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Abstract
To develop a U-net deep learning method for breast tissue segmentation on fat-sat T1-weighted (T1W) MRI using transfer 
learning (TL) from a model developed for non-fat-sat images. The training dataset (N = 126) was imaged on a 1.5 T MR 
scanner, and the independent testing dataset (N = 40) was imaged on a 3 T scanner, both using fat-sat T1W pulse sequence. 
Pre-contrast images acquired in the dynamic-contrast-enhanced (DCE) MRI sequence were used for analysis. All patients 
had unilateral cancer, and the segmentation was performed using the contralateral normal breast. The ground truth of breast 
and fibroglandular tissue (FGT) segmentation was generated using a template-based segmentation method with a clustering 
algorithm. The deep learning segmentation was performed using U-net models trained with and without TL, by using initial 
values of trainable parameters taken from the previous model for non-fat-sat images. The ground truth of each case was used 
to evaluate the segmentation performance of the U-net models by calculating the dice similarity coefficient (DSC) and the 
overall accuracy based on all pixels. Pearson’s correlation was used to evaluate the correlation of breast volume and FGT 
volume between the U-net prediction output and the ground truth. In the training dataset, the evaluation was performed using 
tenfold cross-validation, and the mean DSC with and without TL was 0.97 vs. 0.95 for breast and 0.86 vs. 0.80 for FGT. 
When the final model developed with and without TL from the training dataset was applied to the testing dataset, the mean 
DSC was 0.89 vs. 0.83 for breast and 0.81 vs. 0.81 for FGT, respectively. Application of TL not only improved the DSC, 
but also decreased the required training case number. Lastly, there was a high correlation (R2 > 0.90) for both the training 
and testing datasets between the U-net prediction output and ground truth for breast volume and FGT volume. U-net can be 
applied to perform breast tissue segmentation on fat-sat images, and TL is an efficient strategy to develop a specific model 
for each different dataset.
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Introduction

Breast MRI is a well-established clinical imaging modality 
for management of breast cancer. In addition to its use in 
diagnosis and pre-operative staging, breast MRI is also rec-
ommended for annual screening in women with a high risk 

of developing breast cancer [1], as a complementary exam to 
mammography which has limitations in cases of high breast 
density. Furthermore, many states in the USA have passed 
the breast density notification law which has raised aware-
ness and led to the increased clinical use of breast MRI [2, 
3]. As a result, this has led to the fast accumulation of a 
large breast MRI database, which can be used for explor-
ing the clinical use of quantitative breast density. There are 
two potential clinical applications, one for improving the 
accuracy of risk-prediction models [4, 5], and the other for 
evaluating the response to different treatments, such as hor-
monal therapy [6] and neoadjuvant chemotherapy [7].

Many semi-automatic and automatic computer-aided 
methods have been developed for segmentation of breast 
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and fibroglandular tissue (FGT) [8–13]. However, operator 
interventions and post-processing manual corrections may be 
needed, which are subjective and time-consuming. Therefore, 
despite great progress, efficiency and accuracy need to be fur-
ther improved for standard clinical use of MR-measured den-
sity. A fully automatic method that can achieve a high accuracy 
will be extremely helpful for exploring and implementing the 
application of quantitative breast density in clinical settings.

Machine learning using convolutional neural networks 
(CNNs) provides an efficient method in imaging processing, 
which has been applied in image classification, object recog-
nition, and medical image analysis for various clinical tasks 
[14–16]. Dalmış et al. first applied deep learning for breast 
MRI segmentation and demonstrated improved efficiency over 
an atlas-based method [11]. In a recent study, we reported an 
automatic segmentation method using the Fully-Convolutional 
Residual Neural Network (FC-RNN), commonly noted as 
U-net, for tissue segmentation on non-fat-sat T1-weighted 
(T1W) MRI [8], which could achieve a high accuracy.

For diagnosis of breast cancer using MRI, the fat-sat 
images were utilized more often than non-fat-sat images. In 
a recent survey distributed among 189 members from more 
than 20 countries by the European Society of Breast Imag-
ing (EUSOBI) board, it was noted that not only were fat-sat 
sequences preferred over non-fat-sat sequences, but 77% 
preferred using only the fat-sat T1W sequences alone [17]. 
Fat suppression, however, is a challenging issue in breast 
MR imaging as it will also affect the breast density meas-
urements [18]. Magnetic susceptibility differences between 
breast tissue and air causes local magnetic field (B0) inho-
mogeneity, which often leads to incomplete fat suppression 
and artifacts [19, 20]. Fat suppression is also more difficult 
using 3 T versus 1.5 T MRI [20] and in breasts with a high 
percentage of fat or with breast implants [19]. Furthermore, 
the signal-to-noise ratio (SNR) is lower on fat-sat than non-
fat-sat images, which makes tissue segmentation even more 
challenging.

The purpose of this study was to apply FC-RNN, or U-net, 
for segmentation of breast and FGT on fat-sat images. Two 
datasets from different hospitals were used, one for training 
and the other for independent testing. In addition, the ben-
efit of transfer learning (TL) was investigated. Our previous 
model developed for segmentation of non-fat-sat images 
was used as the basis and re-trained for fat-sat images. The 
results obtained without and with TL were compared.

Materials and Methods

Subjects

Three datasets were used in this retrospective study. The 
non-fat-sat dataset from 286 patients was from a previous 

study [8]. Our fat-sat training dataset had 126 women 
(mean age 48.5 years old, range 22–67 years old) with 
unilateral cancer, while the fat-sat testing dataset had 40 
women (mean age 44 years old, range 33–70 years old) 
from another medical institution, also with unilateral 
cancer. Magnetic resonance imaging was performed for 
diagnosis or pre-operative staging. In this study, only the 
contralateral normal breast was used for segmentation.

MR Protocols

The non-fat-sat dataset was acquired using a 3 T scan-
ner (Trio-Tim, Siemens Medical Solutions, Erlangen, 
Germany), with only the pre-contrast T1W images 
without fat suppression being utilized. For the fat-sat 
training set, MRI was performed using a 1.5 T scanner 
(Magneton Skyra, Siemens Medical Solutions, Erlan-
gen, Germany) with a 16-channel Sentinelle breast coil. 
Dynamic contrast-enhanced (DCE)-MRI was acquired 
using a fat-suppressed three-dimensional fast low angle 
shot (3D-FLASH) sequence with one pre-contrast and 
four post-contrast frames, with TR/TE = 4.50/1.82 ms, 
f lip angle = 12°, matrix size = 512 × 512, field of 
view = 32 cm, and slice thickness = 1.5 mm. The spatial 
resolution was 0.6 × 0.6 × 1.5 mm. The pre-contrast, fat-
suppressed T1W imaging sequence was used for analysis. 
For the fat-sat testing set, MRI was done using a 3 T scan-
ner (Magnetom Skyra, Siemens Medical Solutions, Erlan-
gen, Germany) with a 16-channel Sentinelle breast coil. 
The pre-contrast, fat-suppressed T1W imaging sequence 
used for density analysis was also acquired using the 
3D-FLASH sequence, with TR/TE = 4.36/1.58  ms, 
f lip angle = 10°, matrix size = 384 × 288, field of 
view = 30 cm, and slice thickness = 1.0 mm.

Ground Truth Segmentation

A chest template–based algorithm was used to segment 
the breast area as the ground truth [9]. Within the seg-
mented breast, the next step was to differentiate FGT from 
the adipose tissue. The nonparametric nonuniformity nor-
malization (N3) combined with Fuzzy C-means (FCM) 
algorithms were used to correct the field inhomogeneity 
(bias-field) within the imaging region [21]. Then, K-means 
clustering was applied to segment FGT and adipose tissues 
on pixel levels. The segmentation results were inspected 
by a radiologist (JHC), with 15 years of experience inter-
preting breast MR images. If necessary, manual correction 
was done. The results were used as the ground truth for 
neural network training and for evaluating the segmenta-
tion accuracy.
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U‑net Architecture

The goal was to use U-net to separate three-class labels on 
each MR image, including fatty tissue and FGT inside the 
breast, and all non-breast tissues outside the breast [22]. The 
first U-net was used to segment the breast from the entire 
image. Then, within the obtained breast mask, the second 
U-net was applied to differentiate the breast fat and FGT. 
Left and right breasts were separated using the centerline of 
the image, and a square matrix containing the normal breast 
was cropped and used as the input. The pixel intensity on the 
cropped image was normalized to z-score maps (mean = 0, 
and standard deviation = 1). The analysis was done using 
each slice as independent input.

The U-net architecture is illustrated in Fig.  1, with 
detailed methods in [8]. U-net is a popular type of FC-
RNN, which is made up of convolutional and max-pooling 
layers at the descending part (down-sampling stage) and 
convolutional and up-sampling layers at the ascending part 
(up-sampling stage). In the down-sampling stage, the input 
feature map size is divided by the stride at each max-pooling 
layer. In the up-sampling stage, the input feature map size 
is increased by the up-sampling operations, which are per-
formed and implemented by convolutions.

In this study, there were four down-sampling and four up-
sampling blocks. In the down-sampling blocks, two convo-
lutional layers with a kernel size of 3 × 3 were each followed 
by a rectified-linear unit (ReLU) for nonlinearity, and then 

followed by a max-pooling layer with 2 × 2 kernel size [23]. 
In the up-sampling blocks, the image was up-convolved by a 
factor of 2 using nearest neighbor interpolation, followed by 
a convolution layer with a kernel size of 2 × 2. The output of 
the corresponding down-sampling layer was concatenated. 
Next, two convolutional layers, each followed by a ReLU, 
were applied to this concatenated image. During the train-
ing process, the optimizer was Adam with a 0.001 learning 
rate [24]. Finally, a convolutional and a sigmoid unit layer 
were added to yield probability maps for each class which 
corresponded to the input image size. A threshold of 0.5 was 
used to determine the final segmented FGT. A maximum of 
60,000 iterations were set for training, and L2 regulariza-
tion was used to prevent overfitting. Software code for this 
study was written in Python 3.5 using the open-source Ten-
sorFlow 1.0 library (Apache 2.0 license) [25]. Experiments 
were performed on a GPU-optimized workstation with a 
single NVIDIA GeForce GTX Titan X (12 GB, Maxwell 
architecture).

Transfer Learning and Evaluation

The weights of the trained model using the 286 non-fat-sat 
images were saved, as the initial model to re-tune param-
eters for training the fat-sat images with TL [26]. For 
comparison, another model was trained directly using the 
He initialization method, which is a popular method com-
monly used for CNN training [27]. As the initial weights 

Fig. 1   Architecture of the fully convolutional residual neural net-
work (FC-RNN), or U-net. The U-net consists of convolution and 
max-pooling layers at the descending phase (the initial part of the U), 
the down-sampling stage. At the ascending part of the network, up-
sampling operations are performed, which are also implemented by 

convolutions, where kernel weights are learned during training. The 
arrows between the two parts show the incorporation of the infor-
mation  available at the down-sampling steps into the up-sampling 
operations. The input of the network is the normalized image, and the 
output is the probability map of the segmentation result
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differ in range depending on the size of the layers, the He 
method provides a controlled initialization for faster and 
more efficient gradient descent. In the 126 patient train-
ing set, the segmentation performance was evaluated using 
tenfold cross-validation. The ground truth of each case was 
used to evaluate the segmentation performance by calcu-
lating the dice similarity coefficient (DSC) and the over-
all accuracy based on all pixels. Then, a final model was 
developed using the hyperparameters optimized from the 
tenfold cross-validation runs in the training dataset and 
applied to the independent testing dataset of 40 patients. 
To evaluate the training efficiency of the TL, models were 
developed using different numbers of training cases (10, 20 
… 110, to 126), and the obtained results were compared. 
Each developed model was applied to the testing dataset 
to obtain corresponding DSCs. In addition, Pearson’s cor-
relation was applied to evaluate the correlation of breast 
volume and FGT volume between the U-net prediction out-
put and the ground truth.

Results

Effect of Transfer Learning from Non‑Fat‑Sat 
to Fat‑Sat Training Images

Figure 2 illustrates the segmentation results from four 
women with different breast morphology and density. 
The original T1W fat-sat image, the ground truth seg-
mentation performed using the previously developed 
method, and the U-net segmentation results are shown. 
The FGT segmentation results were very similar between 
the ground truth and U-net. By direct training using the 
He initialization without TL, the mean DSC in the tenfold 
cross-validation for breast segmentation was 0.95 ± 0.03. 
The range in the tenfold runs was 0.94–0.97, suggest-
ing that the model was robust and could achieve a high 
accuracy in all runs. For pixel-based analysis, the mean 
accuracy was 0.97 ± 0.04 (tenfold run range 0.95–0.98). 
For FGT segmentation, the mean DSC was 0.80 ± 0.11 
(range 0.75–0.89) with a mean accuracy of 0.86 ± 0.03 
(range 0.81–0.90).

Model performance improved when the non-fat-sat 
sequence was used for initialization. For breast segmenta-
tion, the mean DSC was 0.97 ± 0.02 (range 0.96–0.98) with 
a mean accuracy of 0.97 ± 0.01 (range 0.96–0.97). For the 
FGT segmentation, the mean DSC was 0.86 ± 0.08 (range 
0.74–0.90) with a mean accuracy of 0.90 ± 0.05 (range 
0.87–0.96). All segmentation results are summarized in 
Table 1 for comparison. There is a high variation in the 
analyzed patients, and the range of DSC and accuracy in 

all patients is also included in the table. The correlation 
between the U-net prediction output and ground truth for 
breast volume and FGT volume is shown in Fig. 3. As 
noted, there was a high correlation (R2 > 0.90) for both 
the training and testing datasets. However, when care-
fully comparing the segmentation results case by case, we 
did see a mild degree of inconsistency between U-net and 
ground truth in some cases. Figure 4 shows four women 
with inconsistent segmentation results of FGT between 
U-net and ground truth.

Segmentation Performance in Testing Dataset

When the developed model from the fat-sat training dataset 
without TL was applied to the testing dataset, the mean DSC 
for breast segmentation was 0.83 ± 0.06, with a mean accu-
racy of 0.89 ± 0.03. For the FGT segmentation, the mean 
DSC was 0.81 ± 0.1 with a mean accuracy of 0.87 ± 0.07. In 
contrast, when the model developed with TL was applied, 
the performance in the testing dataset was slightly improved 
for breast segmentation, showing mean DSC of 0.89 ± 0.06 
and a mean accuracy of 0.91 ± 0.03. For the FGT segmenta-
tion, the mean DSC was 0.81 ± 0.08 with a mean accuracy 
of 0.86 ± 0.05.

Efficiency of Transfer Learning

To evaluate the efficiency of training with and without TL, 
the performances of models developed using different num-
bers of training cases, 10, 20 … to 126, were compared. The 
results are shown in Fig. 5. Without TL, DSC was low when 
the training case number was small. When sufficient number 
of cases was used for training (> 30 or breast segmentation 
and > 80 for FGT segmentation), the achieved DSC could 
reach the level of those trained with TL. The results were 
only slightly lower for breast segmentation and the same for 
FGT segmentation.

Discussion

In this study, we applied U-net to segment the breast 
and FGT on fat-sat MR images. Separate independent 
datasets from different hospitals were used for training 
and testing. A model developed previously for a non-fat-
sat image dataset was used as the basis for re-training 
to investigate the benefit of TL [8]. Transfer learning is 
a popular approach in deep learning where pre-trained 
models are used as the starting point on computer vision 
tasks [26]. The results showed that the DSC for breast 
segmentation was very high in the training dataset, with 
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a mean of 0.95 without TL and 0.97 with TL. In the test-
ing dataset, the DSC was also satisfactory, with a mean 
of 0.83 without TL and 0.89 with TL. In contrast, FGT 
segmentation was more difficult compared to the breast 
segmentation and resulted in an overall lower DSC. In 
the training dataset, the mean DSC was 0.80 without TL 
and 0.86 with TL. In the testing dataset, the mean DSC 
was 0.81. The results suggested that TL could be applied 
to improve the segmentation accuracy compared to the 
direct training using the He initialization method [27]. 

In particular, with TL, the training efficiency could be 
improved without requiring a large number of input data 
to get a satisfactory performance. These results suggest 
that when the number of training cases is limited, apply-
ing TL can help to develop a good model and achieve 
higher accuracy.

In recent years, machine learning has been widely 
applied for organ/tissue segmentation on MRI, includ-
ing breast and FGT segmentation. Wang et al. applied 
support vector machine (SVM) algorithm to T1W, T2W, 

Fig. 2   A–D Four representative 
cases of different breast size and 
parenchymal pattern showing 
accurate FGT segmentation 
using U-net compared to the 
ground truth. Left column: 
original image; central column: 
ground truth of breast and FGT 
segmentation; right column: 
segmentation results using 
U-net. Lower two panels (C 
and D) show two cases with 
susceptibility artifacts. Despite 
of the artifact of bright signal 
intensity (arrows) similar to 
FGT, U-net can still recognize 
and exclude it
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proton density (PD), and Dixon sequences and obtained 
overlap ratios around 93–94% for FGT segmentation [10]. 
Although the results are good, the requirement of 4 dif-
ferent MR sequences is not practical in the clinical breast 
MRI protocol. Convolutional neural network (CNN) has 
become an important tool in the image processing and 
computer vision research. Among the different approaches, 
U-net is a powerful algorithm which can extract different 
classes of information related to different tissues in a large 
field, thus making it suitable for breast segmentation [22, 
28]. It has been applied for breast and FGT segmentation 
on non-fat-sat images [11–13, 28]. Dalmış et al. [11] seg-
mented breast and FGT using a dataset of 66 pre-contrast 
T1W MRI. The U-net was trained for two 2-class classi-
fication to sequentially separate the breast first, followed 
by fat, and then FGT, as well as one 3-class classification 
to segment breast, fat, and FGT simultaneously. The aver-
age DSC values for FGT segmentation obtained from the 
3-class classification, two 2-class classification, and atlas-
based methods were 0.850, 0.811, and 0.671, respectively, 
demonstrating the superior performance of U-net over the 
atlas-based method. This study did not have independent 
testing datasets. In our previous study [8], the mean DSC 
was 0.95 for breast and 0.91 for FGT segmentation in the 
training dataset, and when the model was applied to the 
independent testing datasets acquired with 4 different MR 
scanners, the mean DSC was 0.86 for breast and 0.83 for 
FGT segmentation.

All these studies showed consistent results, demonstrat-
ing the good performance of U-net for segmentation on 
non-fat-sat MR images, which had higher SNR, higher 
tissue contrast, and fewer image artifacts compared to 
fat-sat images, which made it easier for segmentation. 
There were few studies reporting the application of CNN 
for FGT segmentation on fat-sat MR images. Fashandi 

et al. [28] used 70 patients with fat-suppressed and non-
fat-suppressed MR to train various U-net models to seg-
ment the breast but did not go further to segment the FGT 
within the breast. Similarly, very high DSCs were obtained 
for breast segmentation, with the highest of 0.96 when 
multi-channel inputs combing all images were used in 3D 
convolutions in U-net. Ha et al. [13] applied 3D U-net to 
segment sagittal view fat-suppressed T1W images of 137 
patients and achieved a DSC of 0.95 and 0.81 for breast 
and FGT segmentation, respectively. The reported DSCs 
of breast and FDT segmentation were similar to our results 
even though the U-net developed by Ha et al. utilized 3D 
convolutions while our presented method use 2D convolu-
tions. Meanwhile, this study focused on cross-validation 
of training dataset and did not have independent testing 
datasets.

In a study by Chang et al. [29], FGT segmentation was 
performed using a computer-assisted clustering method on 
38 patients with both fat-sat and non-fat-sat images and 
showed a 5% difference in the segmented FGT volume on 
average. This result is not surprising, due to the different 
image quality and tissue contrast. The quality of fat-sat 
images might be affected by many factors, including MR 
systems (such as magnetic field strength, transmitting RF 
field inhomogeneity or inaccuracy, B1 shimming, receiver 
breast coil, fat-sat pulse sequence) and the variation in dif-
ferent patients (body shape, breast size, tissue composition, 
etc.). In general, any factor leading to signal variability can  
result in tissue misclassification, which leads to inaccurate 
FGT segmentation [20]. In our FGT segmentation results, 
although the mean DSC was greater than 0.8, the range was 
pretty wide, with the lowest between 0.3 and 0.4. These 
extreme cases had poor image quality and low SNR, which 
often led to low tissue contrast between fat and FGT, mak-
ing it difficult to differentiate. In these cases, the clustering 

Table 1   Segmentation dice similarity coefficient (DSC) and pixel-based accuracy in training and testing datasets without and with transfer learn-
ing

* Range is the value in the 126 patients in the training dataset and 40 patients in the testing dataset

Dataset/methods Segmentation Region DSC Accuracy

Range* Mean ± stdev Range* Mean ± stdev

Training set (no transfer learning) Breast 0.92–0.99 0.95 ± 0.03 0.93–0.99 0.97 ± 0.04
Fibroglandular Tissue 0.44–0.92 0.80 ± 0.11 0.51–0.93 0.86 ± 0.03

Training set (w/ transfer learning) Breast 0.96–0.99 0.97 ± 0.02 0.95–0.99 0.97 ± 0.01
Fibroglandular Tissue 0.33–0.96 0.86 ± 0.08 0.53–0.98 0.90 ± 0.05

Testing set (no transfer learning) Breast 0.69–0.98 0.83 ± 0.06 0.79–0.98 0.89 ± 0.03
Fibroglandular Tissue 0.34–0.95 0.81 ± 0.10 0.52–0.98 0.87 ± 0.07

Testing set (w/ transfer learning) Breast 0.72–0.98 0.89 ± 0.06 0.82–0.98 0.91 ± 0.03
Fibroglandular Tissue 0.38–0.97 0.81 ± 0.08 0.48–0.98 0.86 ± 0.05
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algorithm also had difficulty differentiating and segment-
ing tissues. As a result, the clustering algorithm might not 
provide an accurate ground truth, and the low DSC should 
not be interpreted as failure of the U-net. For breast seg-
mentation, some cases also had a low DSC in the range 
of 0.7. For extremely fatty breast with a good fat suppres-
sion, the low SNR can make breast tissue indifferentiable 

from the background, as demonstrated in [28]. Despite 
these problems, for diagnostic purposes, fat-sat imaging 
is more popular than non-fat-sat imaging since enhanced 
tumors can be easily identified without the additional work 
of generating subtraction images [17]. The capability of an 
efficient and accurate method for segmentation of breast 
and FGT on fat-sat images will provide helpful information 

Fig. 3   Correlation of breast volume between the ground truth 
obtained from the template-based segmentation method and the U-net 
prediction. A Training data breast volumes. B Training data FGT vol-

umes. C Testing data breast volumes. D Testing data FGT volumes. 
The red line is the trend line, and the dashed black line is the unity 
line as reference
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to explore its clinical application in improving the accu-
racy of risk prediction models [4, 5] and evaluating therapy 
response [6, 7].

In this study, we found several advantages of U-net 
for breast and FGT segmentation. First, the results of 
U-net were very close to ground truth in both the train-
ing and testing datasets. Second, it was found that U-net 
can identify several imaging problems, such as incom-
plete fat suppression and susceptibility artifact, and avoid 
the inclusion of these areas as FGT. In the past, when 
using different semiautomatic and automatic segmen-
tation methods, these problems were very troublesome 
and in most cases required a post-processing manual 
correction. This made the segmentation procedure time 
consuming. Third, in a detailed slice-by-slice compari-
son of the ground truth and U-net results with the origi-
nal images, we noted that in some cases, U-net outper-
formed the ground truth (Fig. 4). This finding raises the 

issue of whether basing the ground truth on operator-
defined results is accurate. Therefore, artificial intelli-
gence (AI) approaches may have tremendous potential 
for future application in the field of MR breast density 
quantification.

There were some limitations in this study. First, only 
two datasets, each acquired using a consistent breast MRI 
DCE sequence, were analyzed. The trained model may 
not be applicable to images acquired using a different 
MRI system or with a different imaging protocol. How-
ever, as demonstrated here, for future application in other 
datasets, the model developed in this study can be used 
as the basis for TL to develop a specific model for each 
dataset. Another limitation was the implementation of 
U-net based on 2D slices. To fully utilize the morpho-
logical information, 3D convolution should be employed. 
However, the 3D analysis will need many more trainable 
parameters which require more training cases.

Fig. 4   A–D Four cases of 
inconsistent FGT segmenta-
tion between U-net and the 
ground truth. Left column: 
original image; central column: 
ground truth of breast and FGT 
segmentation; right column: 
segmentation results using 
U-net. A and B cases show that 
the FGT results from ground 
truth are over-segmented 
compared to the original image. 
The results clearly show the 
superior accuracy of U-net. C 
and D cases show that the FGT 
results of the ground truth are 
under-segmented compared to 
the original image. Note the 
under-segmented FGT in the 
lower margin (yellow arrows) 
of the D case. Note also the 
incomplete suppression of the 
fat signals (red arrows) which 
are recognized and excluded by 
U-net
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Conclusion

In summary, this study applied U-net to segment breast and 
FGT on fat-sat T1W MRI, which is a more popular imaging 
sequence used for diagnosis of breast cancer than the non-
fat-sat sequence. The results showed that U-net could pro-
vide a fully automatic method and achieve a high DSC for 
breast and FGT. Furthermore, segmentation performance can 
be improved by applying TL which we used on a previously 
developed model for non-fat-sat images. The results showed 
that the greatest benefit of TL was to improve training effi-
ciency and reach a satisfactory performance even with small 
training datasets. This can be very helpful in future clinical 
implementation when re-training is needed for a different 
dataset, e.g., acquired by a different protocol or a different MR 
system. The capability to measure quantitative breast volume 
and FGT volume on fat-sat MRI can provide a great tool for 
exploring the clinical application of quantitative breast den-
sity in cancer risk prediction and therapy response evaluation.
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Fig. 5   The plot of DSC in the 
testing dataset by using the 
model developed with different 
number of training cases from 
10, 20, … to 126, with and 
without TL. When the training 
case number is small, DSC is 
low. When sufficient number of 
cases is used for training (> 30 
or breast segmentation, and > 80 
for FGT segmentation), the 
achieved DSC with and without 
TL is comparable, only slightly 
better with TL for breast seg-
mentation
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