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Abstract
Melanoma is the deadliest form of skin cancer. Early diagnosis of malignant lesions is crucial for reducing mortality. The 
use of deep learning techniques on dermoscopic images can help in keeping track of the change over time in the appear-
ance of the lesion, which is an important factor for detecting malignant lesions. In this paper, we present a deep learning 
architecture called Attention Squeeze U-Net for skin lesion area segmentation specifically designed for embedded devices. 
The main goal is to increase the patient empowerment through the adoption of deep learning algorithms that can run locally 
on smartphones or low cost embedded devices. This can be the basis to (1) create a history of the lesion, (2) reduce patient 
visits to the hospital, and (3) protect the privacy of the users. Quantitative results on publicly available data demonstrate that 
it is possible to achieve good segmentation results even with a compact model.
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Introduction

Melanoma is an extremely aggressive and lethal skin tumor. 
It takes one life in every 54 min in the USA and one person 
dies every 5 h from melanoma in Australia [1]. In Europe, 

over 100,000 new melanoma cases and 22,000 melanoma 
related deaths are reported annually [2]. Early detection is 
crucial for survival, since melanoma is capable of spreading 
quickly and thus needs to be treated urgently.

Dermoscopy is a non-invasive and cost-effective tech-
nique for detecting early-stage skin cancer by helping der-
matologists in individuating visual lesion features that are 
not discernable by examination with the naked eye. Dermo-
scopic images are generated by combining a low angle-of-
incidence lighting with optical magnification obtained using 
either liquid immersion or cross-polarized lighting. Structure 
information inferred from dermoscopic images is used to 
apply the ABCDE (Asymmetry, Border, Color, Diameter, 
Evolution) rule, which is based on the assumptions that 
most early melanomas are asymmetrical (A), melanomas 
usually present uneven borders (B), melanoma has a variety 
of colors while most benign pigments have one color (C), 
in most cases, melanomas have a diameter larger than 6 mm 
(D), unlike the majority of benign lesions, melanoma tends 
to evolve or change over time (E).

Dermoscopy has two main drawbacks: 

1.	 It requires a specific training.
2.	 Even with sufficient training, visual analysis remains 

subjective.
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To overcome the above listed limitations, a number of Com-
puter Aided Diagnosis (CAD) systems have been proposed. 
In particular, deep learning (DL) based methods for dermos-
copy image analysis (DIA) have the potential to improve 
skin cancer detection rates, since they proved to be superior 
to dermatologists in melanoma image classification [3]. 
Even though DL methods are not replacement solutions for 
medical doctors, melanoma screening using DL techniques 
is a promising solution to improve management and progno-
sis of skin cancer by promoting earlier diagnosis [4]. In fact, 
DL algorithms can potentially run on embedded systems 
(including smartphones) and be used to improve patients’ 
empowerment by directly involving the patients themselves 
in monitoring over time their lesions.

Local execution of skin lesion detection tools has three 
advantages with respect to sending images to web servers 
for processing [5]: 

1.	 Storing images on the local memory of the embed-
ded system (instead of sending them over the Internet) 
allows to better preserve the patient’s privacy.

2.	 Computational power on embedded systems has gener-
ally a much lower cost and lower power consumption 
than on general purpose PCs.

3.	 On-Device computation on embedded systems leads to 
low-latency applications since the device can compute 
and process data locally.

DL methods can be applied to address three primary tasks, 
namely (i) lesion area segmentation, (ii) lesion attribute 
detection, and (iii) disease classification. The goal of the 
lesion area segmentation task is to create a binary mask 
from a dermoscopic image that provides an accurate sepa-
ration between the lesion area and the surrounding healthy 
skin (see Fig. 1). Attribute detection aims at localizing 
clinical dermoscopic criteria that have been found to be 
correlated with disease states, such as pigment network, 
negative network, streaks, milia-like cysts, and globules 
(see the left side of Fig. 2). In classification, the images in 
input are labelled according to different diagnostic classes. 
Beyond the typical categorization into benign and mela-
noma, it is possible to group dermoscopic images into 
more than two classes. This provides a better discrimina-
tion between melanoma, other types of skin cancer that are 
less aggressive than melanoma, and benign lesions. For 
example, Celebi et al. in [2] propose a classification based 
on seven classes, including melanoma, melanocytic nevus, 
basal cell carcinoma, actinic keratosis, benign keratosis, 
dermatofibroma, and vascular lesion (see the right side 
of Fig. 2).

In this paper, we focus on the lesion area segmentation 
task using a deep convolutional pixel-wise method that can 
run on embedded devices. While any medical interpreta-
tion of skin lesion segmentation can be only performed 

Fig. 1   Lesion area segmenta-
tion. Left: Dermoscopic image 
in input. Right: Binary mask 
in output, where white pixels 
belongs to the lesion area and 
black pixels are extraneous to it. 
[Images from ISIC 2017]

Fig. 2   Left: The goal of 
attribute detection is to localize 
clinical dermoscopic criteria in 
the image in input (in this case, 
globules are highlighted in red). 
Right: Classification concerns 
the labelling of the image in 
input according to different 
diagnostic classes (in this case, 
the assigned label is “benign 
keratosis”). [Images from ISIC 
2017]
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by experts, a history of the lesion can be created by the 
patient independently at home.

The main novelty consists in combining a squeeze 
based approach with an attention block, thus forcing the 
squeeze layers to focus on the features coming from the 
attention block. In such a way, the network learns only the 
main features that represent the lesion area, without the 
need of introducing a huge amount of parameters to learn. 
This makes our network suitable to run on low cost and 
portable embedded devices, which could be used by the 
patients themselves. Moreover, as a difference with cloud-
based approaches (e.g., [6]), in our approach, which can be 
completely performed on an embedded board, we do not 
need to send the images of the lesions over the Internet, 
thus avoiding potential risks for the patients’ privacy.

The contribution of this work is threefold. First, we 
describe a compact architecture for dermoscopic image 
segmentation, called Attention Squeeze U-Net. Second, 
we compare different network architectures on publicly 
available data using different datasets for the training and 
the test phases, in order to evaluate their generalization 
capability. Third, we provide a per-lesion class analysis 
of the segmentation results.

The remainder of the paper is organized as follows. The 
following “Related Work” contains an overview of recent 
methods for lesion area segmentation. “Material and Meth-
ods” presents the details of our artificial network and “Train-
ing” describes its training. Qualitative and quantitative 

experimental results are shown in “Experimental Results”, 
including a detailed discussion of the results per lesion class. 
Finally, conclusions are drawn in “Conclusions”.

Related Work

Accurately segmenting the lesion area is extremely impor-
tant for performing a temporal analysis of its visual features 
on a quantitative basis. In fact, a melanocytic naevus usually 
does not change its size, shape, and color, whereas the vis-
ual appearance of a melanoma can change over time. When 
lesion area segmentation methods are used on dermoscopic 
images, the main challenges to deal with are (see Fig. 3):

–	 The multiple lesion shapes, size, colors, skin types, tex-
tures, and the eventual presence of artifacts.

–	 The limitations of large and annotated publicly available 
databases, which are small, heavily imbalanced, and con-
tain images with occlusions [1].

Early work in dermoscopy image segmentation used 
handcrafted feature-based methods, such as thresholding, 
clustering, and graph partitioning, to obtain the binary mask 
of the lesion [7]. Despite the positive results, methods based 
on handcrafted features are strictly dependent on the choice 
of the features. This limits their generalization capabilities 

Fig. 3   Typical artifacts in der-
moscopic images. Top left: Pen 
marks around the lesion. Top 
right: Hairs over the lesion. Bot-
tom left: Presence of specular 
reflections. Bottom right: Air/
oil bubbles due to the use of an 
interface fluid. [Images from 
ISIC 2017]
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especially when dealing with the great variety of lesion 
types in input.

To overcome the inflexibility and limitations in terms of 
expressiveness of handcrafted vision pipelines, dermoscopy 
image segmentation systems moved toward an end-to-end 
approach based on DL methods, such as Convolutional Neu-
ral Networks (CNNs). These data-driven methods allow to 
train powerful visual classifiers that report high classifica-
tion performance. However, their results strongly depend on 
the size and variety of the training dataset [8].

The problem of lack of data has been addressed by set-
ting up collaborations between academia and industry to 
improve melanoma diagnosis. From 2016, the International 
Skin Imaging Collaboration (ISIC) organizes an annual open 
challenge on a public archive of clinical and dermoscopic 
images of skin lesions. In particular, ISIC Challenge 2017 
and 2018 provided a specific task about lesion segmenta-
tion, with a considerable number of 2,594 training images 
(plus corresponding ground truth segmentation masks) for 
the 2018 challenge [9].

The first place for Task 1 - Lesion Boundary Segmenta-
tion at ISIC Challenge 2017 was achieved by a submission 
using a deep fully convolutional-deconvolutional neural 
network [10] with 29 layers [11]. The 2017 second ranked 
submission used U-Net [12] with input images resized down 
to 192×192 pixels [13]. ResNet [14] was used by the third 
placed submission [15]. In 2018, the winning submission 
used a two-stage pipeline [16]. The first step was a detection 
process based on MaskRCNN to find a bounding box of the 
lesion in each of the input images in order to crop them. In 
the second step, the cropped images were segmented using 
an encoder-decoder architecture based on DeepLab and 
PSPNet. The 2018 second placed submission [17] also was 
based on the DeepLab model with a transfer learning taking 
pre-trained weight on VOC PASCAL 2012. The third place 
went to a U-Net based model [18], where information about 
low level features is preserved thanks to the addition of mul-
tiplications between feature maps before each connection in 
the encoder part of the net.

The web page https://​paper​swith​code.​com/​sota/​lesion-​
segme​ntati​on-​on-​isic-​2018 contains a list of papers about 
lesion segmentation on ISIC 2018 with the source code 
available. Among them, Bencevic et al. in [19] present a 
method, called Polar Res-U-Net++, for improving the seg-
mentation performance by using a polar transformation to 
convert the images from the Cartesian space to the polar one. 
In such a way, the dimensionality of the image is reduced 
as well as the segmentation and localization tasks are sepa-
rated; thus, the network is able to converge more easily. The 
method is very effective in segmenting liver, polyp, skin 
lesion, and epicardial adipose tissue. Azad et al. [20] pro-
pose a Bi-directional ConvLSTM U-Net with Densely con-
nected convolutions (BCDU-Net), which is an extension of 

U-Net that integrate the bi-directional ConvLSTM (BCon-
vLSTM) [21] with the mechanism of dense convolutions for 
the segmentation of medical images. BConvLSTM is used to 
combine the feature maps extracted from the corresponding 
encoding path with the previous decoding up-convolutional 
layer in place of using the standard U-Net skipping connec-
tions. Then, a densely connected convolution layer is used in 
the last convolutional layer of the encoding path for strength-
ening the feature propagation and encouraging the feature 
reuse. The approach achieves state-of-the-art results on ret-
inal blood vessel segmentation, skin lesion segmentation, 
and lung nodule segmentation. Jha et al. in [22] describe 
an architecture called Double U-Net, which uses two U-Net 
architectures in sequence, with two encoders and two decod-
ers. The first encoder is based on VGG-19 (pre-trained on 
ImageNet). The Atrous Spatial Pyramid Pooling (ASPP) is 
used to capture contextual information within the network. 
Such an approach has been tested on several domains (i.e., 
polyp segmentation, skin lesion segmentation, and nuclei 
segmentation) obtaining remarkable results.

In this work, we propose the use of an Attention Squeeze 
U-Net architecture for pixel-wise segmentation on dermo-
scopic images. The aim is to design and test a compact net-
work architecture that can run on embedded devices with 
similar performance of larger architectures that need power-
ful GPUs to run. We believe that the development of robust 
DL segmentation methods that can run on smartphones is 
the first step toward the adoption of a patient-centered para-
digm for the early detection of melanoma.

Material and Methods

The proposed model for lesion area segmentation is called 
Attention Squeeze U-Net and it is inspired by the following 
architectures:

–	 U-Net [12]
–	 Squeeze U-Net [23]
–	 Attention U-Net [24]

U‑Net Architecture

U-Net is an encoder-decoder model developed for medi-
cal and biomedical applications. Its symmetrical architec-
ture, which looks like a “U’’, makes it particularly suited 
for image segmentation for the following reasons. To solve 
classification problems, DL approaches create a feature 
map of an image and convert it into a vector, which is then 
used for classification. In image segmentation, DL methods 
also convert the feature map of an image into a vector, but 
also generate a mask image from that vector. Due to the 
loss of information in the encoding stage, converting the 
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feature vector into an image can generate distortions. The 
idea in U-Net is to store information about the transforma-
tion applied at each encoding stage in order to use it in the 
decoding stage, thus facilitating the generation of the mask 
image from the feature vector, by preserving its structural 
integrity. However, U-Net (in its Keras implementation) has 
more than 30 million trainable parameters, a considerable 
number when dealing with the limited computational power 
and memory of an embedded device. The need of computing 
millions of parameters slows down the inference process and 
can lead to errors related to exhausted resources.

Squeeze U‑Net Architecture

Modifications of U-Net have been proposed to reduce the 
model size. In particular, Squeeze U-Net [23] is a memory 
and energy efficient model inspired by U-Net, where the 
down- and upsampling layers are replaced by fire modules. 
Figure 4 shows the structures of the so-called fire blocks. 
A fire module, introduced in SqueezeNet [25], uses fire 
point-wise convolutions together with an inception stage 
[26], which are then concatenated to form the output. In 
such a way, the Squeeze U-Net model needs only 2.5 mil-
lions parameters, more than ten times less than U-Net. In the 
contraction path, each fire module (see Fig. 4a) is made of a 
1 × 1 convolutional layer with CS (squeeze) channels followed 
by an inception block with 2 convolutions of 3 × 3 and 1 × 1, 
respectively, with CO∕2 channels. The resulting CO channels 
are concatenated in order to get the desired output, which 
is then passed to the next layer and to the skip connection 
of the network.

In the expansive path, the main component is the upsam-
pling block (see Fig. 4b). In each block, the transposed fire 
module is made of a 1 × 1 transposed convolutional layer, fol-
lowed by an inception block consisting of 2 parallel 1 × 1 and 
2 × 2 convolutional layers that are concatenated for obtaining 
the output. The upsampling blocks are then used with the 
skip connection in order to merge the high resolution fea-
tures of the contraction path with the low resolution features 
of the expansive path.

Attention U‑Net Architecture

Squeeze U-Net is successful in reducing the number of 
parameters to learn from the 30 million in U-Net to only 2.5 
million. However, the concatenation mechanism in Squeeze 
U-Net can be a limiting factor when dealing with medical 
images, since all the high level features are concatenated 
with all the low level features with the risk of losing many 
useful information. For solving this problem, it possible to 
introduce an attention block (see Fig. 5) into the upsampling 
block [24]. In particular, the attention mechanism is inte-
grated into the skip connections. An attention block takes 
two inputs: g, coming from the previous block, and x, com-
ing from the skip connection. It is worth noticing that g has 
smaller size (but better feature representation) than x, thus 
it needs to be processed by an upsampling layer before the 
attention block in order to achieve the same size of x. Both 
x and g are fed into 1 × 1 convolutions, in order to have the 
same number of channels without changing the size of the 
layers. Then, g and x are summed and the resultant vector 
goes through a ReLU activation layer and a 1 × 1 convolution 

Fig. 4   Fire Blocks. a Con-
volutional fire block in the 
contraction path. b Transposed 
convolutional fire block in the 
expansion path
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that collapses the dimensions to a 1 ×H× W vector. This last 
vector is given to a sigmoid layer, which scales the vector in 
the range [0, 1], thus producing an attention map (weights), 
where each value close to 1 indicates a relevant feature. 
Finally, the attention map is multiplied by the skip input to 
produce the final output of the attention block.

As stated above, the idea behind U-Net is to let the fea-
tures from the contraction path guide the features of the 
expansion path by concatenating them. Applying an atten-
tion block before the concatenation allows the network to 
understand which features from the skip connection are more 
relevant and to weight them more. Thus, by multiplying the 
skip connection and the attention distribution, the network 
can focus on a particular part of the input, rather than feed-
ing in every feature.

Attention Squeeze U‑Net Architecture

We propose here a novel network called Attention Squeeze 
U-Net, which contains a special upsampling block. This 
upsampling block takes as input the previous output of net-
work g and the skip connection x. A transposed convolu-
tional operation is applied to g in order to obtain ĝ , which is 
sent as input to an attention block together with x. The out-
put of the attention block is concatenated with ĝ and given 
as input to a fire block. The above described modification of 
the upsampling block allows: 

1.	 To maintain the model lightweight, as in Squeeze U-Net.
2.	 To add the attention mechanism to Squeeze U-Net 

obtaining better segmentation results.

Figure 6 shows the details of the upsampling block, while 
the architecture of our Attention Squeeze U-Net is shown 
in Fig. 7.

The contractive path of the network is made of a con-
volutional layer with a stride of 2 × 2, followed by a set of 
fire blocks and max pooling operations. The expansive path 
includes four upsampling blocks, two convolutional layers and 
two upsampling blocks based on the nearest neighbor approxi-
mation. The number of parameters in Attention Squeeze 
U-Net is only ≈ 100k more than Squeeze U-Net, thus allow-
ing for real-time performance on embedded devices.

Adaptations for Embedded Systems

To run on embedded systems (including smartphones), our 
model needs some small adaptations. Our intention is using 
the embedded device in the inference phase, while, for train-
ing, it can be used a more powerful GPU on a desktop PC.

To deploy Attention Squeeze U-Net on an Android 
phone, we use the open source framework NCNN [27], 
which is a high-performance neural network inference com-
puting framework strongly optimized for mobile platforms. 
NCNN supports acceleration through ARM NEON vectori-
zation and provides NEON assembly implementation for 
the computationally intensive convolution kernels of CNNs. 

Fig. 5   Attention block

Fig. 6   Upsampling Block

1222 Journal of Digital Imaging (2022) 35:1217–1230
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To create an Android application able to make inference by 
using Attention Squeeze U-Net, we converted the Tensor-
flow 2 model in an NCNN one. The application has been 
developed by using Android NDK1 to use a native C code, 
and Vulkan SDK2 to reduce the CPU overhead.

To run our network on an Nvidia Jetson Nano (see Fig. 8), 
which is a low cost (about 100 USD) embedded card com-
mercialized by NVIDIA3, we do not employ any optimiza-
tion. It is worth noticing that, the network can be optimized 
by using TensorRT4, a framework provided by NVIDIA.

Training

Our training set is made of dermoscopic images and cor-
responding ground truth annotations coming from the ISIC 
2017 dataset [28]. In particular, we use the following data 
from ISIC 2017 as training and validation sets: 

1.	 All the 2,000 dermoscopic images from the training data 
folder in JPEG format.

2.	 The corresponding 2,000 binary mask images in PNG 
format from the training ground truth data folder.

3.	 All the 150 dermoscopic images from the validation data 
folder in JPEG format.

4.	 The corresponding 150 binary mask images in PNG for-
mat from the validation ground truth data folder.

The above described training and validation data have been 
downloaded from the following URL: https://​chall​enge.​
isic-​archi​ve.​com/​data#​2017 Since ISIC 2017 have different 
image sizes, all the images have been resized to 384×512 
pixels and then normalized between 0 and 1 before sending 
them to the models.

It is worth noticing that: 

1.	 A considerable number of images contain artifacts such 
as air/oil bubbles, body hairs, and colored band-aids.

2.	 The labelling of the skin lesions does not follow a prede-
fined pattern, since the annotations may have been done 
by different experts or with the help of semi-automated 
algorithms.

For the above listed reasons, we consider the background 
(i.e., the black pixels) in the ground truth masks as a class, 

Fig. 7   Attention Squeeze U-Net

Fig. 8   NVIDIA Jetson Nano embedded board

1  https://​devel​oper.​andro​id.​com/​ndk
2  https://​www.​lunarg.​com/​vulkan-​sdk/
3  https://​devel​oper.​nvidia.​com/​embed​ded/​jetson-​nano-​devel​oper-​kit
4  https://​devel​oper.​nvidia.​com/​tenso​rrt
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thus treating the lesion segmentation task as a multi-class 
classification problem.

A data augmentation technique has been used to increase 
the number of the training samples. In particular, we used 
three transformation for each original image: vertical flip-
ping, horizontal flipping, and both. The augmentation pro-
cedure increases the number of training samples to 8,000 
images.

Loss Function

DL image segmentation networks are usually trained using 
a (weighted) cross-entropy loss. However, the evaluation of 
the segmentation results in medical imaging is commonly 
based on the Dice score and the Jaccard index (see “Per-
formance Metrics” for details) to deal with the problem of 
class imbalanced datasets, which is frequent in the medical 
domain. The use of a learning optimization objective (the 
so-called loss) function different from the evaluation metric 
used for the test data introduces an adverse discrepancy [29]. 
In fact, cross-entropy and its weighted version are inferior to 
metric-sensitive loss functions (such as soft-Dice and soft 
Jaccard) when evaluated on the Dice score and the Jaccard 
index.

In order to avoid the above discussed discrepancy 
between the loss function used during the training phase 
and the metrics considered for evaluating the results, we 
have decided to use the Focal Tversky loss (FTL) as the loss 
function to train our Attention Squeeze U-Net network. FTL 
[30] is a generalization of the Tversky index (described in 
“Performance Metrics”), which in turn generalizes the Dice 
coefficient and the Jaccard index.

FTL can be defined as:

where TI is the Tversky index, while � is a parameter that 
controls the non-linearity of the loss. When � tends to +∞ , 
the gradient of the loss tends to ∞ , while TI tends to 1. If � 
tends to 0, the gradient of the loss tends to 0 and TI tends 
to 1. Thus, when training sample presents a value for 𝛾 < 1 , 
the gradient of the loss is higher, thus forcing the model to 

(1)FTL = (1 − TI)�

focus on such samples. This property is particularly useful 
in the final stage of the training process, since the model is 
encouraged to continue to learn even though TI is nearing 
convergence.

FTL is particularly suited in the case of datasets affected 
by class imbalance. In fact, when 𝛾 > 1 , the model is forced 
to focus on “hard” samples, i.e., images with a small fore-
ground region, where usually the TI has a low score. Moreo-
ver, the non-linear nature of FTL permits to control how 
the loss behaves at different values of the obtained Tversky 
index.

Experimental Results

In this section, firstly we provide a description about differ-
ent performance metrics with a discussion about their usage. 
Then, we describe the two test sets, i.e., ISIC 2017 and PH2. 
Finally, we show the quantitative results of the comparison 
between our approach and other three well-known models 
on the two test sets.

Performance Metrics

We have two sets to compare: 

1.	 The predictions set, which is made of the segmentation 
masks generated by the trained model.

2.	 The ground truth masks set, which represents our goal.

By comparing the predictions set and the ground truth set, 
we can get a measure of how good is our model. The quan-
titative comparison can be carried out in terms of true posi-
tive (TP), false positive (FP), true negative (TN), and false 
negative (FN) sets. Figure 9 shows how TP, FP, TN, and FN 
can be defined in the skin lesion area segmentation scenario.

(Pixel-wise) accuracy is the percent of pixels in the pre-
diction image that are labelled correctly and can be defined 
as:

(2)Accuracy =
TP + TN

TP + FP + TN + FN

Fig. 9   Predicted and ground truth masks are compared in terms of the number of true positive (green pixels in the comparison image), false 
positive (red), false negative (blue), and true negative (black) pixels. [The two leftmost images are from ISIC 2017]

1224 Journal of Digital Imaging (2022) 35:1217–1230
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Although Accuracy is easy to calculate and understand, it 
is not useful when the lesion and background classes are 
extremely imbalanced, i.e., when a class dominates the 
image and the other covers only a small portion of the image, 
which is rather frequent in dermoscopic images.

Better metrics for dealing with the class imbalance issue 
are: 

1.	 The Dice Similarity Coefficient.
2.	 The Jaccard Similarity Index (and its threshold variant).
3.	 The Tversky Index.

The Dice Similarity Coefficient (Dice) measures set 
agreement by calculating the size of the union of two sets 
divided by the average of their size. In terms of TP, FP, and 
FN counts, Dice can be written as:

In the case of image segmentation, a higher Dice coefficient 
indicates that the result matches the ground truth better than 
results that produce lower Dice coefficients. The Dice score 
reflects both size and localization agreement, more in line 
with perceptual quality compared to pixel-wise accuracy 
[29].

The Jaccard Similarity Index (JSI) measures the over-
lap of two sets. The Jaccard index is 0 if the two sets are 
disjoint, i.e., they have no common members, and is 1 if 
they are identical. Our goal is to get as close to 1 as pos-
sible. JSI can be expressed in terms of TP, FP, and FN 
counts as:

The Threshold Jaccard Index metric is a variant of JSI 
that is meant to penalize results where the percentage of 
FP and FN errors is above a certain threshold. For the skin 
lesion area segmentation task, the Threshold Jaccard Index 
is computed according to the following rule:

–	 Threshold Jaccard = 0, if JSI < 0.65;
–	 Threshold Jaccard = JSI, otherwise

where the threshold value equal to 0.65 has been proposed 
in the ISIC 2018 Challenge. The choice of the Threshold 
Jaccard index metric in place of JSI is based on the obser-
vation that the latter does not accurately reflect the number 
of images in which automated segmentation fails, or falls 
outside expert interobserver variability, i.e., JSI is overly 
optimistic.

(3)Dice =
TP + TP

(FP + TP) + (TP + FN)
=

2TP

2TP + FP + FN

(4)JSI =
TP

TP + FP + FN

The Tversky Index (TI) is an asymmetric similarity 
measure that generalizes the Dice coefficient and the Jac-
card index. It is defined as:

TI has two parameters, � and � , with � + � = 1 . When, 
� = � = 0.5 , TI corresponds to the Dice coefficient, while, 
when � = � = 1 , TI corresponds to the Jaccard index.

By setting a value of � greater than � , the FN are penal-
ized more. This is very useful in highly imbalanced datasets 
where the additional level of control over the loss function 
yields better small scale segmentation than the normal dice 
coefficient. Moreover, since TI is a small modification of 
the Dice coefficient, it is very useful for the cases where a 
finer level of control is needed, such as in medical imaging.

Test Data

In order to evaluate the performance of our approach, we 
consider two different publicly available datasets, namely 
ISIC 2017 and PH2. The choice of ISIC 2017 is due to the 
availability of a large annotated test set, since more recent 
versions of the ISIC dataset do not provide direct access to 
the test set annotations. In our experiments, we use all the 
600 dermoscopic JPEG images from the test data folder and 
the corresponding 600 binary mask images in PNG format 
from the test ground truth data folder.

In addition to ISIC 2017 data, we use a second dataset of 
dermoscopic images, called PH2. The PH2 dataset [31] has 
been realized by the Universidade do Porto, Tecnico Lisboa in 
collaboration with the Hospital Pedro Hispano in Matosinhos, 
Portugal. The dataset is composed of 200 RGB dermoscopic 
images, with a resolution of 768×574 pixels and a magnifica-
tion of 20× , annotated with ground truth data. The 200 images 
are divided into benign lesions (80 common and 80 dysplastic 
nevi) and malignant lesions (40 melanomas). PH2 images are 
accompanied by ground truth data consisting in binary masks 
generated via manual segmentation performed by expert der-
matologists. Experiments on PH2 are intended to measure the 
generalization capability of the considered networks on being 
trained on a dataset A and evaluated on a dataset B, where A 
and B are from different sources.

Quantitative Results

We have compared our Attention Squeeze U-Net with other 
three networks, namely U-Net, Attention U-Net, and Squeeze 
U-Net. For all the networks, we carried out a training of 100 
epochs using the FTL loss function and we considered for 

(5)TI =
TP

TP + �FN + �FP
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comparison the model that obtained the best results on the 
ISIC 2017 test set. The complete source code for all the four 
networks, written using Tensorflow 2 and Python 3, is pub-
licly available at: https://​github.​com/​apenn​isi/​att_​squee​ze_​
unet

Table 1 shows the segmentation results obtained on the 
ISIC 2017 test set by using the Dice Similarity Coefficient 
and the Threshold Jaccard Index as quality metrics. Atten-
tion Squeeze U-Net performs slightly better than the other 
models, achieving a Dice score of 0.9035 and a Threshold 
Jaccard score of 0.7758 that are better with respect to the 
winner submission for the ISIC 2017 lesion segmentation 
task (which achieved a Dice coefficient of 0.849 and an aver-
age Jaccard Index of 0.765 [28]).

The results in Table 1 shows also that by using a combina-
tion of the attention mechanism and the reduction of the net-
work parameters (Attention Squeeze U-Net) allows to improve 
the performance with respect to using the attention block 
alone (Attention U-Net), the squeeze block alone (Squeeze 
U-Net), and neither of them (U-Net). It is interesting to note 
that, the results that we obtained on the ISIC 2017 test set are 
better with respect to the ones reported in the literature. For 
example, our conventional U-Net model achieves 0.8965 Dice 
score, which is much higher than the 0.847 reported as second 
best result in the ISIC Challenge 2017. This is due to the fact 
that we used the FTL loss for training the models in Table 1, 
which gives the networks a better generalization capability.

Table 2 shows the segmentation results on the PH2 data-
set. As stated above, the aim of using a second test set that is 
independent from the training data is to evaluate the general-
ization capability of the considered models. The analysis of 
the results indicates that the two models with a smaller size 
(i.e., Squeeze U-Net and Attention Squeeze U-Net) perform 
better than the two larger models (i.e., U-Net and Attention 
U-Net) in terms of both Dice and Threshold Jaccard scores. 
This is in line with the principle that limiting the model 
complexity (in terms of the number of parameters) can help 
the generalization property of the model.

In order to investigate how our approach is able to gen-
eralize the segmentation problem, we performed additional 
tests on the ISIC 2018 dataset. We point out that our network 
has not been re-trained on the ISIC 2018 train set, but it has 

been launched on the testing set of ISIC 2018 [32, 33] to 
obtain a set of black and white masks. Then, the masks have 
been submitted to the challenge website to be evaluated by 
the system. Table 3 shows that our approach obtains a Dice 
score of 0.67. We compare our results with three other meth-
ods, namely Polar Res-U-Net++ [19], DoubleU-Net [22], 
and BCDU-net [20], which have been trained on ISIC 2018 
data. Considering that our method has not been re-trained, it 
achieves a good score. Moreover, Attention Squeeze U-Net 
has less training parameters to learn with respect to the 
methods that achieve better results.

Per‑lesion Class Results

In this section, we analyze the segmentation results of the 
four models on the ISIC 2017 test images by separating them 
according to the lesion type. The expert dermatologists that 
are in the group of the authors of this paper performed a 
visual inspection of the 600 test images from the ISIC 2017 
dataset and grouped them in seven classes:

–	 Actinic Keratoses and Intraepithelial Carcinoma 
(AKIEC): common non-invasive variants of squamous 
cell carcinomas. They are sometimes seen as precursors 
that may progress to invasive squamous cell carcinoma.

–	 Basal Cell Carcinoma (BCC): a common version of 
epithelial skin cancer that rarely metastasizes, but it 
grows if it is not treated.

–	 Benign Keratosis (BKL): contains three subgroups, 
namely seborrheic keratoses, solar lentigo, and lichen-
planus like keratoses (LPLK). These groups may look 
different, but they are biologically similar.

Table 1   The results of the networks on the ISIC 2017 test set (600 
images)

The best results are highlighted in bold

Network Dice  Threshold 
Jaccard

U-Net 0.8965 0.7591
Attention U-Net 0.8766 0.7043
Squeeze U-Net 0.8987 0.7597
Attention Squeeze U-Net 0.9035 0.7758

Table 2   Segmentation results on the PH2 dataset (200 images)

The best results are highlighted in bold

Network Dice Threshold 
Jaccard

U-Net 0.9083 0.7942
Attention U-Net 0.8984 0.7879
Squeeze U-Net 0.9231 0.8753
Attention Squeeze U-Net 0.9301 0.8533

Table 3   Segmentation results on the ISIC 2018 dataset (1,000 
images)

The best results are highlighted in bold

Network Dice Score

Polar Res-U-Net++ [19]  0.92
DoubleU-Net [22] 0.90
BCDU-net [20] 0.85
Attention Squeeze U-Net 0.67
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–	 Dermatofibroma (DF): a benign skin lesion that is 
regarded as a benign proliferation or an inflammatory 
reaction to minimal trauma.

–	 Melanoma (MEL): a malignant neoplasm that can appear in 
different variants. Melanomas are usually, but not always, 
chaotic, and some criteria depend on the site location.

–	 Melanocytic Nevi (NV): these variants can differ signifi-
cantly from a dermatoscopic point of view but are usually 
symmetric in terms of distribution of color and structure.

–	 Vascular Lesions (VASC): generally categorized by a 
red or purple color and solid, well-circumscribed struc-
tures known as red clods or lacunes.

Figure 10 shows some qualitative segmentation results 
obtained by Attention Squeeze U-Net divided per-class.

Table 4 shows the quantitative results obtained by all the 
four considered models. Two clear aspects emerge from the 
analysis of the results: 

1.	 There is a high inter-class variability for the segmenta-
tion results.

2.	 The four different network architectures produce covari-
ant segmentation results for each lesion class.

All the considered models obtain good results on benign 
keratosis (BKL), melanoma (MEL), and melanocytic nevi 
(NV). Bad results are obtained on Actinic Keratoses and 
Intraepithelial Carcinoma (AKIEC) by all the models. In 
particular, the results of our Attention Squeeze U-Net are 
not optimal on AKIEC, BCC, and VL lesions. However, it 
is worth noticing that the number of test samples for those 
categories is limited ( ≤ 30) and that it is considerably fewer 
than the samples in the other categories. The biological com-
plexity in AKIEC, BCC, and VL is particularly relevant. The 
clinical examination by tactile sensation, in the absence of 
any anamnestic information, leads to overestimate some not 
flat lesions (Breslow thickness > 1 mm) in order to avoid a 
bad prognosis. For this reason, AKIEC, BCC, and VL sam-
ples are less present in public datasets.

Attention Squeeze U‑Net Error Analysis

In this section, we provide a deeper error analysis for our 
network. Attention Squeeze U-Net generates 47 samples 
(over 600) of the ISIC 2017 test set where the segmentation 

Fig. 10   Qualitative results 
divided per-class on the ISIC 
2017 test set obtained by Atten-
tion Squeeze U-Net
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can be considered unusable, i.e., the Threshold Jaccard 
Index is < 0.65 [9].

For the AKIEC category, FN errors are mostly related to 
lesions with low pigmentation and low contrast, while FP 
errors may be related to three-dimensional lesions, i.e., thick 
lesions with focus plans at different levels and weak contrast 
between diseased skin and healthy skin. Failures in BCC 
category are due to FN errors, which are related to weak 
contrast and pigmentation regression and to weak contrast 
between diseased skin and healthy skin. FNs are the majority 
of the errors for the images classified as MEL that presents 
a low JSI. Those FN errors are due to pigmentation regres-
sion and incomplete acquisitions that occur when dealing 
with large sized lesions. In NV category, the segmentation 
failures seem related to FN errors caused by the incomplete 
acquisition of the lesion and to morphological heterogene-
ity. FN errors for the samples in the BKL category seem 
related to images with low contrast, presence of regression, 
and large sized lesions.

Overall, it should be underlined that in many cases diag-
nosis based on image alone can be strongly improved by 
adding specific related information such as anatomical site 
of the lesion, gender, age, fototype (which could be derived 
from an image taken from a contro-lateral healthy site) and 
other anamnestic information. Particularly, follow-up of 
specific lesions at weeks/months of distance may represent 
a strong support to further improvement, since this may rep-
resent the evaluation of the E feature (evolution) within the 
ABCDE rule.

Runtime Performance on Embedded Systems

To demonstrate the capability of the Attention Squeeze 
U-Net model to run on embedded devices, we carried out 
runtime performance tests on both an Android phone and an 
NVIDIA Jetson Nano.

Android phone  We used a smartphone equipped with an 
Exynos 9825 processor, Android operating system, and the 
open source framework NCNN [27]. To deploy the applica-
tion on the Exynos 9825 processor, it has been compiled 
for an ARM architecture AArch64 and a minimum android 
API:android-24. The final size of the model on Android is about 
10 MB and the inference process is completed in about 1.5 s.

Nvidia Jetson Nano  Moreover, we carried out a runtime per-
formance test on a Jetson Nano. We measured the execution 
time of each network on a set of 30 randomly chosen images 
from the ISIC 2017 test set. As stated above, it is important 
to note that, we did not optimize the networks using the 
NVIDIA framework TensorRT.

Table 5 shows the inference time results of all the networks 
used in this paper. Our network needs an average time of 0.59 
s for processing a single image, only 0.02 s more than the 
standard Squeeze U-Net.

Considering that 

1.	 Attention Squeeze U-Net has to learn about 100k param-
eters more than Squeeze U-Net;

2.	 The proposed network has better performance;

the obtained results are significant.

Table 4   Per-lesion class 
segmentation results on ISIC 
2017 test set

The best results are highlighted in bold

Lesion Type U-Net Att. U-Net Squeeze U-Net Att. Squeeze 
U-Net

Dice Th.Jacc. Dice Th.Jacc. Dice Th.Jacc. Dice Th.Jacc.

AKIEC 0.7980 0.3531 0.7036 0.2348 0.7524 0.2756 0.7888 0.3780
BCC 0.8775 0.7522 0.8393 0.6227 0.8396 0.6228 0.8531 0.6792
BKL 0.8827 0.7372 0.8490 0.6219 0.8356 0.7705 0.8974 0.7847
DF 0.9333 0.8751 0.8829 0.7908 0.9275 0.8652 0.942 0.8909
MEL 0.8839 0.7274 0.8722 0.7155 0.8938 0.7771 0.9088 0.7955
NV 0.9403 0.8754 0.9228 0.8274 0.9389 0.8979 0.9535 0.8976
VL 0.8890 0.7769 0.8426 0.5985 0.8895 0.7871 0.8482 0.5578

Table 5   Execution time experiments using a Jetson Nano on 30 der-
moscopic images

Network Average Execution 
Time (s)

STD

U-Net 1.2 1.55
Attention U-Net 1.3 1.63
Squeeze U-Net 0.57 1.34
Attention Squeeze U-Net 0.59 1.41
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Conclusions

Deep learning based methods have the potential to improve 
melanoma detection at an early stage by helping in tracking the 
lesion evolution. Lesion area segmentation is the first step to 
create an artificial intelligence system that is able to quantita-
tively compare images of the lesion captured at different time 
moments. In this work, we have described a lesion area seg-
mentation for dermoscopic images called Attention Squeeze 
U-Net. Its architecture combines successful ideas from the lit-
erature, namely the attention mechanism from Attention U-Net 
[24], the reduced number of parameters from Squeeze U-Net 
[23], and the symmetrical shape from U-Net [12].

Attention Squeeze U-Net has a reduced number of param-
eters, which is compatible with the computational power of 
embedded devices, and, at the same time, segmentation results 
comparable with larger models (in terms of the number of trained 
parameters). Experimental results, conducted on two different 
publicly available datasets, demonstrate the effectiveness of the 
proposed model in accurately segmenting dermoscopic images.

We are strongly convinced that the availability of more and 
more powerful embedded devices (including smartphones) 
will enable, in the very near future, the patients to run locally 
the lesion segmentation task, thus preserving their privacy and 
being proactively involved in the early detection of melanoma.
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