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Abstract
Imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) are widely used in diag-
nostics, clinical studies, and treatment planning. Automatic algorithms for image analysis have thus become an invaluable 
tool in medicine. Examples of this are two- and three-dimensional visualizations, image segmentation, and the registration 
of all anatomical structure and pathology types. In this context, we introduce Studierfenster (www.​studi​erfen​ster.​at): a free, 
non-commercial open science client-server framework for (bio-)medical image analysis. Studierfenster offers a wide range of 
capabilities, including the visualization of medical data (CT, MRI, etc.) in two-dimensional (2D) and three-dimensional (3D) 
space in common web browsers, such as Google Chrome, Mozilla Firefox, Safari, or Microsoft Edge. Other functionalities 
are the calculation of medical metrics (dice score and Hausdorff distance), manual slice-by-slice outlining of structures in 
medical images, manual placing of (anatomical) landmarks in medical imaging data, visualization of medical data in virtual 
reality (VR), and a facial reconstruction and registration of medical data for augmented reality (AR). More sophisticated 
features include the automatic cranial implant design with a convolutional neural network (CNN), the inpainting of aortic 
dissections with a generative adversarial network, and a CNN for automatic aortic landmark detection in CT angiography 
images. A user study with medical and non-medical experts in medical image analysis was performed, to evaluate the usability 
and the manual functionalities of Studierfenster. When participants were asked about their overall impression of Studierfen-
ster in an ISO standard (ISO-Norm) questionnaire, a mean of 6.3 out of 7.0 possible points were achieved. The evaluation 
also provided insights into the results achievable with Studierfenster in practice, by comparing these with two ground truth 
segmentations performed by a physician of the Medical University of Graz in Austria. In this contribution, we presented an 
online environment for (bio-)medical image analysis. In doing so, we established a client-server-based architecture, which 
is able to process medical data, especially 3D volumes. Our online environment is not limited to medical applications for 
humans. Rather, its underlying concept could be interesting for researchers from other fields, in applying the already exist-
ing functionalities or future additional implementations of further image processing applications. An example could be the 
processing of medical acquisitions like CT or MRI from animals [Clinical Pharmacology & Therapeutics, 84(4):448–456, 
68], which get more and more common, as veterinary clinics and centers get more and more equipped with such imaging 
devices. Furthermore, applications in entirely non-medical research in which images/volumes need to be processed are also 
thinkable, such as those in optical measuring techniques, astronomy, or archaeology.
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Introduction

In the past few decades, image-based analysis of radiological 
datasets has gone through a remarkable period of rapid tech-
nological innovation. Since imaging modalities, such a com-
puted tomography (CT) and magnetic resonance imaging 
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(MRI), are widely used in diagnostics, clinical studies, and 
treatment planning, automatic algorithms for (bio-)medical 
image processing and analysis have become an invaluable 
tool in medicine.

Computers today assist medical decisions in all treatment 
phases throughout diagnosis, monitoring, therapy planning, 
execution, and follow-up examinations [1]. Examples are 
intra-operative navigation in brain tumor surgery [2], radia-
tion therapy planning for cervical cancer [3], or skin tumor 
segmentation [4]. Segmentation, for example, is typically 
the first step in a (bio-)medical image analysis pipeline. An 
incorrect segmentation thus affects any subsequent step. 
However, automatic medical image segmentation is known 
to be one of the most complex problems in image analysis 
and is still an object of active research. Zhang already esti-
mated in 2006 that there are over 4000 image segmentation 
algorithms [5] and this was well before the advent of the 
deep learning “era” [6]. Nevertheless, the majority of such 
algorithms are only available locally and to the research 
groups that developed them, and an own usage would need 
both a reimplementation and new training data [7]. As a 
result several medical image processing platforms such 
as MeVisLab (https://​www.​mevis​lab.​de/) [8], (3D) Slicer 
(https://​www.​slicer.​org/) [9], MITK (www.​mitk.​org/ and 
www.​radio​mics.​net.​cn/) [10, 11], OsiriX (https://​www.​
osirix-​viewer.​com/) [12], ITK-SNAP (http://​www.​itksn​ap.​
org/) [13], RadBuilder [14], XIP-Builder [15], MedAlyVis 
[16], IBIS (http://​ibisn​euron​av.​org/) [17], and MeDaS [18] 
have been established during recent years or even decades, 
offering common algorithms to the entire community. In 
doing so, they mostly provide graphical user interfaces to 
the common and open-source software libraries Insight Seg-
mentation and Registration Toolkit (ITK; https://​itk.​org/) 
and the Visualization Toolkit (VTK; https://​www.​vtk.​org/). 
Unfortunately, this implicitly means that if a bug is discov-
ered or new library versions are available, the user needs to 
download and install a new version of the platform. In addi-
tion, computer science is currently an incredibly fast evolv-
ing field, resulting in recurring updates and new versions, 
sometimes on a daily basis. To handle this, Slicer provides 
a so-called nightly build to provide the newest features and 
bug fixes. The semi-commercial platform MeVisLab is in 
the meantime now offering new installers that are already 
much larger than one gigabyte and a problem all platforms 
have in common is that a user must download a newer ver-
sion, uninstall the “old” version, and install the newer ver-
sion from time to time.

An online, cloud-based environment for medical appli-
cations, by contrast, would make this process obsolete for 
end users, as new versions would be deployed and executed 
on a remote server. In addition, users would not need to 
worry about the operating system, whereas OsiriX is only 
offered for macOS/iOS (Apple Inc.). Furthermore, new 

developments and algorithms from research groups around 
the world can also be integrated into this cloud application 
and would thus be instantly available for use, with rapid 
feedback and refinement. This would result in an elegant 
solution for integrating worldwide research findings 
instantly in a single environment, which is not possible for 
the existing desktop solutions; or where there is anything 
whatsoever in this direction, then only as suboptimal exten-
sion plug-ins. Such an online environment can also offer an 
uncomplicated usage of recently arising, portable augmented 
reality (AR) [19, 20] and virtual reality (VR) devices [21], 
by accessing the online environment from a VR/AR-ready 
web browser, such as Mozilla, Firefox, or Google Chrome, 
thus also removing the need for downloading, installing, and 
configuring a comprehensive platform package. In summary, 
an online environment would make the use of AR and VR 
devices more widespread in the medical domain, especially 
for medical teaching, training, and web conferencing. The 
first steps in this direction have already been taken, for 
example, with an online platform for interactive feedback 
in biomedical machine learning (https://​www.​gradi​ohub.​
com, currently not reachable anymore, last accessed from 
the authors around July 2021) [22] and Biomedisa, an open-
source online platform for biomedical image segmentation 
(https://​biome​disa.​de/) [23].

Another topic that is currently being actively researched 
— also for medical applications — is (medical) deep learn-
ing [24–26]. For a reliable deep neural network, a massive 
quantity of training data is needed. This data can be col-
lected globally over a cloud environment and thus be used 
to build immense training datasets. A single medical data-
set can easily reach a few dozen megabytes of storage size, 
which is not an issue for a cable network connection, but also 
wireless internet is now able to process these massive vol-
umes, especially with the recently introduced 5G networks.

Material and Methods

In this contribution, we introduce Studierfenster or Studi-
erFenster (www.​studi​erfen​ster.​at), which is a free, non-
commercial open science client-server framework for (bio-)
medical image analysis. Studierfenster offers a wide range 
of capabilities, including the visualization of medical data 
in common web browsers, such as Google Chrome, Mozilla 
Firefox, Safari, or Microsoft Edge. Other functionalities are 
the calculation of common medical scores, manual slice-
by-slice outlining of structures in medical images, manual 
placing of landmarks in medical imaging data, visualiza-
tion of medical data in VR, and a facial reconstruction and 
registration of medical data for AR. More sophisticated fea-
tures include automatic cranial implant design with a con-
volutional neural network (CNN), the inpainting of aortic 
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dissections with a generative adversarial network (GAN), 
and a CNN for automatic aortic landmark detection in CT 
angiography (CTA) images. The following sections will 
describe the datasets formats, the overall platform architec-
ture, and the single module of Studierfenster in detail.

Datasets and Preprocessing

Currently, our online platform mainly supports NRRD 
(nearly raw raster data) image files. These files consist of 
only the image values (voxel gray values) plus minimal 
header information and do not include any further informa-
tion such as the name of the patient or the medical institution 
where the scan has been performed, which is typically stored 
in the DICOM (Digital Imaging and Communications in 
Medicine; http://​dicom.​nema.​org) tags. In addition, NRRD 
files are more convenient to handle, given that they store the 
whole 3D volume in one single file, in contrast to DICOM, 
where every scanned slice of the volume is usually stored 
in a separate file. In summary, NRRD is a file format for the 
representation and processing of N-dimensional raster data. 
It is intended to support scientific visualization and (medi-
cal) image processing applications [27].

The conversion of the original DICOM files into NRRD 
files can be easily achieved with tools like MeVisLab, 
MITK, or Slicer. In general, there are two types of NRRD 
files: ASCII and binary, which reduces the online traffic, and 
our web platform only works with compressed binary files. 
Studierfenster, however, also offers a module to convert non-
compressed NRRD files to the corresponding compressed 
binary versions on its landing page. After conversion, the 

compressed NRRD file can be downloaded and used, for 
example, in the Medical 3D Viewer of Studierfenster for 2D 
and 3D visualization, and further image processing.

Overall Platform Architecture

The overall platform architecture and its communication is 
shown in Fig. 1. Studierfenster is setup as a distributed appli-
cation via a client-server model. The client side (front end) has 
been developed using Hypertext Markup Language (HTML) 
and JavaScript. The front end also uses the Web Graphics 
Library (WebGL), a JavaScript Application Programming 
Interface (API) descending from the Open Graphics Library 
(OpenGL) ES 2.0 specification, which it still closely resem-
bles. In contrast to OpenGL, WebGL allows the rendering of 
2D and 3D graphics in web browsers. This enables the use of 
graphics features known from stand-alone programs directly 
in web applications, supported by the processing power of a 
client-sided graphics processing unit (GPU).

The server side (back end) has been mostly developed 
in C, C++, and Python (https://​www.​python.​org/). It inter-
faces with common open-source libraries and software tools 
such as ITK, VTK, the X Toolkit (XTK; https://​github.​com/​
xtk/X), and Slice:Drop (https://​slice​drop.​com/). The server 
communication is handled through AJAX requests (https://​
www.​w3sch​ools.​com/​xml/​ajax_​intro.​asp) [28]. The requests 
are managed by a Flask server (https://​flask.​palle​tspro​jects.​
com) that handles the exchange of image data, abstract data 
structures, like seed point positions or segmentation contours, 
and takes care of partial progress reporting when algorithms 
are executed on the server. The Flask server connects to 

Fig. 1   Overall platform architecture of Studierfenster with its modules and communications
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the various algorithms, implemented in C++, ITK, VTK, 
PyTorch (https://​pytor​ch.​org/), or TensorFlow (https://​www.​
tenso​rflow.​org/), and also communicates with the file system 
on the server.

For a distributed multi-user development, a Vagrant box 
(www.​vagra​ntup.​com) in combination with a GitLab reposi-
tory (www.​gitlab.​com) was set up. The Vagrant box is plat-
form-independent and thus allows contributors to use their 
preferred and installed operating systems, such as Windows, 
macOS, or Linux. In addition, users work on local developer 
branches and push their final implementations to the main 
branch once fully implemented and tested to go online. The 
online environment, which is currently hosted at the Graz 
University of Technology in Austria (http://​studi​erfen​ster.​
tugraz.​at/), can already be used to perform tasks like medi-
cal visualizations and manual segmentations directly in the 
web browser. The manual segmentation workflow, for exam-
ple, consists of dragging and dropping the input file into the 
browser window and outlining the object under considera-
tion in a slice-by-slice fashion. The final segmentation can 
then be exported as a file, storing its contours or a binary 
segmentation mask. The following sections will introduce 
several single Studierfenster modules in more detail and the 
current landing page of Studierfenster is shown in Fig. 2.

DICOM Browser and Converter

As stated above, Studierfenster works mainly with an 
NRRD image. However, we also offer a purely client-
sided DICOM browser and converter [29] (Fig. 3). The 
DICOM browser allows client-sided parsing of a zipped 
local folder with DICOM files. Subsequently the whole 
folder can be converted to compressed NRRD files and 
downloaded as a single .zip file (Fig. 4). These result-
ing NRRD files contain no patient tags, like name and 
age, and because the DICOM browser and converter is 
purely client-sided (in fact, it is loaded completely into 
the cache of the web browser of the user when accessing 
the Studierfenster website), the DICOM files and patient 
tags are never transferred to our server during the conver-
sion process.

Using the DICOM browser of Studierfenster, it is also 
possible to select specific studies or series exclusively and 
to convert only these. The DICOM module has been devel-
oped in JavaScript and when the Studierfenster website is 
accessed, it is loaded into the cache of the web browser. 
This avoids further server communications and ensures that 
no DICOM data is transferred to the Studierfenster server, 
also during the conversion process.

Fig. 2   The current Studierfenster landing page
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2D and 3D Data Visualization

The core of Studierfenster is currently the so-called Medical 
3D Viewer module. It enables the visualization of 2D and 
3D data in a standard web browser without further server 
communication. It is based on XTK and offers for (medical) 
volume data the classical 2D views in axial, coronal, and 
sagittal directions (Fig. 5). In addition, XTK already comes 
with options such as thresholding and cross-sectional slicing 
of 3D image data, and volume rendering, which is achieved 
via WebGL. For Studierfenster these functionalities have 
been extended and the viewer has been connected to several 
own client- and server-sided modules, for example, by man-
ual contouring and landmarking capabilities of anatomical 
structures or pathologies in (bio-)medical datasets or even 
the fully automatic processing of (bio-)medical datasets.

Manual Annotation

Within the Medical 3D Viewer, Studierfenster offers a func-
tionality for client-sided manual annotation of the imaging 
datasets [33]. On the one hand, this can be the manual out-
lining (contouring) of anatomical or pathological structures 
(Fig. 6); on the other hand, this can be the manual placement 
of landmarks within the image or volume. The main usage 

for these functionalities is to generate ground truth annota-
tions within medical datasets. These can be, for example, 
used afterward to evaluate the automatic annotation results 
produced by automatic algorithms. The annotations are 
purely client-sided, which means no further server commu-
nications are needed and the medical data does not need to 
be transferred to the Studierfenster server. This is particu-
larly important for all cases where local legislation does not 
allow a data upload to third-party servers.

The annotations can be saved locally as CSV files. How-
ever, the CSV files can later be re-loaded in Studierfenster 
to continue with the annotation or for visualization. Because 
these functionalities work in a standard web browser, they 
can be used, for example, by physicians to generate ground 
truths within a very restricted hospital environment, which, 
in general, does not permit the installation of (external) seg-
mentation tools or software, like Slicer. In addition, Studier-
fenster offers a brush-based manual segmentation module, 
through which segmentation results can be saved locally 
(and re-loaded) as NRRD masks.

Automatic Aortic Landmark Detection

In addition to the manual placement of landmarks in medi-
cal datasets, Studierfenster also offers a fully automatic 

Fig. 3   Client-sided DICOM browser and converter from Studierfenster [30]
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detection of aortic landmarks in CTA datasets of the thorax, 
which we initially developed in the course of the TU Graz 
Lead Project on Aortic Dissections (https://​www.​tugraz.​at/​
proje​kte/​aortic-​disse​ction/​home/) [38]. The landmarks were 
used in this project as a starting point for the tracking of 
the aortic centerlines. The automatic landmark detection 
utilizes a patch-based CNN [39] that runs on the Studier-
fenster server and that can predict different landmarks simul-
taneously. In more detail, Studierfenster uses a patch-based 
iterative network (PIN-algorithm) [40], which combines a 
classification and a regression problem in one joint network. 
Thereby, random initial landmarks move towards a “true” 
landmark by multi-task learning, predicting the magnitude 
and direction of movement. The functionality is accessible 
via the Medical 3D Viewer of Studierfenster, but needs the 
transfer of the medical dataset (as anonymized NRRD) to 
the Studierfenster server for processing.

Aortic Dissection Inpainting

Studierfenster also offers an inpainting functionality for aor-
tic dissections [41] based on a GAN [42] within the Medi-
cal 3D Viewer [43]. In more detail, it is a semi-supervised 
virtual regression of aortic dissections, which removes the 
so-called false lumen and reconstructs an approximation 

of the healthy aorta [44]. In doing so, a two-stage GAN is 
used. The first stage reconstructs the aortic wall and depends 
on a network that is trained on the edge information of the 
healthy aortas. The second stage reconstructs the entire data-
set including the texture by inferring the image information 
of the aorta. The inpainting can be performed by a user on 
specific axial slices of a volume loaded with the 3D viewer 
in Studierfenster showing an aortic dissection. Afterward, 
the inpainted volume can be downloaded by the user as 
NRRD. Corresponding dissected and healthy cases (for the 
same patient), which in general do not exist in clinical prac-
tice, can be used for further analysis of aortic dissections and 
their causes and disease development.

Centerline Tracking

The centerline functionality of Studierfenster allows the 
automatic calculation of a vessel’s centerline in a 3D volume 
[45]. A vessel’s centerline can be a practical method to ana-
lyze blood vessels, like the aorta, and, for example, evaluate 
its shape in a CT or CTA scan. The cloud-based centerline 
tool of Studierfenster has mainly been developed and tested 
for the aorta, but can also be tried out on other vascular 
structures. It has been implemented within the Medical 3D 
Viewer of Studierfenster and requires the user to place two 

Fig. 4   After the selection and conversion of specific (or all) studies or series to compressed .nrrd (nearly raw raster data) files, theses can be 
downloaded as a single .zip file
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seed points (as start and end points of the centerline) within 
the vessel. Following on from this an initial centerline of the 
vessel, e.g., the aorta, is computed (Fig. 7, left). In a subse-
quent step, the user has the additional option to further and 
automatically smooth this initial centerline (Fig. 7, right). 
Finally, the user can locally download the centerline as a 
CSV file, but also import an existing centerline into Studi-
erfenster for visualization or further processing.

3D Skull Reconstruction

Studierfenster also offers a module for the automatic recon-
struction of skull defects, on which we work currently 
within the CAMed project (https://​www.​medun​igraz.​at/​
camed): a skull dataset of a patient with a cranial defect/
hole can be uploaded to the Studierfenster server and the 
hole will be automatically filled to restore a healthy skull 
(i.e., skull shape completion) [46]. In addition to this, Stud-
ierfenster can also then subtract the defective skull from 
the restored/completed skull. The result (i.e., the differ-
ence) can be downloaded in the STereoLithography (STL) 
format for further processing and, for example, additive 
manufacturing/3D printing (Fig. 8). Integrated into clinical 
practice, this would enable a very rapid, patient-specific in-
house cranial implant design, a process which is currently 

still outsourced to external products in clinical routine 
with all the drawbacks that this involves [48]. The fully 
automatic deep learning-based algorithm has been self-
supervised during training by injecting artificial defects in 
healthy skulls [49, 50]. An in-depth review of algorithms 
for an automatic cranial implant design can be found in 
AutoImplant 2020 summary paper [51] and challenge pro-
ceedings [52].

3D Face Reconstruction and Registration

Studierfenster offers also a reconstruction and registration 
module for medical applications. In more detail, the mod-
ule enables the reconstruction of a 3D model from a single 
2D photo of a person’s face [53], which can be automati-
cally registered to the medical head/face scan of this person 
(Fig. 9). This approach was later used in a non-real-time 
mobile medical augmented reality application for the facial 
area [54]. This allows an augmented visualization of ana-
tomical and pathological information in a video see-through 
fashion on the mobile screen, accurately registered and over-
laid with the live patient. In summary, this permits a cost-
effective, marker-less, and easy-to-use approach, in contrast 
to other systems that rely on additional markers, external 
devices, or depth sensors [55].

Fig. 5   Medical 3D Viewer of Studierfenster with the classical 2D views in axial, coronal, and sagittal directions (right) and volume rendering 
(middle) [31, 32]

346 Journal of Digital Imaging  (2022) 35:340–355

1 3

https://www.medunigraz.at/camed
https://www.medunigraz.at/camed


Medical Virtual Reality Viewer

The VR Viewer (or Medical VR Viewer) module of Studi-
erfenster enables viewing (medical) data in VR with 
devices like the Google Cardboard or the HTC Vive (via 
the WebVR App). For viewing the data in VR, it needs to 
be converted to the VTI (.vti) format, which can be done 
within ParaView (https://​www.​parav​iew.​org). In contrast 
to other options, like viewing medical data under Unity 
(https://​unity.​com/) [56], which needs the installation of 
Unity or an App itself and dealing with specific plug-ins 

and also a file conversion, the Studierfenster option is quite 
lightweight. The same applies for other software tools that 
need to be installed, like MeVisLab [57].

Dice Coefficient and Hausdorff Distance Calculation

Studierfenster also provides a functionality to calculate dice 
similarity coefficient (DSC) [58] and directed and undirected 
Hausdorff distance (HD) [59] scores for two uploaded vol-
umes (Fig. 10) [60]. We decided for the DSC and HD, 
because these two metrics are the most popular and widely 

Fig. 6   Manual segmentation of a brain tumor (glioblastoma multiforme (GBM), blue) in a magnetic resonance imaging (MRI) scan of a patient 
[37]

Fig. 7   An initial centerline (left, 
red) and the corresponding 
smoothed centerline (right, red) 
calculated and visualized with 
Studierfenster [45]
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used ones in the (bio-)medical community. However, based 
on our implementation, other scores can easily be added 
in the future. An overview of medical scores can be found 

in the publication of Taha and Hanbury [61]. The Dice 
coefficient, also known as the Sorensen dice coefficient, is 
actually the most used metric for validating (bio-)medical 

Fig. 8   Skull reconstruction under Studierfenster: defected skull (left window), reconstructed skull (window in the middle), and subtraction (right 
window) [47]

Fig. 9   3D Face Reconstruction and Registration module of Studierfenster: extracted surface of a medical head/face CT scan (left window), 
reconstructed 3D model from a single photo from a person’s face (window in the middle), and registration of both 3D models (right window)
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image segmentations. It is an overlap-based metric, and for 
a ground truth segmentation Sg and a predicted segmentation 
Sp, the DSC can be calculated as

where 2|Sg∩Sp| is the intersection between ground truth 
segmentation and predicted segmentation, which corre-
sponds to the true positives (TP). |Sg| and |Sp| denote the 
total amount of pixels/voxels classified as foreground in the 
ground truth segmentation and the predicted segmentation, 
respectively. The DSC takes values between zero and one, 
whereby one equals a perfect match (100% overlap between 
Sg and Sp).

The HD, on the other hand, is a spatial distance-based simi-
larity measure, which means that the spatial positions of the 
pixels/voxels are taken into account, and the HD between point 
set A and point set B is defined as

where h(A,B) is the directed HD that describes the maximal 
distance of the point set A to the closest point in the point set B:

DSC =
2|Sg ∩ Sp|

|
|
|
Sg
|
|
|
+ |Sp|

HD(A,B) = max (h(A,B), h(B,A))

where a and b are points of point set A and point set B, respec-
tively, and ||…|| is a norm, in example a L2 norm to calculate 
the Euclidian distance between the two points, e.g.,

h(A,B) is the distance between the most distant point of 
point set A from the closest point of point set B and vice 
versa for h(B,A). Finally, HD represents the maximum 
between h(A,B) and h(B,A) [62].

After the calculation of DSCs and HDs for several vol-
umes, Studierfenster offers the options to filter or search for 
specific values in the calculated metrics, and these filtered 
metric lists can be exported in different file formats, like 
CSV, Excel, and PDF (Portable Document Format) (Fig. 11).

Data Availability

The datasets generated during and/or analyzed during the 
current study are available in the Figshare repository (https://​
figsh​are.​com/​autho​rs/_/​37525​57).

h(A,B) +max
a∈A

min
b∈B

||a − b||

||a − b||2 =

√∑

i

(ai − bi)
2

Fig. 10   Studierfenster functionality of calculating dice similarity coefficient (DSC) and directed and undirected Hausdorff distance (HD) scores 
for two uploaded volumes
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Results

The single modules and functionalities have been evaluated 
with various medical datasets from different modalities, 
anatomies, and pathologies. The DICOM browser and con-
verter have been tested with internal and external publicly 
available DICOM data collections, like [63]. Average com-
putational times have been measured, but also a breakdown 
of sub-processes in the conversion pipeline for an ablation 
study has been performed [29]. The resulting and converted 
NRRD files have been compared to the conversion results 
of other offline platforms mentioned in the introduction. We 
currently have two configurations as server hardware, one 
VPN (virtual private network) machine (Ubuntu) with no 
GPU access running on http://​studi​erfen​ster.​tugraz.​at/ and 
a second server with an Intel Core i7-7700K at 4.2 GHz 
and 64GB DDR4-RAM and GPU access to a GeForce 2070 
with 8GB RAM running on http://​studi​erfen​ster.​icg.​tugraz.​
at/ (www.​studi​erfen​ster.​at currently forwards to the server 
with the GPU by default).

For an automatic landmark detection, the PIN-algorithm 
has been evaluated via the localization mean error and 
standard deviation for 1000 independent predictions of four 
landmarks: one landmark is located close to the entrance of 
the heart’s left ventricle in the ascending part of the aorta; 
another one was placed in the center of the aortic arch; the 
third landmark was on the height of the first landmark, but 
positioned on the descending branch of the aorta (proxi-
mal descending aorta); and the fourth and final landmark 
was placed near the bottom of the scan in z-direction (distal 
descending aorta), about six slices from the lower end of the 
scan. For generating the ground truth, all four landmarks 
were individually placed by hand for all 75 CTPA (Com-
puted Tomography Pulmonary Angiography) scans (http://​
www.​cad-​pe.​org/?​page_​id=​14.​Online) [66] with the manual 
landmark annotation functionality of Studierfenster. The net-
work’s prediction accuracy was quantitatively evaluated and 
the best setup achieved an average landmark localization 
error of 16.04 mm. Thereby, 99.0% of all predictions had a 

mean error smaller than 30 mm, while the best prediction 
during evaluation had a mean error of 3.53 mm over all 
landmarks [38].

The Inpainting module of Studierfenster has been evalu-
ated with different browsers with a specific focus on the code 
execution on the client side, which took only between 40 
and 60 ms. An in-depth ablation study showed that it takes 
between 3.7 and 3.9 s to fulfill the HTTP request to the Studi-
erfenster server. Further time measurements showed that the 
execution of the Flask Server code produces only a small 
impact of 3% of the whole request duration and the share of 
the data transfer network was also relatively small with 5%. 
With 92%, executing EdgeConnect needed the vast majority 
of the time to fulfill the HTTP request and an overall inpaint-
ing task took around 4 s [43]. Furthermore, we trained our 
two-stage GAN with 3D patches from 55 non-dissected aortic 
datasets and evaluated it on 20 more non-dissected datasets, 
which we plan to add to Studierfenster in the near future [44].

In order to evaluate the Centerline module of Studierfen-
ster, we tested the smoothed centerlines computed within 
Studierfenster against 40 baseline centerlines from the pub-
lic available CAD-PE Challenge dataset that we used also for 
evaluating the automatic landmark detection module [45]. 
The baseline centerlines were extracted by us in a semi-
manual process using a customized MeVisLab network. 
For the comparison between a ground truth and a Studi-
erfenster-generated centerline, we computed the minimum, 
maximum, and mean distances between them in millimeters, 
which resulted in the smallest distance of 0.59 mm, an over-
all maximum distance of 14.18 mm, and a mean distance for 
all cases of 3.86 mm with a standard deviation of 0.99 mm. 
The centerline computation times for Studierfenster varied 
between 18 and 55 s on our current hardware setup, depend-
ing on the input file size and the location of the seed points 
inside the aorta. The centerline smoothing in the second step 
took between 3 and 5 s and depended on the number of ini-
tial centerline points. The initial centerlines were smoothed 
with a weight parameter of 1, a tolerance value of 0.00001, 
and a maximum iteration number of 1000.

Fig. 11   After the calculation of DSCs and HDs for several volumes, our tool provides the options filtering for specific values, searching for spe-
cific values in the calculated metrics, and exporting filtered metric lists in different file formats, such as CSV, Excel, and PDF
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The Studierfenster 3D Skull Reconstruction module has 
been qualitatively and quantitatively evaluated on the pub-
licly available CQ500 dataset (http://​headc​tstudy.​qure.​ai/​
datas​et/) [64]. In this process large, artificial defects have 
been injected into the (healthy/complete) skulls to create 
corresponding defective skulls [46]. Following on from this 
the Skull Reconstruction module of Studierfenster has been 
utilized to reconstruct the defected skulls again, or in other 
words, to fill the artificial injected holes again with “bone.” 
The evaluation between the ground truth skulls (original 
CQ500 skulls) and the reconstructed skulls from Studier-
fenster yielded a mean Hausdorff distance between 0.5328 
and 1.4917 voxels, and a mean RMS (root mean square) 
between 0.7998 and 2.0154.

The datasets from [65] were used to verify the calculation 
results of the Metrics module (segmentation score calcu-
lator) achieved with Studierfenster. This dataset collection 
consists of manual segmentations of mandibles in CT scans 
from ten patients. Thereby, every mandible has been seg-
mented twice by two facial surgeons and the dice similarity 
coefficients and Hausdorff distances between two corre-
sponding manual segmentation masks have been calculated 
with MeVisLab [60]. The resulting scores have been com-
pared with the results from Studierfenster, where the dice 
similarity coefficients and Hausdorff distances between the 
same two corresponding manual segmentation masks have 
also been calculated. As a result, Studierfenster delivered 
exactly the same metric results as the widely used desktop 
application MeVisLab.

The Virtual Reality module of Studierfenster has been 
tested with a Google Cardboard, the HTC Vive, and an Ocu-
lus Rift, for technical functionality. As datasets, we mainly 
used cases from public collections, such as [65]. Moreover, 
we linked three confirmed CT scans of COVID-19 cases 
into Studierfenster, which can be opened with just one click 
in the 3D Viewer by an interested user. After this, it is pos-
sible to explore these cases in 2D (in axial, sagittal, and 
coronal directions) and 3D. The COVID-19 cases come from 
a public dataset collection and more details can be found 
under the following website: http://​medic​alseg​menta​tion.​
com/​covid​19/.

In order to evaluate the usability and the manual func-
tionalities of Studierfenster, a user study with medical 
and non-medical experts in medical image analysis was 
performed. The user study involved ten users in total and 
participant’s informed consent was obtained. Five of these 
users were familiar with other current existing software 
solutions and the other five users had no prior experi-
ence in medical image analysis. When asked about their 
overall impression of Studierfenster in an ISO standard 
(ISO-Norm) questionnaire, a mean of 6.3 out of 7.0 pos-
sible points was achieved [33]. Answers were given on 
a Likert scale ranging from one to seven, where one is 

the worst rating and seven the best. The evaluation also 
provided insights into the results achievable with the 
Studierfenster in practice, by comparing them with two 
ground truth segmentations performed by a physician 
of the Medical University of Graz in Austria. Figure 12 
presents the mean ratings given in the questionnaire and 
the corresponding standard error as a bar chart for the 
following questions:

1.	 The software does not need much training time.
2.	 The software is well adjusted for the achievement of a 

satisfying result.
3.	 The software provides all the necessary functions for 

achieving the goal.
4.	 The software is not complicated to use.
5.	 How satisfied are you with the UI surface?
6.	 How satisfied are you with the presented result?
7.	 How satisfied have you been with the time required?
8.	 What is your overall impression?

The user study consisted of two parts: (1) a short intro-
duction to the tool, where we gave the participants the 
opportunity to freely explore the tool. This initial train-
ing and familiarizing took about 5 min on average. (2) 
The actual segmentation task, which took the participants 
between 3 and 15 min to finish. Here, most of the variance 
comes from the medical group, which took on average of 
8 min and 47 s, with participants well distributed between 
the 3- and 15-min mark. In contrast, all but one participant 
from the non-medical group took between 3 and 4 min to 
complete the segmentation task. The one “outlier” took 
14 min and 32 s. The main reason for the time difference 
between the two groups is that participants of the medical 
group edited and refined their segmentation contours more 
frequently [33].

Fig. 12   User study results visualized as a bar chart, presenting the 
mean of the ratings of all users grouped per question [33]
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Conclusions

In this contribution, we presented an online environment for 
(bio-)medical image analysis. In doing so, we established 
a client-server-based architecture, which is able to pro-
cess medical data, especially 3D volumes. For elementary 
capabilities, like the visualization and annotation of medi-
cal imaging data, no server connection and interchange are 
needed, everything take place in a standard web browser on 
the client side. For more sophisticated features and algo-
rithms, such as statistical calculations, centerline tracking, 
cranial implant generation, inpainting, and deep learning 
tasks, data is transferred and processed via Studierfenster. 
After this, the processed results, which can be an image, 
volume, landmarks, or a centerline, are send back to the cli-
ent for visualization and further processing, and download-
ing. Our online environment works mainly with data in the 
anonymized and compressed NRRD format, to reduce the 
client/server network traffic. By anonymized we mean that 
no patient DICOM tags, such as name and age, are trans-
ferred to our server and an automatic routine ensures that 
all uploaded data is deleted on a daily basis. The user is still 
responsible, however, to ensure that only data is processed, 
which is already publicly available, like [65–68] and that 
the user complies with all the local regulations, such as an 
approved institutional review board (IRB), and is allowed to 
process the (bio-)medical data with our online environment.

Our online environment is not limited to medical applica-
tions for humans. Its underlying concept is rather something 
that could be interesting for researchers from other fields, 
in applying the already existing functionalities or future 
additional implementations of further image processing 

applications. An example could be the processing of medi-
cal acquisitions like CT or MRI from animals [69], which 
are becoming more and more common, as veterinary clinics 
and centers are becoming ever more widely equipped with 
imaging devices of the kind. Furthermore, use in entirely 
non-medical research in which images/volumes need to be 
processed is also thinkable, as for example in optical meas-
uring techniques [70], astronomy [71], or archaeology [72].

Further work in the near future envisions the adding of 
more functionalities to our online environment, for example, 
in the online design of cranial or facial implants with task-
specific workflows [73–75]. In addition, we need to address 
a software testing approach, for instance, an automated 
method for regression testing. In parallel, we invite other 
researchers and research groups to collaborate and join our 
research playground. Note that there is currently no pub-
lic API for Studierfenster available, so interested external 
researchers or developers need to get in contact with us and 
we will provide them an API or integrate their algorithms.

Finally, we started monitoring the worldwide access and 
usage of our Studierfenster server with Google Analytics. 
In this regards, Fig. 13 shows a map of the worldwide dis-
tribution of the very first 1000 users, accessing and inter-
action with Studierfenster. Interestingly, most of the users 
were from Germany, which may be attributed to the German 
origin of the chosen name for our framework: Studierfen-
ster. In addition, we noticed that Studierfenster has been 
used, for example, in the Dice coefficient calculations to 
compare manual anatomical segmentations of brain tumors 
[34], listed under softwares and techniques in a book about 
data analytics [35] and stated in a review about published 
literature on systems and algorithms for the classification, 

Fig. 13   Map of the worldwide 
distribution of the first 1000 
users, accessing and interaction 
with Studierfenster (monitored 
with Google Analytics)
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identification, and detection of white matter hyperintensities 
of brain MR images [36]. In the future and when more users 
are involved, we also plan to monitor more “access details,” 
such as user access to different Studierfenster transactions/
tasks, which will provide more insights and indirect feed-
back of mainly used and lesser-used functionalities.

Contributions to the Literature

The contribution of our paper to the literature is manifold. 
We
• established Studierfenster (www.​studi​erfen​ster.​at): as a free, 

non-commercial open science client-server framework for 
(bio-)medical image analysis in the research community;

• provide a wide range of capabilities with our framework, 
like the visualization of medical data (CT, MRI, etc.) in 
two-dimensional (2D) and three-dimensional (3D) space 
in common web browsers, like Google Chrome, Mozilla 
Firefox, Safari or Microsoft Edge;

•  conducted a usability user study with Studierfenster 
including medical and non-medical experts in (bio-) 
medical image analysis;

• report user study results in an ISO standard (ISO-Norm) 
questionnaire.
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