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Abstract
In this proof-of-concept work, we have developed a 3D-CNN architecture that is guided by the tumor mask for classifying 
several patient-outcomes in breast cancer from the respective 3D dynamic contrast-enhanced MRI (DCE-MRI) images. 
The tumor masks on DCE-MRI images were generated using pre- and post-contrast images and validated by experienced 
radiologists. We show that our proposed mask-guided classification has a higher accuracy than that from either the full 
image without tumor masks (including background) or the masked voxels only. We have used two patient outcomes for this 
study: (1) recurrence of cancer after 5 years of imaging and (2) HER2 status, for comparing accuracies of different models. 
By looking at the activation maps, we conclude that an image-based prediction model using 3D-CNN could be improved by 
even a conservatively generated mask, rather than overly trusting an unguided, blind 3D-CNN. A blind CNN may classify 
accurately enough, while its attention may really be focused on a remote region within 3D images. On the other hand, only 
using a conservatively segmented region may not be as good for classification as using full images but forcing the model’s 
attention toward the known regions of interest.

Keywords  Deep learning · Breast cancer outcome classification · DCE-MRI · Mask-guided convolutional neural net

Introduction

Breast cancer is the most common non-skin cancer in adult 
women worldwide, and the second leading cause of can-
cer deaths in women [1]. Among various medical imaging  
tools for breast cancer, dynamic contrast-enhanced mag-
netic resonance imaging (DCE-MRI) is highly sensitive for 
the detection and evaluation of breast cancer in all breast 
cancers. DCE-MRI is highly sensitive for detecting breast 
cancer, particularly in high-risk populations with a higher 
sensitivity than mammography and ultrasound [2, 3]. Since 
DCE-MR images contain information on tumor perfusion 
and heterogeneity, they may provide features that are not 

visually apparent but highly correlated with tumor pheno-
type and prognosis. The entire field of radiomics is based 
on the ability to find associations between imaging data and 
outcomes, though very little has been published on compari-
son of the methods revealing those associations.

Classification models based on convolutional neural net-
work (CNN) architectures have shown potential solutions for 
revealing the hidden relationship between breast tumor prog-
nosis and medical images [4, 5]. Commonly used 2D-CNN 
architectures only use the spatial information in an axial 
plane without evaluating the pixel correlation in the coro-
nal plane and sagittal plane. It has been shown that 3D-CNN 
outperforms 2D-CNN methods in many other studies [6, 
7]. However, most of these studies presented 3D-CNNas a 
black box and did not visuallyexplain where the model’s 
attention lies in those images.

In reality, most tumor datasets contain invasive and non-
invasive tumors within the same field of view. For example, 
80% of breast cancers are categorized as invasive breast cancer, 
which tends to grow out of the originated lesion. The current 
methods are not explicitly designed for classifying the tumor 
outcome within invasive and non-invasive tumor datasets. 
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Some of those studies cropped only the tumor volume out of the 
entire image set, regardless of the correlation between the tumor 
and surrounding tissue [5]. Other studies applied 3D-CNN on 
classifying disease outcomes for volumetrically diffusive con-
ditions like Alzheimer’s disease [7, 8]. Therefore, classifying 
disease outcomes using tumors that contain both invasive and 
non-invasive tumor tissues still lacks extensive study.

We have previously established the ability of radiomics 
combined with conventional machine learning classification 
models on MR and positron emission tomography (PET) 
images acquired at the time of diagnosis to predict various 
breast cancer outcomes, including survival [8]. In this paper, 
we propose to use a new mask-guided 3D-CNN architecture 
for tumor-outcome prediction from breast DCE-MRI, which 
improves the classification performance and, more importantly, 
guides the 3D-CNN’s attention toward the breast tumor. We 
generated tumor masks first using the difference between pre- 
and post-contrast DCE-MRI images, which are then validated 
by two experienced radiologists. We consider the attention of 
the 3D-CNN as the highlighted region on the activation map 
[9]. Our mask-guided 3D-CNN architecture is a classification 
method based on maximizing the dice coefficient [11] between 
the mask and highlighted attention of the 3D-CNN. The dice 
coefficient quantifies the degree of overlap. In this way, we 
were able to guide the attention of 3D-CNN from outside the 
breast to the region of interest, which is close to the tumor. In 
this study, we found that our mask-guided 3D-CNN approach 
outperformed the unguided 3D-CNN approach and tumor-
only approach in classifying various breast cancer outcomes, 
including cancer recurrences and human epidermal growth 
factor receptor 2 (HER2) status. We present here results for 
only these two outcomes as the dataset had class balance for 
them, and consequently, the results are more reliable. Addi-
tionally, the survival is an important prognostic parameter, 
and HER2 has a strong possibility of correlating with image 
features. These rationales also played a key role in our choice 
for outcomes to be correlated with. The tumor-only method 
uses only the segmented tumor volume.

Proposed Method

Backbone Architecture

We chose a modified 3D-VGGNet [12, 13] for binary clas-
sification studies as a backbone architecture in this study. To  
visualize the highlighted region for breast cancer by 3D-CNN,  
we replaced typical  fully connected layers with global  
average pooling layers, as shown in Fig. 1. Notably, the input 
images pass through 4 blocks constructed by 3D convolu-
tional layers and 3D max-pooling layers. The architecture 
was followed by a global average pooling layer, batch nor-
malization layer [14], dropout layer [15], and the softmax 

output layer. For tuning of the 3D-CNN, we used adaptive 
moment estimation (Adam) [16] optimizer with a 0.000025 
learning rate. We trained 250 epochs with a batch size of 10.

Visualization

In 3D-CNN medical image analysis studies, one of the major 
problems is the lack of transparency inside the neural net-
work. In this study, we used the class activation map (CAM) 
with global average pooling (GAP) [10] to visualize discrim-
inative image regions by 3D-CNN. A global average pool-
ing layer and a fully connected layer were added at the end 
of the last 3D convolutional layer. This design allowed the 
projection of class label weights of the output layer onto the 
activation maps in the convolutional layer. Thus, it enabled 
us to identify the critical image region by projecting back 
the weights of the output layer onto the 3D convolutional 
feature maps.

Loss Function

In order to test if the mask-guided mechanism is able to 
help increase the model classification performance, we 

Fig. 1   Modified 3D VGGNet backbone architecture
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investigated the visualization explanation and classification 
performance of the mask-guided 3D-CNN by comparing 
three different models. The summary of these three models 
is shown in Fig. 2 and Table 1. All of these models that clas-
sified breast cancer prognostic outcomes were based on the 
3D-VGGNet architecture with the modified backbone men-
tioned above. We adjusted the dimensions of input images 
for different models. In the no-mask model (Table 1), we 
took the whole 3D DCE-MR volume as input. Additionally, 
we selected the binary cross-entropy function calculated 
by the probabilities output and the ground truth labels as 
our loss function (function 1). For the mask-only model, we 
used the 3D tumor boundary boxes as input. The mask-only 
model used the same loss function as the no-mask model. 
Finally, in our proposed mask-guided model, we again used 
3D DCE-MR volumes as input. To guide the attention of 
the 3D-CNN to the tissue highlighted by contrast-enhanced 
tissue, we created a loss function that is able to minimize 
the cross-entropy and the area difference between the class-
activation-map and the tumor mask generated by contrast-
enhanced breast tissue at the same time. The loss function 

is shown below (function 2). We set our hyperparameter, λ, 
to equal to 10, as it appears to adequately balance the two 
terms in function 2.

Experiment and Results

Dataset

We evaluated the classification performance of the mask-
guided model on 3D DCE-MR breast images, which consists 
of a collection of 115 pre-contrast (T0), early post-contrast 
(T1), and late post-contrast (T2) DCE-MR images. In this 
study, we predicted recurrence (pos/neg = 35/80) and HER2 
status (pos/neg = 30/79) as our target labels. Retrospective 
data that we used were acquired with 1.5 T (SIGNA, GE 
Healthcare) or 3.0 T (Magnetom, Siemens Healthineers), 
with contrast agent gadopentetate dimeglumine (0.1 mmol/
kg). The acquisition details for the datasets used in this 
study were described previously. [17] All imaging study was 

Fig. 2   The schema for our 
proposed architecture. Models 
1 and 2 are without the dashed 
lines. Model 3 is the one model 
with the dashed lines

Table 1   Input, output, and loss function difference of three models

Function 1: CE (L, P) = −Σ Li log(Pi)
DiceCoef (mask1, mask2) = 2 × |mask1 ∩ mask2|/(|mask1| +|mask2|)
Function 2: loss = CE (label, prediction) − λ × DiceCoef (class activation map, mask)
CE refers to cross-entropy, i refers to different images, L refers to label, P refers to prediction

Input Output layer Loss function

Model 1: not using the segmented 
mask

3D MRI volume The output of a fully connected layer Cross-entropy between the true label 
and predictive label

(function 1, see below)
Model 2: using only the segmented 

mask
Only voxels within the 

boundary box of tumor 
mask

The output of a fully connected layer Cross-entropy between the true label 
and predictive label

(function 1)
Model 3: our novel mask-guided 

model
3D MR volume The output of a fully connected layer 

and last conv output
1: Cross-entropy between a true label 

and predictive label
2: Dice coefficient between tumor 

mask and 3D CNN activation map
(function 2)
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performed at the University of California, San Francisco, 
under Institutional Review Board–approved protocol. The 
retrospective data analysis was approved by the Institutional 
Review Board.

To generate the 3D tumor volume mask, we subtracted 
the background pre-contrast image set (T0) from the early 
post-contrast image set (T1) to obtain the subtracted con-
trast-only image set. We set the contrast threshold at 70%, 
only considering contrast greater than 70% contrast enhance-
ment threshold based on the past experience with this dataset 
that is standard in MRI [9]. We did not use T2 image as 
the signal were noisy and outside the tumor. We segmented 
breast tumor tissue using a fuzzy C-means algorithm and 
created a tumor volume mask to guide this model. Due to 
the peak contrast of breast tissue appearing at early post-
contrast (T1), we chose T1 as the training input image for 
our analysis. As input to our mask-only model, the tumor 
volume was manually segmented from DCE-MRI images, 
confirmed, and validated under the guidance of experienced 
breast radiologists trained in breast imaging [17]. One of 
our co-authors (M.B.) performed the validation of the mask 
under supervision of a senior radiologist (D.W.). Both of 
them have subspeciality training in breast imaging. All of 
radiologists (M.B., D.W., and B.J.) reviewed the class activa-
tion maps included in this paper.

A total of 115 subjects were randomly shuffled and 
divided into training and validation datasets by five-fold 
cross-validation. We then developed a 3D data augmen-
tation method and generated 92 (four-folds) × 34 = 3128 
training images. And we used 23 original images without 
augmentation for testing. Specifically, we first rotated the 
original 3D images four times on the horizontal surface. 
Because there are six faces in a 3D cube, we were able 
to generate 4 × 6 = 24 augmented images. Second, we 
shifted the original 3D image along with the directions 
of eight cube angles and filled with a background pixel 

value. We shifted 10 pixels along x-, y-, z-axes as follows 
([[10, 10, 10], [10, 10, −10], [10, −10, 10], [10, −10, 
−10], [−10, −10, −10], [−10, −10, 10], [−10, 10, −10], 
[−10, 10, 10]]). We generated eight new images in this 
process. Finally, we rotated the original 3D original image 
10 degrees clockwise and anticlockwise on the horizontal 
surface to produce two more images. Within these three 
processes, we augmented each image 24 + 8 + 2 = 34 times.

Visualization Results

After we trained our model to predict the prognostic outcome 
label, we visualized our attentions of no-mask and mask-
guided model on the original image. The heatmap images 
of activation in Fig. 3b, c show the attentions of the no-mask 
model and mask-guided model. This result indicated that the 
mask-guided technique was able to guide the attention of the 
3D convolutional neural network inside the breast (3c) instead 
of the non-relevant region such as lung or region outside of 
the breast tissue as for the non-mask-guided one (3b). Since 
tumor segmentation (3a) used a very conservative approach, 
we conjecture that the region of attention in (3c) has the essen-
tial image features relevant to our target classification labels.

Accuracy of Results

We used five-fold cross-validation to evaluate the classifi-
cation using the mask-guided technique. We compared the 
predictive performance of three 3D-CNN models on two 
prognostic outcomes. The results are shown in Tables 2 
and 3. The prediction was measured by the area under the 
receiver operating characteristic curve (AUC) and classifi-
cation accuracy (ACC). Five-fold cross-validation was con-
ducted to calculate the standard deviations.

Fig. 3   a Shows the tumor mask, extra pixels, e.g., one in the left 
lower quadrant, are present because the way segmentation is per-
formed from the difference image between contrast-enhanced and no-
contrast MRI, b visualizes that the class activation map of no-mask 

model 2 is off the breast tissue, and c visualizes that the class activa-
tion map of mask-guided model 3 finds the regions of interest inside 
the breast but outside the mask
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Discussion

Our results in Tables 2 and 3 show that forcing the mask-
guided model 3 to pay attention toward the tumor volume, 
rather than the surrounding tissue, improves the predic-
tion results. Furthermore, our use of 3D augmentation for 
creating extensive training data set reduced the potential 
of over-fitting even though our initial dataset was small 
(n = 115) in this study.

For the visualization of results, the activation map in 
Fig. 3b showed that the no-mask model 1 directed the 
attention to the edge between the breast and the back-
ground, which indicated that the no-mask mode 1 clas-
sified the tumor with high accuracy based on unreliable 
image information from outside of the tumor. This is a 
known bizarre unexplained property of deep learning. It 
is possible that there is some associated noise feature in 
the image that is highly correlated with the labels with-
out necessarily having any causal relationship. This may 
be due to the small size of the training dataset (n = 115). 
Another novelty of the present study is that, unlike other 
prognostic outcome classification studies [15, 18], we used 
full 3D images for training. This high dimensionality of 
training images may have directed the model’s attention 
toward the region of interest. As the original manually 
drawn mask may have been done conservatively, the neu-
ral network found a larger region of interest within the 
breast for tumor classification (Fig. 3c), which may be 
correlated to the breast cancer subtype characteristics. By 
“larger region,” we mean outside the segmented mask. 
The resulting performance has improved both accuracies 

(ACC), and prediction (AUC) compared to the other model 
2 and model 3 (Table 3).

Results shown in Table 3 demonstrated that the mask-
guided model outperformed the other two models in pre-
dicting 5-year disease-free survival in our cohort of breast 
cancer patients. Model 3 (mask-guided) was better than 
model 1 (no-mask) because the mask-guided model used 
the voxels within the tumor that were relevant to the treat-
ment response. Compared to model 2 (mask-only), model 
3 (mask-guided) classified the outcome not only based on 
the tumor tissue within the boundary box but also assessed 
the surrounding activated stroma that may also relate to 
DFS [19]. This type of guidance of CNN is not attempted 
before, to the extent of our knowledge.

In this study, a contrast difference between the early 
post-contrast images at T1 and pre-contrast at T0 images 
is used to generate the breast tumor masks. This method 
was able to highlight the suspected tumor tissue. However, 
this segmentation approach occasionally created irregu-
lar tumor masks or multiple small tumor chunks for some 
patients. Due to the varying size of the discontinuous tumor 
chunks within one patient and between patients, the exist-
ing CNN could provide only two types of models: no-mask 
model or mask-only model. No-mask model did not use the 
tumor mask generated from DCE-MRI. On the other hand, 
the mask-only model may introduce noise into the dataset 
before training, because of a necessary image-resizing step. 
In such circumstances, it is advantageous to use the mask-
guided technique on 3D images that do not require tumor 
resizing but uses all critical information on the DCE-MRI 
image for accurate classification and prediction.

Table 2   Classification 
performance in predicting 
HER2 status. Mask-guided 
model 3 is consistently the best

ACC (training) ACC (validation) AUC (training) AUC (validation)

Model 1 0.776
(SD 0.034)

0.749
(SD 0.071)

0.801
(SD 0.046)

0.778
(SD 0.065)

Model 2 0.766
(SD 0.045)

0.638
(SD 0.157)

0.790
(SD 0.082)

0.695
(SD 0.128)

Model 3 0.781
(SD 0.046)

0.762
(SD 0.066)

0.812
(SD 0.051)

0.781
(SD 0.036)

Table 3   Classification performance of three models on predict-
ing recurrence in 5 years. Model 1 looks into the only masked area 
(Fig.  3b). Model 2 looks into the whole image without the mask 

information. Model 3 is also over the entire image but mask-guided. 
As in Table 2, mask-guided model 3 classifies outcomes slightly and 
consistently better than the other two

ACC (training) ACC (validation) AUC (training) AUC (validation)

Model 1 0.798
(SD 0.038)

0.758
(SD 0.065)

0.822
(SD 0.046)

0.798
(SD 0.077)

Model 2 0.783
(SD 0.027)

0.672
(SD 0.169)

0.810
(SD 0.043)

0.705
(SD 0.184)

Model 3 0.823
(SD 0.036)

0.796
(SD 0.076)

0.844
(SD 0.041)

0.828
(SD 0.068)
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Conclusion

In this paper, our novel 3D-CNN architecture has used the 
tumor mask as a guide to direct 3D-CNN’s attention for clas-
sification. Our mask-guided model was designed to focus on 
tumors possibly present in different regions over a breast. 
We observed that the mask-guided model was able to focus 
its attention at an unknown region within the breast tumor 
that was different from the mask, possibly indicating image 
features relevant to the target prognostic tumor outcomes. 
This technique also helped to increase the accuracy of clas-
sification performance on outcomes over the DCE-MRI 
dataset that we tested. We expect this result will motivate 
the community on follow-up larger-scale projects, and if our 
results are replicated, then utilize our proposed mask-guided 
method to develop novel image bio-markers.

A limitation of our work was to use a too conservative 
tumor segmentation algorithm (for model 2) that may have 
excluded some tumor tissues. It is worth comparing model 
3 against model 2 with a more inclusive segmentation 
approach. However, the fact that even a conservative seg-
mentation algorithm may be used to guide patient-outcome 
prediction is a novel contribution of our work worth further 
pursuing with a larger dataset than those that were used in 
this study. Small dataset raises obvious question on stabil-
ity of our results. An alternative to deep learning-based 
approach is to use machine learning over radiomics or image 
features for prediction of patient outcomes [19, 20], which 
should be compared against our proposed method (model 3).
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