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Abstract
Coronavirus (COVID-19) is a pandemic, which caused suddenly unexplained pneumonia cases and caused a devastating 
effect on global public health. Computerized tomography (CT) is one of the most effective tools for COVID-19 screening. 
Since some specific patterns such as bilateral, peripheral, and basal predominant ground-glass opacity, multifocal patchy 
consolidation, crazy-paving pattern with a peripheral distribution can be observed in CT images and these patterns have been 
declared as the findings of COVID-19 infection. For patient monitoring, diagnosis and segmentation of COVID-19, which 
spreads into the lung, expeditiously and accurately from CT, will provide vital information about the stage of the disease. 
In this work, we proposed a SegNet-based network using the attention gate (AG) mechanism for the automatic segmenta-
tion of COVID-19 regions in CT images. AGs can be easily integrated into standard convolutional neural network (CNN) 
architectures with a minimum computing load as well as increasing model precision and predictive accuracy. Besides, the 
success of the proposed network has been evaluated based on dice, Tversky, and focal Tversky loss functions to deal with 
low sensitivity arising from the small lesions. The experiments were carried out using a fivefold cross-validation technique 
on a COVID-19 CT segmentation database containing 473 CT images. The obtained sensitivity, specificity, and dice scores 
were reported as 92.73%, 99.51%, and 89.61%, respectively. The superiority of the proposed method has been highlighted 
by comparing with the results reported in previous studies and it is thought that it will be an auxiliary tool that accurately 
detects automatic COVID-19 regions from CT images.
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Introduction

Since December 2019, a large and increasing outbreak of a 
new coronavirus has emerged in Wuhan, Hubei province of 
China [1]. While the International Committee on Taxonomy 
of Viruses (ICTV) called this virus as SARS-CoV-2, the 
World Health Organization (WHO) has named it Corona-
virus Disease 2019 (COVID-19) [2]. It has been confirmed 

that the new coronavirus is transmitted from human to 
human. The WHO has reported 78,811 laboratory-confirmed 
cases covering more than 2200 cases outside of China [3]. 
Due to the increasing population mobility in the globalizing 
world, the virus spreads rapidly all over the world and its 
destructive effects have been seen on the routine daily life, 
global economy, and general public health [4]. Therefore, 
the WHO has declared this infectious disease as a pandemic.

COVID-19 infection leads to acute respiratory illness and  
even fatal acute respiratory distress syndrome (ARDS) with 
approximately 17% to 29% rates. The fatality rate is pre-
dicted to be around 2.3% [5]. Fever, dyspnea, cough, myal-
gia, and headache have been defined as the symptoms of 
this disease. The real-time reverse transcriptase-polymerase  
chain reaction (RT-PCR) assay has been adopted as the 
gold standard for the SARS-CoV-2 diagnosis. Although it 
is believed that this test has high specificity for COVID-
19 infection diagnosis, its sensitivity has been reported to 
be as low as 60–70%. Besides, one of the medical imaging 
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techniques, computed tomography (CT), has been adopted 
as a vital method to support the diagnosis and management 
of patients with COVID-19 infection [3]. Several specific 
patterns such as bilateral, peripheral, and basal predominant 
ground-glass opacity (GGO), multifocal patchy consolida-
tion, and crazy-paving pattern with a peripheral distribu-
tion observed at chest CT images have been declared as the 
findings of COVID-19 infection [1]. These definitions have 
increased the role of radiography and chest CT for COVID-
19 infection diagnosis. It is believed that chest CT findings 
are of a key role in the assessment of COVID-19 infection 
[6]. In clinical practice, the GGO accompanied by the inter-
lobular septa thickening or crazy-paving pattern, consolida-
tion, and air bronchogram sign have been observed com-
monly. Besides, chest CT manifestations in patients with 
COVID-19 have been related to patient’s age [7].

A specific drug or vaccine is still not recommended for 
the treatment of this infection. Laboratory conditions must 
be appropriate and sufficient for the implementation of 
RT-PCR assay. It is also a time-consuming process taking 
hours, or even days before the results are available. There-
fore, due to the lack of a sufficient number of test kits and 
inadequate hospital equipment, the diagnosis period of sus-
picious patients is significantly delayed and the disease has 
not been prevented from concentrating in certain centers. 
At this point, quantitative CT analysis can be an alternative 
diagnostic tool and its role is constantly evolving with mod-
est scientific evidence [6, 8–10].

When the literature is examined, it is seen that many 
different algorithms have been used to classify or segment 
COVID-19 infection by using CT images. For the classifi-
cation task, a deep learning model based on the Darknet- 
19 was suggested to detect COVID-19 infection using CT 
images. The number of filters was gradually increased in 
architecture. Binary and multi-class classification were real-
ized. The model achieved 98.08% and 87.02% classification 
achievements for binary and multi-class classification tasks, 
respectively [11]. COVIDiagnosis-Net covering SqueezeNet 
and Bayesian optimization was introduced for COVID-19 
infection detection. The overall classification score was 
reported as 98.26% [4]. The deep features, which were 
extracted a novel convolutional neural network (CNN) model 
using Bayesian optimization method, were applied as the 
input to k-nearest neighbor ( k NN), support vector machine 
(SVM), and decision-tree (DT) machine learning models. 
The most efficient results yielded by SVM with 98.97% 
accuracy [12]. In another study, the generalization abilities 
of pretrained deep CNNs were investigated for the same pur-
pose. The most efficient results were ensured by ResNet-101 
and Xception models with 99.02% accuracy scores [13]. A 
deep learning-based methodology was offered using X-ray 
images for COVID-19 diagnosis. In the study, SVM was 
utilized as a classifier and this machine learning technique  

was fed with the deep features, which were extracted from 
the fully connected layer of ResNet-50 model. The model 
achieved a 95.38% classification score [14]. Three pretrained 
deep CNN-based models, which are ResNet-50, Incep-
tionV3, and InceptionResNetV2, were adopted for COVID- 
19 infection diagnosis. Fivefold cross-validation method was 
used in the experiment and the best scores were obtained 
using the ResNet-50 model with 98% classification success 
[15]. COVIDX-Net, which is a framework of deep learning 
classifiers to diagnose COVID-19 using X-ray images, was 
come up with an end-to-end learning schema. This study 
pointed out that the VGG-19 and DenseNet showed good 
and similar performances whereas the performance of the 
Inception V3 model was not enough successful [16]. The 
fuzzy color and image stacking techniques were embedded 
into MobileNetV2 and SqueezeNet with the social mimic 
optimization algorithm to detect COVID-19 infection from 
Chest CT images. The model ensured 99.27% classification 
achievement [17].

The automatic segmentation of anatomical structures is 
an important step for many medical image analysis tasks 
[18–22]. This approach depicts the regions of interest 
(ROIs) such as lung, lobes, bronchopulmonary segments, 
and infected regions or lesions, in the chest X-ray or CT 
images [23]. The recently proposed segmentation net-
works for COVID-19 employs U-Net [2, 24–28], U-Net++ 
[29, 30], and VB-Net [31]. A hybrid COVID-19 detection 
model that relies on an improved marine predator algorithm 
(IMPA) was proposed for X-ray image segmentation. The 
ranking-based diversity reduction (RDR) strategy was uti-
lized to enhance the performance of the model. Thanks to 
the model, the similar small regions were extracted on X-ray 
images [32]. Since the segmentation of CT images is of great 
significance to help patient monitoring as well as diagnosis 
of COVID-19, U-Net-based segmentation network model 
based on attention mechanism was proposed. This model 
explores the spatial and channel attention features to capture 
rich contextual relationships. As a result, the dice score was 
reported as 83.1% in the study [20]. An AI system, which 
automatically analyzes CT images to identify COVID-19 
pneumonia features, was proposed. The segmentation proce-
dure was embedded in the proposed model. The lung region 
extraction, lesion segmentation, and lesion classification 
were realized to ease the burden of radiologists [30]. A new 
deep CNN model using a fully CNN in conjunction with an 
adversarial critic model was offered for lung segmentation 
based on the chest X-ray. The model was called Attention 
U-Net Based Adversarial Architectures. The dice score was 
reported as 97.5% on the JSRT dataset [33].

As seen in the reviewed literature, the deep CNN models 
have been used for both classification and segmentation of 
COVID-19 infection. U-shape architecture with symmetric 
encoding and decoding blocks has been adopted to learn 
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better visual semantics and detailed contextures. In this 
study, a SegNet-based network using the attention gate (AG) 
mechanism for the automatic segmentation of COVID-19 
regions from CT images is proposed. AGs have been embed-
ded in the proposed model with a minimum computing load. 
In this way, the precision and predictive capabilities of the 
proposed model are enhanced. As a result, we achieved 
promising results.

The rest of this study is organized as follows: the meth-
odology is given in “Methodology”. Experimental works 
and results are presented in “Description of Database and 
Experimental Work”. Concluding remarks are presented in 
“Conclusions”.

Methodology

Attention‑Based Network Architecture (A‑SegNet)

CNNs are one of the most popular method that was used in 
many tasks such as classification, localization, and segmen-
tation [18, 19, 34–40]. CNNs outperform conventional meth-
ods in medical image analysis. Further, in a study proposed 

by Wolz et al. [41], it was even claimed that CNNs were 
faster than graph-cut and multi-atlas segmentation tech-
niques. The success of CNNs can be associated with learn-
ing each activation map with stochastic gradient descent 
(SGD) optimization, sharing the learned convolution filters 
in all pixels, and using the structural information by the con-
volution operator most appropriately. Even so, it is difficult 
to reduce the false positive value for small objects with large 
variability in shapes, such as retinal vessel and organ seg-
mentation [42, 43]. In such cases, existing CNNs localize 
the task separately and require previous additional object 
localization models to simplify subsequent classification/
segmentation steps or to guide localization using weak tags 
to improve the accuracy [20, 44]. Here, we present that the 
segmentation of COVID-19 regions can be provided by inte-
grating attention gates (AG) into a standard SegNet model 
(cf. Fig. 1) [21].

SegNet is a fully connected neural network architec-
ture proposed for pixel-based image segmentation. SegNet 
architecture uses feature maps that are produced by encoder-
decoder pairs to learn different resolutions. Each encoder 
layer sequence applies the maximum pooling operation to 
the result obtained after applying the convolution, batch 
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Fig. 1   Proposed network architecture (A-SegNet), equipped with AG modules
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normalization, and ReLu processes. Then, the output of 
the maximum pooling is fed to the input of both the next 
encoder and the corresponding decoder. Decoders are gener-
ally similar to encoders, and the main difference between the 
two is that they do not have a nonlinear effect. The decoders 
sample the input they receive upstream using the indexes 
from the encoding step. The result obtained from the last 
decoder is given to the softmax layer and the final output 
is obtained.

In the proposed method, we incorporated AGs to the 
standard SegNet architecture to emphasize the salient fea-
tures that pass through the skip connections. An AG has 
two input signals. The first one takes the map of the fea-
ture carried by the skip connection. The other input uses 
the coarse feature map obtained from the output of the 
previous decoder layer. The irrelevant and noisy feature 
responses extracted from the coarse-scale are clarified in 
skip connections. The output of the AG is fed into the next 
decoder. This process is performed for each skip connec-
tion. In this way, attention weights increase the resolution 
of features and provide better segmentation performance.

Attention Gate Module

The dataset used in this study contains different mass sizes 
and shapes. Also, in many CT slices, the mass size is quite 
small compared with the background region. Therefore, 
segmentation-based classic CNNs produce low sensitivity 
results. Concerning these features, an encoder-decoder-
based SegNet architecture in which AGs [45] are integrated 
is proposed to segment the COVID-19 regions. The general 
structure of an AG is shown in Fig. 2.

The xi , shown in Fig. 2, is the feature map of the ith layer 
output and gi refers to a gating signal vector that is collected 
from a coarser scale and decides the focus region for each 
pixel. On the other hand, the �i coefficient provides distinct 
activations related to the target task by suppressing the noise 
in irrelevant property responses. Finally, the final output of 

the AGs is produced by element-wise multiplication of �i and 
xi maps:

In general, attention modules are used in two ways, mul-
tiplicative [46] or additive [47]. The multiplicative atten-
tion modules have faster computing capability and use less 
memory in practice as they can be applied as matrix multi-
plication. However, it has been suggested that additive atten-
tion modules perform better performance in experiments due 
to their large input features [48]. In our experiments, we 
preferred the first in terms of faster calculation, and it is 
formulated as follows:

where �1 is the ReLu function: �1(k) = max(0, k) , and �2 
also expressed as the sigmoid function: �2(k) = 1∕(1 + e−k) . 
Finally, Wg and Ψ are the linear transformations using the 
1 × 1 × 1 dimensional convolution operator, respectively, 
bΨ and bg are bias terms. All AG weights are initial-
ized randomly and updated according to the principle of 
back-propagation.

Loss Function

Cross‑Entropy Loss

Cross-entropy is a commonly used loss function in deep 
learning practices to cope with binary classification prob-
lems that compute the probability of being a particular class 
or not [49]. Let x and y represent the input CT slice and the 
corresponding segmented ground-truth COVID-19 map, 
respectively. The main purpose in segmentation problems 
is to learn mapping x → y during the training of the network 
[50]. The baseline cross-entropy loss LCE has been expressed 
as follows:

where i and N represent the pixel index and the total pixels, 
respectively. According to the statement in Eq. (3), we can 
see that the cross-entropy loss gives equal weight to the loss 
of different pixels, which do not take into account unbal-
anced pixel distributions.

Dice Loss

The Dice Score Coefficient (DSC) [33] is the most common 
and simple approach that compares and evaluates segmenta-
tion results to calculate the overlap rate of predicted masks 
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and ground-truth, and so, for the given X and Y images, DSC 
is calculated as follows:

where, TP , FN, and FP represent true-positives, false-
negatives, and false-positive indices, respectively. Let c be 
the class tag corresponding to any set, g and p represent 
ground-truth and predicted results, respectively. Hence, the 
dice score can be rearranged as follows:

where ε is the constant coefficient added to prevent numeri-
cal instability due to the division of the equation to zero and 
its value is very small. Thus, the linear Dice Loss (DL) of 
the segmentation prediction can be calculated as follows:

Tversky Loss

One of the biggest handicaps of DL is that it considers false 
negative and false positive predictions uniformly. This will 
cause low recall alongside high precision. If so the estimated 
region of interest (ROI) is small, the weights of false-negative  
pixels should be higher than the weights of false- 
positive pixels. It can be easily overcome this deficiency by  
adding weights � and � , which are tunable parameters. Thus, 
Eq. (5) is rearranged and the mathematical definition of the 
Tversky Similarity score can be expressed as follows [51]:

where pi,c = 1 − pi,c and gi,c = 1 − gi,c , that is, the overline 
of c was simply used to express the complement of the class. 
As a result, Tversky loss can be easily obtained from Eq. (4) 
and is expressed as follows:

Focal Tversky Loss

Another disadvantage of the dice score is that it is difficult 
to segment small ROIs as they do not contribute to the loss 
sufficiently. To struggle with this handicap, Abraham et al. 
[52] recommended the Focal Tversky Loss function (FTL):

(4)DSC(X, Y) =
2|X ∩ Y|
|X| + |Y|

=
2TP

2TP + FN + FP

(5)DSC =

∑N

i=1
pi,cgi,c + �

∑N

i=1
(pi,c + gi,c) + �

(6)LDL =
∑

c

(1 − DSCc)

(7)TSc =

∑N

i=1
pi,cgi,c + �

∑N

i=1
pi,cgi,c + �

∑N

i=1
pi,cgi,c + �

∑N

i=1
pi,cgi,c + �

(8)LTL =
∑

c

(1 − TSc)

where � is a real number ranging from 1 to 3. In practice, if 
a pixel is misclassified with a high Tversky score, the FTL 
is unaffected. However, if the Tversky score is small and the 
pixel is misclassified, the FTL will decrease significantly. 
We have trained our network for different � , � , and � values 
of FTL to help segment small COVID-19 regions.

Description of Database and Experimental 
Work

Database and Pre‑Processing

The COVID-19 CT segmentation databases used in the 
experiments were collected by the Italian Society of Medical 
and Interventional Radiology and consists of two parts. The 
first database contains 100 axial CT images of 60 patients 
with COVID-19, as well as 100 ground-truth images labeled 
by the radiologist in 3 categories such as ground-glass, con-
solidation, and pleural effusion. The images are 512 × 512 
pixels in size and presented to the researchers in grayscale 
NIFTI file format. The second database contains a total of 
829 axial CT slices and is recorded as 9 CT volumes. The 
radiologists reported that only 373 of the sections in this 
database had COVID-19 cases and were segmented. Also, 
unlike the first database, the resolutions of these slices are 
630 × 630 pixels. Also, it is seen in Fig. 3 that only 233 
slices contain the consolidation regions and these regions 
occupy a very small area in the second database. Therefore, 
we segmented all lesions in ground-truth as a single case of 
COVID-19 lesion. Also, by combining the images of both 
data sets containing the relevant case, we have taken into 
account 473 CT images in total for use in experiments.

We aim to produce the correct COVID-19 segmentation 
masks from CT images. Hence to avoid including undesired 
parts/organs in CT images, Hounsfield units were mapped 
to the intensity window as [−1024, 600]. Then, the mapped 
images were normalized to the 0–255 range. Finally, all 
images were rescaled to a resolution of 256 × 256 pixels to 
reduce the computation cost during training, and the seg-
mentation results were interpreted with a fivefold cross-
validation technique.

Experimental Works and Results

The network we specified in our proposal is implemented 
in MATLAB environment and trained with a worksta-
tion that is equipped with a single Nvidia GPU Quadro 
P5000. During the training, the network’s performances 
of different loss functions such as dice, Tversky, and focal 

(9)LFTL =
∑

c

(1 − TSc)
�−1
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Tversky were evaluated in the aforementioned database, 
considering the fivefold cross-validation technique. In all 
of the experiments, maximum epoch and mini-batch size 
values were chosen as 50 and 16, respectively. The initial 
learning rate was gradually reduced by 0.5 per 10 epoch, 
initializing from 0.1 the loss functions. The loss functions 
were also optimized by employing a stochastic gradient 
descent optimizer with momentum.

The segmentation performance of the proposed work 
was evaluated by three metrics namely dice, sensitiv-
ity, and specificity, respectively. Evaluation metrics are 
defined as follows:

where TP, FP, TN, and FN show the true positive, false posi-
tive, true negative, and false negative samples, respectively 
[53]. Figure 4 shows sample ground-truths and obtained 
segmentation results with different loss functions. While 
the first row of Fig. 4 showed the ground truth segmenta-
tions, the rows 2–4 showed the baseline segmentations. The 

(10)Dice =
2TP

2TP + FP + FN

(11)Sensitivity =
TP

TP + FN

(12)Specificity =
TN

TN + FP

proposed segmentation achievements were given in the last 
three rows of Fig. 4.

From Fig. 4, it was observed that the proposed methods’ 
achievements (A-SegNet-FTL) were better than the baseline 
segmentations. Generally speaking, the boundary of the seg-
mentation was quite regular and there were no small holes 
inside the segmentations. The region of interest was cor-
rectly segmented. For the sample image in the first column 
of Fig. 4, it was seen that almost all approaches produced 
similar segmentations. Only, A-SegNet-TL produced over-
segmentation for this sample. For the second sample image, 
as all approaches almost produced identical segmentations, 
baseline approaches produced segmentations that contain 
holes inside the region of interest. The proposed approaches 
produced identical results with ground truth results. For the 
other samples, as the obtained segmentations were quite 
similar, a close look shows the quality segmentations of the 
proposed method.

Table 1 also shows the quantitative evaluation scores for 
both the proposed method and baseline methods, respec-
tively. As observed in Table 1, various parameters were used 
during experiments. For the baseline results, it was seen that 
the best dice (87.56%) and sensitivity (92.13%) scores were 
obtained with the SegNet + FTL (α = 0.3, β = 0.7, γ = 4/3) 
and the best specificity (99.71%) score was obtained with 
SegNet + FTL (α = 0.7, β = 0.3, γ = 4/3), respectively. For 
the proposed method, it was seen that while highest dice 

Fig. 3   Sample images of COVID-19 CT segmentation database. a Raw images, b ground-truths corresponding to a. Ground-glass, consolida-
tion, and pleural effusion cases are shown in orange, blue, and green, respectively
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(89.61%) and sensitivity (92.73%) scores were obtained with 
A-SegNet + FTL (α = 0.3, β = 0.7, γ = 4/3), the best speci-
ficity score (99.75%) was obtained by the A-SegNet + FTL 
(α = 0.7, β = 0.3, γ = 4/3), respectively.

A further comparison of the proposed method with Zhou 
et al. [20] is given in Fig. 5. The bar illustration was used to 
show the comparisons. As seen in Fig. 5, our dice, sensitiv-
ity, and specificity scores were 6.51%, 6.03%, and 0.21% 
better than the compared methods evaluation scores.

Because of variable infection regions in the lungs, 
similar imaging, and large inter-case variations, accu-
rate evaluation of CT images is still a challenging task 

in clinical practice. In the early stages of the disease, the 
infections caused by COVID-19 are seen in small regions 
of the lung and it is really hard to detect these patterns in 
CT images with a visual examination. Besides, imaging 
biomarkers of COVID-19 such as GGO, mosaic sign, air 
bronchogram, and interlobular septal thickening are similar 
in some severe and non-severe cases. In this scope, the pro-
posed CNN model supports the decision-making process 
of the field experts. The results of this study point out that 
understanding chest CT imaging of COVID-19 helps detect 
infection early as well as has the potential to support clini-
cal management processes.

Table 1   Quantitative evaluation 
of COVID-19 segmentation 
results

Model Parameters Dice (%) Sensitivity (%) Specificity (%)

Baseline SegNet + DL 86.06 86.30 99.45
SegNet + TL α = 0.7, β = 0.3 71.02 67.54 99.48
SegNet + TL α = 0.5, β = 0.5 68.97 66.70 99.49
SegNet + TL α = 0.3, β = 0.7 74.85 86.38 98.70
SegNet + FTL α = 0.7, β = 0.3, γ = 4/3 86.58 82.47 99.71
SegNet + FTL α = 0.5, β = 0.5, γ = 4/3 87.44 88.27 99.54
SegNet + FTL α = 0.3, β = 0.7, γ = 4/3 87.56 92.13 99.39

Ours A-SegNet + DL 88.52 88.90 99.56
A-SegNet + TL α = 0.7, β = 0.3 74.65 71.07 99.44
A-SegNet + TL α = 0.5, β = 0.5 88.52 88.31 99.62
A-SegNet + TL α = 0.3, β = 0.7 74.61 79.03 99.28
A-SegNet + FTL α = 0.7, β = 0.3, γ = 4/3 86.96 82.22 99.75
A-SegNet + FTL α = 0.5, β = 0.5, γ = 4/3 89.16 87.99 99.66
A-SegNet + FTL α = 0.3, β = 0.7, γ = 4/3 89.61 92.73 99.51

Fig. 5   Comparison of the pro-
posed method with a state-of-
the-art method [20]
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Conclusions

In this paper, SegNet-based network using the attention gate 
(AG) mechanism was proposed for the automatic segmenta-
tion of COVID-19 regions from CT images. The proposed 
network was trained with various loss functions namely, 
dice, Tversky, and focal Tversky, respectively. A CT dataset 
was used in experiments and successful segmentation was 
obtained. The following conclusions were acquired from the 
experiments:

1.	 The attention gate mechanism improved the segmenta-
tion performance.

2.	 Training of the proposed network with the focal Tversky 
loss produced the better segmentations than the others.

3.	 Adding the γ parameter improved the segmentation 
results.

4.	 Low α and high β parameters produced better perfor-
mance.

In future works, it is planning to apply optimization for 
obtaining α, β, and γ parameters. Besides, dense network 
structures with AG will be investigated for COVID-19  
segmentation in CT images.
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