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Abstract
Technological tools can redesign traditional approaches to radiology education, for example, with simulation cases and via 
computer-generated feedback. In this study, we investigated the use of an AI-powered, Bayesian inference-based clinical 
decision support (CDS) software to provide automated “real-time” feedback to trainees during interpretation of clinical and 
simulation brain MRI examinations. Radiology trainees participated in sessions in which they interpreted 3 brain MRIs: two 
cases from a routine clinical worklist (one without and one with CDS) and a teaching file-based simulation case with CDS. 
The CDS software required trainees to input imaging features and differential diagnoses, after which inferred diagnoses 
were displayed, and the case was reviewed with an attending neuroradiologist. An observer timed each case, including time 
spent on education, and trainees completed a survey rating their confidence in their findings and the educational value of the 
case. Ten trainees reviewed 75 brain MRI examinations during 25 reading sessions. Trainees had slightly lower confidence 
in their findings and diagnosis and rated the educational value slightly higher for simulation cases with CDS compared to 
clinical cases without CDS (p < 0.05). There were no significant differences in ratings of clinical cases with or without CDS. 
No differences in overall timing were found among the reading scenarios. Simulation cases with “CDS-provided feedback” 
may improve the educational value of interpreting imaging studies at a workstation without adding additional time. Further 
investigation will help drive innovation in trainee education, which may be particularly relevant in this era of increasing 
remote work and asynchronous attending review.
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Introduction

Traditional radiology trainee education relies heavily on 
interpretation of live clinical cases in an apprenticeship-
type model [1, 2]. Residents and fellows typically review 
and generate reports for imaging exams obtained on cur-
rent outpatients, inpatients, or emergency room patients that 
have recently been scanned, and each exam is subsequently 
reviewed by an attending radiologist. Depending on the set-
ting, the attending may review each case with the trainee 

at the PACS workstation, independently review cases and 
provide in-person feedback, or, as is increasingly the case, 
remotely review images synchronously or asynchronously, 
and intermittently provide feedback via remote systems such 
as chat, screen sharing, screen captures, or simply report 
edits/addenda. This is supplemented by didactic or case-
based conferences.

Although innovative approaches are improving the  
conference-based aspect of learning [3, 4], the larger practi-
cal component of this training has not changed considerably 
for decades. While the apprenticeship model offers many 
distinct advantages, such as real time-decision-making, 
reporting, and clinical correlation, there are limitations as 
well. Depending on the practice setting (i.e., community 
hospital, quaternary care specialty hospital, trauma center, 
cancer center, etc.), some pathologies may be over or under-
represented for a well-rounded training. Based on a trainee’s 
individual random experience, some categories of disease 
may also be disproportionately represented. Further, a large 
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share of a typical clinical workload involves clinical follow-
up for known lesions and relatively fewer opportunities for 
characterization of new lesions or disease. This challenge 
is often addressed via case conferences and teaching files 
[2], but such a setting loses the advantages of the clinical 
environment, and cannot be easily tailored for each trainee. 
Second, there is a high degree of variability in feedback and 
teaching from attendings, which may be due to the clinical 
case itself, the demands of the clinical service, and/or the 
aptitude and teaching skills of the attending radiologist.

Technological tools have considerable potential to rede-
sign this approach [5], including artificial intelligence 
(AI)-based systems. For example, simulation cases can be 
assigned to individual trainees in order to address gaps in 
case mix [1, 2, 5]. This would allow a trainee to experience 
cases that they may have less experience in, but to do so in 
a “clinical-type environment,” allowing full interrogation 
of the images and generation of a typical report rather than 
viewing selected images in a conference. Additionally, AI 
applications are being rapidly developed for detection of 
findings, diagnosis of disease [6], and triage of examina-
tions. These can theoretically provide automated feedback 
to a trainee, augmenting traditional feedback mechanisms 
and reducing variability.

In this study, we investigated the use of AI-based clini-
cal decision support (CDS) software to provide automated 

“real-time” feedback to trainees during interpretation of 
clinical and teaching file (TF)-based simulation brain MRI 
examinations. We hypothesized that trainees would rate sim-
ulation and CDS cases as having greater educational value, 
and that utilizing CDS would not require more time.

Materials and Methods

Neuroradiology fellows and diagnostic radiology residents 
were enrolled to participate in this IRB-approved study. 
Informed consent was obtained from all individual partici-
pants included in the study.

Trainees were asked to interpret brain MRI examina-
tions during reading sessions. Each session consisted of 3 
brain MRIs: two live clinical cases (one without and one 
with CDS) and a TF simulation case with CDS. We used 
a Bayesian inference-based CDS system for probabilistic 
diagnosis of lesions at brain MRI (Galileo CDS, Austin, 
TX) [6]. The education-focused interface for this application 
requires trainees to input imaging features and their top three 
differential diagnostic considerations for each case (Fig. 1). 
The imaging features which trainees were asked to input 
included signal information (appearance on T1, T2, FLAIR, 
and diffusion-weighted imaging and presence of contrast 
enhancement or susceptibility) and spatial information 

Fig. 1   Clinical decision support (CDS) system with simulation case. 
A CDS Interface for education, requiring selection of imaging fea-
tures and entry of differential diagnoses. Computer-generated proba-
bilistic differential diagnoses are displayed at the bottom. B Example 

teaching file-based simulation case demonstrating an infiltrative non-
enhancing FLAIR-hyperintense lesion in the right parietal lobe with 
areas of mild restricted diffusion
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(configuration (homogeneous/heterogeneous/ring), num-
ber of lesions (single/multiple), laterality, general location  
(cortex, white matter, deep gray, brainstem, cerebellar, intra-
ventricular, extracerebral), specific location (i.e., lobes), 
size, and mass effect), as depicted in Fig. 1. The software 
then displays inferred diagnoses, with probabilities based on 
imaging features alone (referred to as “radiographic score” 
by the application), or also incorporating pre-test probabil-
ity based on prevalence information and age (referred to as 
“clinical score” by the application). Each disease entity is 
listed with hyperlinks to educational resources. The differen-
tial possibilities can then be adjusted as deemed appropriate. 
The software then generates a report including a description 
based on the imaging features and the top diagnoses, which 
is exported to the reporting software.

Live clinical cases were chosen as the first available out-
patient brain MRI from specified worklists in the radiology 
information system. These could be either unenhanced or 
gadolinium-enhanced examinations and were required to 
be single-study brain MRI examinations (i.e., exams with 
an associated additional study such as an MRI of the spine 
or MR angiography were excluded, as were focused exami-
nations such as MRI pituitary). TF cases used for simula-
tion cases were chosen at random from an anonymized TF 
with established diagnoses based on clinical or pathological 
follow-up; these were complete exams including all images 
from all acquired sequences and comprised a subset of the 
cases originally used for training of the Bayesian network 
for the CDS. Cases were considered to be of low complex-
ity if they were normal or negative or only had white mat-
ter disease (i.e., small vessel ischemic disease, migraine, 
demyelinating disease, etc.) and to be of higher complexity 
for any other pathology (i.e., sub-acute infarct, glioblastoma, 
pleomorphic xanthoastrocytoma, etc.).

For all types of cases, trainees (1) reviewed images in 
PACS, (2) used CDS (if applicable), (3) performed clini-
cal correlation as needed with the electronic medical record 
or online resources, (4) dictated and drafted a report, and 
(5) reviewed the exam, including images and draft report, 
with an attending neuroradiologist. An observer timed all 
parts of this process using a multi-channel stopwatch and 
observed interaction with the software, including whether 
trainees altered their own top 3 diagnoses after seeing the 
CDS results and whether trainees utilized the educational 
links. For simulation cases, the observer also provided the 
established diagnosis after attending review. Trainees com-
pleted a survey after each case, rating their confidence in 
their findings and the educational value of the case on a 
5-point scale, with 1 as high and 5 as low, and also an over-
all survey at the completion of the reading session. Trainee 
ratings for each type of case were compared using pairwise 
Mann–Whitney U tests. Timings for each type of case were 
compared using pairwise 2 sample t-tests.

Finally, we performed a post hoc analysis of the trainee 
performance on identifying key features. For the TF and 
clinical cases with CDS in which the copies of the original 
reports from the CDS system were available, we reviewed 
the reports to determine the features chosen by the trainees 
for the six “signal information” selections described above. 
The images were reviewed in PACS by an attending neurora-
diologist to determine the true key features. The trainee per-
formance in identifying these was then compared between 
the Clinical and TF cases with CDS, using a Mann–Whitney 
U test.

Results

75 MRI examinations were reviewed during 25 reading ses-
sions by 9 neuroradiology fellows (postgraduate year (PGY 
6) and 1 radiology resident (PGY 3). Sessions were com-
pleted in the second quarter or early third quarter of the 
academic year. Of the live clinical cases interpreted without 
CDS, clinical cases interpreted with CDS, and the TF cases 
interpreted with CDS, 56%, 56%, and 84% were considered 
of high complexity, respectively.

Confidence and Educational Value Ratings

Trainees had slightly lower confidence in their findings 
for TF cases with CDS compared to clinical cases (with or 
without CDS) and had slightly lower confidence in their 
diagnosis for TF cases with CDS compared to clinical cases 
without CDS (p < 0.05, Table 1). TF cases with CDS were 
also rated as having greater value for identification of top-
ics for further reading and greater overall educational value 
(p < 0.05, Table 1), compared to clinical cases without CDS. 
There were no significant differences in ratings of clinical 
cases with or without CDS.

Timing Results

No differences in overall timing were found between case 
types. The overall mean (± SD) time spent on a case by a 
trainee was 18.2 (± 10.0) min. TF cases had significantly 
lower time required for clinical correlation (p < 0.05, 
Table 2).

Observer Assessment and Overall Session Survey

The observer noted that trainees adjusted their top 3 con-
siderations in the CDS interface in 44% of cases for both 
clinical cases and TF cases read with CDS and utilized the 
educational links in 4% of cases for each type of case.

When asked whether CDS improved the educational 
experience of reading a case, trainees indicated an average 



14	 Journal of Digital Imaging (2023) 36:11–16

1 3

rating of 2.2 on a 5-point scale, with 1 being significantly 
improved and 5 being significantly worsened. On a scale of 
1 (frequently) to 5 (never), on average trainees reported that 
they uncommonly to rarely used the educational links (aver-
age rating 3.6/5). Trainees were neutral on the usefulness 
of the report generation (average rating 2.8/5) and felt that 
the impact of CDS on their workflow was small or neutral 
(average rating 2.6/5).

Key Feature Identification

Key feature selection information was available for 19 TF 
cases and 19 clinical cases with CDS. For the six “signal 
information” key features, trainees identified most features 
correctly for most cases, with an average of 5.37 out of 6 
in the TF cases and 5.74 in the clinical cases with CDS 
(median of 6 in both groups). There was no significant dif-
ference between the two case types (p = 0.25).

Discussion

In this study, we found that TF simulation cases interpreted 
with CDS were rated as having a higher educational value by 
trainees, compared to live clinical cases interpreted without 
CDS. Trainees also found greater difficulty with these cases, 
noting lower confidence in their findings and diagnosis. This 
suggests simulation cases with automated feedback can play 
an important role in improving the educational experience 
and can target areas in which trainees are weaker or have 

less experience. The differences may have been in part due 
to 84% of TF cases being in the higher complexity cate-
gory, compared to 56% of the clinical cases. The simulation 
cases offered more opportunity for assessment of novel and 
less-common lesions, which is primarily what CDS can be 
helpful for, both in terms of educational feedback and clini-
cal utility. There was no observed difference in educational 
value when interpreting clinical cases with or without CDS, 
although this may be due to the relatively small sample 
size, in particular with a smaller proportion of novel and 
less-common lesions. In the cohort of outpatient examina-
tions chosen for the live clinical cases, even in the higher 
complexity category, many were for follow up of known 
pathology, a setting in which CDS would have lower utility 
compared to examinations with newly diagnosed pathology.

Simulation is not new in radiology training and education 
[1, 2]. However, most commonly simulation focuses on clin-
ical scenarios such as contrast reaction management [7] and 
training of procedural skills such as those for image-guided 
procedures [8–10]. In terms of diagnostic imaging, some 
simulation has focused on improving acquisition in operator-
dependent settings such as fluoroscopic upper gastrointes-
tinal exams [11]. Simulation for education in the interpre-
tive side of radiology is less common but an emerging field. 
Interactive simulation software has been used to improve the 
educational experience of medical students during a radiol-
ogy rotation by allowing them to interact with cases rather 
than simply observe [12]. Additional examples of applica-
tions include a simulation software integrated within PACS 
developed to help trainees prepare for independent call [13], 

Table 1   Trainee ratings of confidence and educational value by case type

* p < 0.05 (TF + CDS vs. clinical only), Mann Whitney U test
** p < 0.05 (TF + CDS vs. clinical + CDS), Mann Whitney U test

Confidence in lesion 
identification
1 = high; 5 = low

Confidence in  
differential diagnosis
1 = high; 5 = low

Usefulness to identify 
questions for attending
1 = high; 5 = low

Usefulness to identify  
topics for further reading
1 = high; 5 = low

Overall 
educational 
value
1 = high; 
5 = low

Clinical only 1.48 ± 0.59 1.44 ± 0.65 2.28 ± 0.89 2.4 ± 0.91 2.2 ± 0.65
Clinical + CDS 1.64 ± 0.91 1.88 ± 1.01 2.08 ± 0.64 2.16 ± 0.62 2.08 ± 0.57
TF + CDS 2.2 ± 1.04*, ** 2.16 ± 1.07* 1.84 ± 0.69 1.8 ± 0.82* 1.8 ± 0.71*

Table 2   Average time for image interpretation activities by case type

* p < 0.05 (TF + CDS vs. clinical only), 2 sample t-test

Mean ± SD Observation Clinical correlation Education Transcription Other Total

Clinical only 7.63 ± 3.57 1.47 ± 2.13 4.25 ± 3.71 5.14 ± 5.92 0.67 ± 1.42 18.73 ± 10.8
Clinical + CDS 7.52 ± 5.06 0.93 ± 1.36 5.06 ± 3.09 5.36 ± 3.76 1.62 ± 3.87 20.31 ± 11.19
TF + CDS 6.44 ± 4.66 0.26 ± 0.76* 4.53 ± 3.47 4.06 ± 2.52 0.44 ± 0.83 15.46 ± 7.16
Overall 7.20 ± 4.45 0.88 ± 1.59 4.61 ± 3.40 4.85 ± 4.28 0.91 ± 2.45 18.17 ± 9.96
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simulation software designed to assess trainee performance 
and readiness for call [14, 15], and simulation cases to 
improve detection of pulmonary embolism (PE) by trainees 
[16]. In a similar vein, our results also indicate that educa-
tional experience can be enhanced with simulation software. 
However, as opposed to simulating only the image viewing 
experience and subsequently asking targeted quiz questions 
or about the presence or absence of specific pathology such 
as PE, our efforts were aimed at “high-fidelity” simulation 
including generation of a “clinical-type radiology report” 
including “findings” and “impression.” This approach 
encourages not only identification and characterization of 
a lesion, but also other clinically relevant practices such as 
identification of complications, mass effect, and important 
regions of involvement. Furthermore, our implementation is 
unique in that it applies automated computer-generated feed-
back to simulation, whereby a software algorithm provides 
feedback as to what differential diagnoses should be consid-
ered based on image findings and pre-test probability alone, 
regardless of the established diagnosis. This is an impor-
tant real-life consideration, which is sometimes overlooked 
upon presentation of TF examples of rare pathologies—a 
radiologist must often consider multiple potential diagno-
ses. However, this should be considered an augmentation of 
traditional learning methods and not a replacement for case 
review with an attending radiologist, given that the AI tool 
focuses on diagnostic considerations, whereas the attending 
radiologist can provide richer clinical context and teaching 
regarding important interpretative considerations beyond 
lesion characterization.

This work has several limitations. The participants could 
not be blinded to the reporting mechanism and to whether 
a case was a simulation vs. clinical case, which could have 
introduced bias into the results. The sample size of the study 
is also relatively small, which may have reduced power. We 
did not validate or provide automated feedback regarding 
the key features input by trainees, which could result in poor 
differential considerations presented to trainees. The auto-
mated feedback was focused on the differential diagnoses, 
whereas feedback regarding imaging features was provided 
during attending review, which remains an integral compo-
nent of radiology education. However, in a post hoc analysis, 
we found that trainees identified the key features correctly 
most of the time for most cases, suggesting that these are 
lower-level observational skills more quickly learned by 
trainees and that incorrect key features did not impair the 
CDS-provided diagnostic considerations in the majority of 
cases. Although we might expect that the trainees would 
have more difficulty with the key features in the TF cases 
based on the survey responses, the study was not powered 
to detect such a small difference, particularly in this post 
hoc analysis. A larger difference might also be expected 
for a higher-level task such as differential diagnosis. Future 

advances in this software for automatic key feature extrac-
tion from the images are under development, which would 
allow automated feedback on the inputs as well.

Participants’ behavior may have been changed by the 
presence of an observer timing them, and their actions such 
as the time spent on image review, and interacting with the 
software and educational links may have been different if 
there was no perceived time pressure. Finally, the live clini-
cal setting was limited to outpatient exams for logistical 
purposes, but CDS may have different utility in inpatient/
emergency setting, where types and presentations of pathol-
ogy may be different.

To this end, future work would benefit from inclusion of 
inpatient/emergency cases to allow greater frequency of new 
pathology and inclusion of simulation TF cases that require 
assessment of new lesions without CDS. In the future of 
radiology education, incorporation of simulation training 
and automated feedback alongside traditional teaching meth-
ods would allow targeted cases to be presented to trainees 
based on their own needs and allow a consistent mechanism 
of immediate feedback to augment traditional feedback.

Conclusion

Teaching file-based simulation cases with “CDS-provided 
feedback” may improve the educational value of interpret-
ing imaging studies at a workstation without adding addi-
tional time. Further investigation will help drive innovation 
in trainee education, which may be particularly relevant in 
this COVID-19 era with physical distancing.

Author Contribution  All authors contributed to the study conception 
and design. Material preparation, data collection, and analysis were 
performed by CS, KD, and SM. Supervision was provided by IMN, 
RNB, and SM. The first draft of the manuscript was written by CS, 
and all authors commented on previous versions of the manuscript. All 
authors read and approved the final manuscript.

Funding  This work was supported in part by research funding from 
Galileo CDS, Inc.

Declarations 

Ethics Approval  The study was approved by the Institutional Review 
Board at the University of Pennsylvania.

Consent to Participate  Informed consent was obtained from all indi-
vidual participants included in the study.

Competing Interests  Author RNB serves as founder, Chairman, and 
Chief Scientific Officer for Galileo CDS. Author SM has grant funding 
from Galileo CDS, Inc., Novocure, Inc., and NIH/NCI and serves as 
consultant for Northwest Biotherapeutics, AI Integrated Radiological 
Solutions Medical, and Qynapse SAS. The remaining authors have no 
relevant financial or non-financial interests to disclose.



16	 Journal of Digital Imaging (2023) 36:11–16

1 3

References

	 1.	 S. H. Sabir, S. Aran, and H. Abujudeh, “Simulation-based training 
in radiology.,” J. Am. Coll. Radiol., vol. 11, no. 5, pp. 512–7, May 
2014, https://​doi.​org/​10.​1016/j.​jacr.​2013.​02.​008.

	 2.	 A. L. Chetlen et al., “Conventional Medical Education and the 
History of Simulation in Radiology,” Acad. Radiol., vol. 22, no. 
10, pp. 1252–1267, Oct. 2015, https://​doi.​org/​10.​1016/J.​ACRA.​
2015.​07.​003.

	 3.	 O. A. Awan, F. Shaikh, B. Kalbfleisch, E. L. Siegel, and P. Chang, “RSNA 
Diagnosis Live: A Novel Web-based Audience Response Tool to Pro-
mote Evidence-based Learning.,” Radiographics, vol. 37, no. 4, pp. 
1111–1118, Jul. 2017, https://​doi.​org/​10.​1148/​rg.​20171​60107.

	 4.	 E. I. Rubio, M. J. Bassignani, M. A. White, and W. E. Brant, 
“Effect of an audience response system on resident learning and 
retention of lecture material,” Am. J. Roentgenol., vol. 190, no. 6, 
Jun. 2008, https://​doi.​org/​10.​2214/​AJR.​07.​3038.

	 5.	 M. T. Duong et al., “Artificial intelligence for precision education 
in radiology.,” Br. J. Radiol., vol. 92, no. 1103, p. 20190389, Nov. 
2019, https://​doi.​org/​10.​1259/​bjr.​20190​389.

	 6.	 A. M. Rauschecker et al., “Artificial intelligence system approach-
ing neuroradiologist-level differential diagnosis accuracy at brain 
MRI,” Radiology, vol. 295, no. 3, pp. 626–637, Jun. 2020, https://​
doi.​org/​10.​1148/​radiol.​20201​90283.

	 7.	 K. Pippin et al., “Implementing Contrast Reaction Management 
Training for Residents Through High-Fidelity Simulation,” Acad. 
Radiol., vol. 26, no. 1, pp. 118–129, Jan. 2019, https://​doi.​org/​10.​
1016/J.​ACRA.​2018.​06.​006.

	 8.	 A. R. Faulkner, A. C. Bourgeois, Y. C. Bradley, K. B. Hudson, R. E. 
Heidel, and A. S. Pasciak, “Simulation-based educational curricu-
lum for fluoroscopically guided lumbar puncture improves operator 
confidence and reduces patient dose.,” Acad. Radiol., vol. 22, no. 5, 
pp. 668–73, May 2015, https://​doi.​org/​10.​1016/j.​acra.​2014.​12.​024.

	 9.	 N. Fulton, J. Buethe, J. Gollamudi, and M. Robbin, “Simulation-
Based Training May Improve Resident Skill in Ultrasound-Guided 
Biopsy,” vol. 207, no. 6, pp. 1329–1333, Sep. 2016, https://​doi.​
org/​10.​2214/​AJR.​16.​16161.

	10.	 M. Mendiratta-Lala, T. R. Williams, V. Mendiratta, H. Ahmed, 
and J. W. Bonnett, “Simulation Center Training as a Means to 

Improve Resident Performance in Percutaneous Noncontinuous 
CT-Guided Fluoroscopic Procedures With Dose Reduction,” , vol. 
204, no. 4, pp. W376–W383, Mar. 2015, https://​doi.​org/​10.​2214/​
AJR.​14.​13420.

	11.	 E. C. Benya, M. R. Wyers, E. K. O’Brien, V. Nandhan, and M. D. 
Adler, “Upper gastrointestinal fluoroscopic simulator for neonates 
with bilious emesis.,” Pediatr. Radiol., vol. 45, no. 9, pp. 1413–6, 
Aug. 2015, https://​doi.​org/​10.​1007/​s00247-​015-​3330-z.

	12.	 M. V. Friedman, J. L. Demertzis, T. J. Hillen, J. R. Long, and D. 
A. Rubin, “Impact of an Interactive Diagnostic Case Simulator 
on a Medical Student Radiology Rotation,” vol. 208, no. 6, pp. 
1256–1261, Mar. 2017, https://​doi.​org/​10.​2214/​AJR.​16.​17537.

	13.	 A. J. Towbin, B. E. Paterson, and P. J. Chang, “Computer-based 
Simulator for Radiology: An Educational Tool,” vol. 28, no. 1, pp. 
309–316, Jan. 2008, doi: https://​doi.​org/​10.​1148/​RG.​28107​5051.

	14.	 P. A. Gondim Teixeira et al., “Radiology resident MR and CT image 
analysis skill assessment using an interactive volumetric simula-
tion tool - the RadioLOG project.,” Eur. Radiol., vol. 27, no. 2, pp. 
878–887, Feb. 2017, https://​doi.​org/​10.​1007/​s00330-​016-​4384-5.

	15.	 S. Ganguli, M. Camacho, C. S. Yam, and I. Pedrosa, “Preparing 
first-year radiology residents and assessing their readiness for on-
call responsibilities: Results over 5 years,” Am. J. Roentgenol., 
vol. 192, no. 2, pp. 539–544, Feb. 2009, https://​doi.​org/​10.​2214/​
AJR.​08.​1631.

	16.	 J. Williams, T. S. Sato, and B. Policeni, “Pulmonary Embolism 
Teaching File: A Simple Pilot Study for Rapidly Increasing Pul-
monary Embolism Recognition among New Residents Using 
Interactive Cross-sectional Imaging,” Acad. Radiol., vol. 20, no. 
8, pp. 1048–1051, Aug. 2013, https://​doi.​org/​10.​1016/J.​ACRA.​
2012.​12.​020.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1016/j.jacr.2013.02.008
https://doi.org/10.1016/J.ACRA.2015.07.003
https://doi.org/10.1016/J.ACRA.2015.07.003
https://doi.org/10.1148/rg.2017160107
https://doi.org/10.2214/AJR.07.3038
https://doi.org/10.1259/bjr.20190389
https://doi.org/10.1148/radiol.2020190283
https://doi.org/10.1148/radiol.2020190283
https://doi.org/10.1016/J.ACRA.2018.06.006
https://doi.org/10.1016/J.ACRA.2018.06.006
https://doi.org/10.1016/j.acra.2014.12.024
https://doi.org/10.2214/AJR.16.16161
https://doi.org/10.2214/AJR.16.16161
https://doi.org/10.2214/AJR.14.13420
https://doi.org/10.2214/AJR.14.13420
https://doi.org/10.1007/s00247-015-3330-z
https://doi.org/10.2214/AJR.16.17537
https://doi.org/10.1148/RG.281075051
https://doi.org/10.1007/s00330-016-4384-5
https://doi.org/10.2214/AJR.08.1631
https://doi.org/10.2214/AJR.08.1631
https://doi.org/10.1016/J.ACRA.2012.12.020
https://doi.org/10.1016/J.ACRA.2012.12.020

	Artificial Intelligence-Powered Clinical Decision Support and Simulation Platform for Radiology Trainee Education
	Abstract
	Introduction
	Materials and Methods
	Results
	Confidence and Educational Value Ratings
	Timing Results
	Observer Assessment and Overall Session Survey
	Key Feature Identification

	Discussion
	Conclusion
	References


