple logistic regression analyses were 
performed with R Statistical Computing software (https​:// 
www.R-proje​ct.org, R Foundation for Statistical Computing, 
Vienna, Austria, accessed on 6.20.2020) to assess if severity 
scores determined by radiologists and the quantitative 
features could predict patient outcome (death versus 
recovery) and need for ICU admission. Areas under the 
curve (AUC with 95% confidence interval) were set as 
the output information for the regression analyses. We 
used p-value of less than 0.05 as a statistically significant 
difference.

Results

Motion Artifacts

More than a quarter of chest CT examinations (62/241; 
26%) had moderate to severe motion artifacts. Sixteen 
chest CT (site A—3/124, 2%; site B—13/117, 11%) had 
severe motion artifacts and 46 chest CT (site A—11/124, 
9%; site B—35/117, 30%) had moderate artifacts. The 
remaining chest CT had either mild (site A—23/124, 19%; 
site B—47/117, 40%) or no (site A—87/124, 70%; site 
B—22/117, 19%) motion artifacts. There was a significant 
statistical difference in the frequency and severity of 
artifacts between the two sites (p < 0.0001). There were no 
significant differences in the AUCs of quantitative features 
for predicting disease severity (severity scores ≤ or > 15) in 
chest CT examinations with and without motion artifacts 

(site A: AUC 0.97 vs 0.97, site B: AUC 0.95 vs 0.94) as 
well as for predicting patient outcome (site A: AUC 0.7 vs 
0.72, site B: AUC 0.76 vs 0.77) (p > 0.5). The prediction 
of ICU admission was better with exclusion of chest CTs 
with severe motion artifacts at Site A (AUC 0.77 vs 0.82), 
but it did not change at site B (AUC 0.75 vs 0.76). The 
subsequent results are limited to chest CT examinations 
without severe motion artifacts.

Extent and Type of Pulmonary Opacities

There was a similar distribution of patients with high 
(> 15; site A—36%, 43/121; site B—31%, 32/104) and 
low (≤ 15; site A—64%, 78/121, site B—69%, 72/104) 
subjective severity scores at the two sites. The combination 
of LDH and platelet count had highest AUC of 0.74 
(p-value < 0.005) for distinguishing patients with low and 
high subjective severity scores for pulmonary opacities 
on chest CT. Among different quantitative features, 
percentage of pulmonary opacities had the highest AUC 
for differentiating high and low subjective severity score 
(site A: AUC 0.97, 95% CI 0.97–0.99; site B: AUC 0.93, 
95% CI 0.93–0.98).

There was a moderate to strong direct linear 
correlation between the subjective severity scores and the 
quantitative features for chest CT data from both sites. 
Table 1 summarizes the correlation coefficients for entire 
lung volumes, separately for right and left lung and lung 
lobes.

The opacity scores mean HU of the lungs as well as 
mean HU of pulmonary opacities were significantly 
different for ground-glass, mixed, and consolidative 
opacities on chest CT examinations from both sites 
(p < 0.0001) (Table  2). The prototype-estimated mean 
HU of pulmonary opacities for ground-glass, mixed, and 
consolidative opacities were −555 HU, −457 HU, and 
−399 HU, respectively (p < 0.0001). The average and 
standard deviations of quantitative features for different 
patient outcomes are summaries in Table 3.

Table 1   Summary of correlation coefficients between the radiologists’ subjective severity scores and quantitative features obtained from the pro-
totype. The lobar range refers to the minimum to maximum correlation coefficients for all lobes with the severity scores

Site A Site B

Quantitative Features Entire lung Left lung Right Lung Lobar range Entire lung Left lung Right Lung Lobar range

Opacity score 0.90 0.88 0.89 0.79–0.87 0.86 0.81 0.87 0.73–0.81
Volume of opacities 0.86 0.84 0.84 0.74–0.82 0.85 0.78 0.84 0.69–0.79
Percentage of opacities 0.89 0.86 0.88 0.80–0.89 0.85 0.78 0.86 0.68–0.82
Volume of high-attenuation opacities 0.74 0.71 0.71 0.51–0.69 0.62 0.57 0.63 0.47–0.61
Percentage of high-attenuation opacities 0.73 0.72 0.7 0.54–0.74 0.60 0.55 0.61 0.45–0.57
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ICU Admission

There were differences in the distribution of patients admitted to 
the non-ICU medical unit (site A—47%, 57/121; site B—65%, 

68/104) and ICU (site A—53%, 64/121; site B—35%, 36/104) 
at the two participating sites (Figs. 1 and 2). At both sites, the 
combination of the volume of all-attenuation opacities and the 
percentage of high-attenuation opacities (AUC 0.76–0.82, 95% 

Table 2   Summary of clinical, subjective, and quantitative features 
from prototype in patients with best predictive area under the curve 
for differentiating those with and without ICU admission and those 

with recovery versus death from COVID-19 pneumonia. All AUCs 
were statistically significant (p = 0.04–< 0.0001)

* p-value > 0.06 (AUC 0.71)

Site A Site B

Features Best subset AUC​ 95% CI Best subset AUC​ 95% CI

With vs. 
without 
ICU 
admission

Radiologists Subjective severity score 0.77 0.77–0.81 Subjective severity score 0.69 0.69–0.74
AI Volume of opacity + percentage of 

high opacity
0.82 0.79–0.82 Opacity score + percentage of high 

opacity
0.76 0.73–0.79

Clinical WBC count 0.64 0.64–0.69 Patient age 0.68 0.68
Clinical + radiologists Subjective severity score 0.77 0.77–0.81 Subjective severity score + patient 

age
0.76 0.7–0.77

Clinical + AI Volume of opacity + percentage of 
high opacity

0.82 0.79–0.82 Opacity score + percentage of high 
opacity + patient age

0.8 0.73–0.83

Recovered  
vs. 
deceased

Radiologists Subjective severity score 0.68 0.67–0.68 Subjective severity score 0.68 0.67–0.68
AI Volume of opacity 0.72 0.7–0.72 Percentage of high opacity + volume 

of opacity
0.77 0.7–0.84

Clinical LDH 0.69 0.69 No features selected -* -
Clinical + radiologists Subjective severity score + LDH 0.72 0.69–0.73 Subjective severity score + patient 

age
0.76 0.68–0.8

Clinical + AI Volume of opacity + LDH 0.74 0.71–0.77 Percentage of high opacity + patient 
age

0.8 0.69–0.87

Table 3   Site-specific distribution of subjective severity scores and quantitative features for patients with different outcomes

Site A Site B

ICU admission Patient outcome ICU admission Patient outcome

Features Medical floor ICU Recovered Died Medical floor ICU Recovered Died

Opacity score 5.7 ± 4.7 11 ± 5.3 6.8 ± 4.9 10 ± 5.8 6.2 ± 3.8 9.7 ± 5.2 6.7 ± 4.2 10 ± 5.3
  p-value 0.000 0.001 0.000 0.000

Lung volume 3458 ± 1194 3048 ± 847 3366 ± 1115 3073 ± 919 3950 ± 1059 3663 ± 1100 3980 ± 1052 3361 ± 1053
  p-value 0.029 0.127 0.175 0.011

Volume of opacity 485 ± 528 1141 ± 789 645 ± 662 1083 ± 795 649 ± 558 1198 ± 914 744 ± 655 1228 ± 951
  p-value 0.000 0.001 0.000 0.004

Percentage of opacity 17 ± 19 39 ± 26 22 ± 22 39 ± 27 19 ± 19 36 ± 26 21 ± 20 39 ± 28
  p-value 0.000 0.000 0.000 0.001

Volume of high opacity 120 ± 217 338 ± 320 155 ± 210 345 ± 358 85 ± 108 228 ± 230 108 ± 140 244 ± 244
  p-value 0.000 0.000 0.000 0.001

Percentage of high opacity 4.3 ± 7.9 12 ± 12 5.4 ± 7.2 13 ± 13 2.6 ± 3.7 7.3 ± 8.3 3.2 ± 4.6 8.2 ± 9.1
  p-value 0.000 0.000 0.000 0.000

Mean HU total −714 ± 108 −599 ± 134 −690 ± 111 −603 ± 149 −734 ± 87 −656 ± 125 −728 ± 92 −628 ± 129
  p-value 0.000 0.000 0.000 0.000

Mean HU of opacity −497 ± 103 −423 ± 115 −476 ± 109 −433 ± 120 −532 ± 82 −483 ± 104 −526 ± 89 −469 ± 99
  p-value 0.000 0.042 0.007 0.007

Radiologist score 9 ± 5 15 ± 6 11 ± 6 15 ± 7 11 ± 4 15 ± 6 11 ± 4 14 ± 6
  p-value 0.000 0.000 0.001 0.030
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Fig. 1   Two patients with COVID-19 pneumonia from site A. a–c A 
70-year-old male was admitted to the ICU with bilateral lower lobe 
predominant ground-glass opacities a  on the transverse chest CT 
image. The opacities are displayed in red color on the volume ren-
dered 3D image b  and quantified with different metrics from the 
prototype c. The patient had full recovery. d–f A 72-year-old male 

with hypertension, hyperlipidemia, and cardiac arrhythmia who died 
after 7 days of hospital admission. There were bilateral, multi-lobar 
ground-glass opacities on transverse chest CT image d which are dis-
played in red color on the volume rendered image e  and quantified 
with the prototype f 
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Fig. 2   Two patients with COVID-19 pneumonia from site B. a–c A 
54-year-old male with diabetes mellitus was admitted on the medical 
floor (no ICU admission) and had full recovery. Transverse chest CT 
image a  demonstrated multifocal ground-glass opacities in bilateral 
lungs as displayed with red color on the volume rendered 3D image 
b and quantified with on the prototype c. d–f A 74-year-old male with 

diabetes mellitus and ischemic heart disease died from complications 
related to COVID-19 pneumonia after 12  days of ICU admission. 
Transverse chest CT image d  demonstrate diffuse ground-glass 
opacities with scattered areas with consolidation which are displayed 
in extensive red color on the volume rendered 3D image e and quanti-
fied in the table from prototype f 
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CI 0.73–0.82) had higher AUC for predicting ICU admission 
than the subjective severity scores (AUC 0.69–0.77, 95% CI 
0.69–0.81). Among clinical and laboratory variables, white 
blood cell count (AUC 0.64, 95% CI 0.64–0.69) in site A was 
the best predictor for ICU admission; patient age (AUC 0. 68, 
95% CI 0.68) was the best predictor for ICU admission in site 
B. Addition of clinical/laboratory data did not result in a sig-
nificant change in the AUCs of either subjective severity scores 
or the quantitative features (p > 0.05) (Table 2).

For site A, the percentage of all-attenuation opacities in the 
entire lungs (both lungs combined) was the best feature for 
predicting the need of mechanical ventilation (AUC 0.83, 95% 
CI 0.83–0.85). The subjective severity score had performance 
(AUC 0.82, 95% CI 0.82–0.83) for differentiating those with 
and without mechanical ventilation. Clinical features (best 
feature being LDH) had significantly lower AUC (0.71, 95% 
CI 0.70–0.76) for such differentiation. As noted above, data on 
mechanical ventilation were not available for site B.

Prediction of Final Outcome

There were significant differences in distribution of patients 
who recovered (site A: 59%, 71/121; site B: 82%, 85/104) 
versus those who died from COVID-19 pneumonia (site A: 
41%, 50/121; site B: 18%, 19/104) (p < 0.01) (Figs. 1 and 2). 
While the volume of all-attenuation opacities was the best 
predictor of the final outcome for site A (AUC 0.72, 95% CI 
0.70–0.72), the combination of percentage of high-attenuation 
opacities and volume of all-attenuation opacities of left lower 
lobe was the best subset (AUC 0.77, 95% CI 0.70–0.84) for 
site B. The quantitative features for both sites were better than 
both the subjective severity scores and type of pulmonary 
opacities from radiologists’ assessment (best AUC 0.68, 95% 
CI 0.67–0.68) for predicting the final outcome. At site A, 
LDH (AUC 0.69, 95% CI 0.69) could predict patient outcome 
in site A; no demographic, clinical, or laboratory variable 
could predict patient outcome for site B.

Discussion

Quantitative features obtained from the DL-based prototype 
were superior to both the subjective severity scores from 
radiologists’ assessment as well as clinical and laboratory 
data for prediction of patient outcomes (death, ICU 
admission, and mechanical ventilation) in patients with 
COVID-190 pneumonia. Jiang et  al. reported 70–80% 
accuracy for an AI framework based on patient symptoms and 
laboratory values for assessing disease severity and outcome 
in COVID-19 [21]. The lower performance of clinical and 
laboratory data in our study (maximum AUC of 0.69), might 
have been related to differences in patient demographics, 
disease severity and/or management strategies.

As reported in prior studies, the percentage and volume 
of pulmonary opacities were best features for predicting 
patient outcomes at both sites included in our study [22–24]. 
Lanza et al. reported that the percentage of compromised 
lung volume (between −50 and 100 HU) was the most 
accurate outcome predictor for risk of oxygen support, 
intubation and in-hospital death in a single-center study of 
222 patients [22]. In a study with 176 patients, the volume 
and ratio of regions with ground-glass opacities (between 
−700 and −300 HU) obtained from a DL algorithm were 
the best of the 30 quantitative features obtained with the best 
AUC of 0.91 for classifying the patient into severe and non-
severe COVID-19 pneumonia [23]. Matos et al. reported 
an AUC of up to 0.92 for their DL models using clinical/
laboratory data and CT feature (volume of disease) to predict 
patient outcome (need for mechanical ventilation or death) 
[24]. There could be several reasons for the differential 
performance of our DL algorithm (maximum AUC of 0.82) 
including the higher frequency of motion artifacts in our 
study and differences in patient population, disease severity, 
comorbidities, and treatment strategies. The differences in 
performance may also be related to significant variations in 
training and test datasets used in our study as opposed to 
the other publications where testing and training datasets 
originated from the same or similar sources [21–24].

The strong predictive value of quantitative features such 
as opacity scores, volume and percentage of pulmonary 
opacities for the radiologists, assessed severity and type of 
pulmonary opacities emphasizes the robust performance of 
the prototype. This finding is consistent with another study 
of 126 patients with COVID-19, which reported significant 
differences (p < 0.01) between CT lung opacification 
percentage between patients with different severities of 
covid-19 pneumonia [25].

The primary implication of our study is the ability to 
classify and quantify the type and severity of pulmonary 
opacities on chest CT with a single-click processing on the 
prototype used in our study. The predictive information 
from the prototype on patient outcome (death versus 
recovery), ICU admission, and mechanical ventilation 
can help in patient management and resource planning in 
case of a high-prevalence pandemic. Although radiologists 
describe the type and distribution of pulmonary opacities, 
their semantic interpretation does not include qualitative 
or quantitative assessment of diffuse or multifocal 
processes such as COVID-19 pneumonia. The subjective 
severity scores in our study have been reported previously 
[7–9] but are inefficient, prone to subjective variations, 
and not used in routine clinical interpretation due to time 
and difficulty in grading findings based on the percentage 
of involved lobes. In such context, the addition of 
quantitative features derived from the prototype following 
regulatory approvals can provide useful information with 
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no or minimum additional work or time. Both the user and 
the developing community must recognize, train, and test 
their DL models on data from different imaging sites as 
well as with different CT technical factors including exams 
with and without motion artifacts to understand how such 
differences can affect their models.

There are a few limitations in our study. First, we did 
not perform a power analyses to determine the sample size 
to test the prototype. However, our data from both sites 
included all consecutive subjects with RT-PCR-positive 
COVID-19 pneumonia who underwent non-contrast, thin-
section chest CT and had a known outcome in terms of 
death or recovery, and hospital admission. Second, there 
were variations in data variables available from the two 
participating sites. We did not have information on the use 
of mechanical ventilation in patients from site B. Third, at 
the height of the pandemic in site A, a few medical floor 
beds were converted into ICU functionality to accommodate 
ICU patient overflow. Although this could have affected the 
classification of patients with and without ICU admission, 
we classified patients on medical floor beds converted to 
ICU functionality as those with ICU admission.

Fourth, the differences in mortality associated with 
patients from the two participating sites was likely related to 
infrequent use of chest CT at site A relative to site B where 
all hospital-admitted patients with suspected or known 
COVID-19 pneumonia regardless of the disease severity and 
presence of complications underwent chest CT. However, 
these variations in practice and mortality did not affect the 
performance of the prototype at either site. Fifth, neither 
the prototype nor the radiologists evaluated the chest CT for 
vascular complications of COVID-19 (such as pulmonary 
thromboembolism) or presence of coronary calcification, 
pleural effusions, or mediastinal or hilar lymphadenopathy 
which could have provided additional information on 
classification of different patient outcomes.

Sixth, some differences in performance of the prototype 
at the two sites can be attributed to the differences in the 
scanner technologies. Site A used more advanced and newer 
CT scanners as compared with site B. Indeed, respiratory 
motion artifacts were more frequent in site B than in site 
A. However, there was no difference in the performance 
of the radiologists or the prototype both with and without 
chest CT with motion artifacts. The differences in CT 
scanner technologies and vendors also helped us assess 
generalizability of the prototype.

In conclusion, the deep learning-based CT Pneumonia 
Analysis prototype enables a single-click lung segmentation 
and determination of patient outcome and need for ICU 
admission in patients with COVID-19 pneumonia. These 
findings were generalizable at the two high-prevalence sites 
from Iran and Northeast United States. A strong correlation 
between the quantitative information from the prototype 

and radiologists’ qualitative assessment of disease severity 
suggest that the prototype can provide additional quantitative 
information to the current radiology reports which do not 
contain information on distribution and extent of pulmonary 
opacities.
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