Skip to main content

Advertisement

Log in

Use of Deep Neural Networks in the Detection and Automated Classification of Lesions Using Clinical Images in Ophthalmology, Dermatology, and Oral Medicine—A Systematic Review

  • Review
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Artificial neural networks (ANN) are artificial intelligence (AI) techniques used in the automated recognition and classification of pathological changes from clinical images in areas such as ophthalmology, dermatology, and oral medicine. The combination of enterprise imaging and AI is gaining notoriety for its potential benefits in healthcare areas such as cardiology, dermatology, ophthalmology, pathology, physiatry, radiation oncology, radiology, and endoscopic. The present study aimed to analyze, through a systematic literature review, the application of performance of ANN and deep learning in the recognition and automated classification of lesions from clinical images, when comparing to the human performance. The PRISMA 2020 approach (Preferred Reporting Items for Systematic Reviews and Meta-analyses) was used by searching four databases of studies that reference the use of IA to define the diagnosis of lesions in ophthalmology, dermatology, and oral medicine areas. A quantitative and qualitative analyses of the articles that met the inclusion criteria were performed. The search yielded the inclusion of 60 studies. It was found that the interest in the topic has increased, especially in the last 3 years. We observed that the performance of IA models is promising, with high accuracy, sensitivity, and specificity, most of them had outcomes equivalent to human comparators. The reproducibility of the performance of models in real-life practice has been reported as a critical point. Study designs and results have been progressively improved. IA resources have the potential to contribute to several areas of health. In the coming years, it is likely to be incorporated into everyday life, contributing to the precision and reducing the time required by the diagnostic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Warin K, Limprasert W, Suebnukarn S, Jinaporntham S, Jantana P. Automatic classification and detection of oral cancer in photographic images using deep learning algorithms. J Oral Pathol Med. 2021 Oct;50(9):911-918. https://doi.org/10.1111/jop.13227. Epub 2021 Aug 16. PMID: 34358372.

    Article  PubMed  Google Scholar 

  2. Roth CJ, Clunie DA, Vining DJ, Berkowitz SJ, Berlin A, Bissonnette JP, Clark SD, Cornish TC, Eid M, Gaskin CM, Goel AK, Jacobs GC, Kwan D, Luviano DM, McBee MP, Miller K, Hafiz AM, Obcemea C, Parwani AV, Rotemberg V, Silver EL, Storm ES, Tcheng JE, Thullner KS, Folio LR. Multispecialty Enterprise Imaging Workgroup Consensus on Interactive Multimedia Reporting Current State and Road to the Future: HIMSS-SIIM Collaborative White Paper. J Digit Imaging. 2021 Jun;34(3):495-522.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fu, Q., Chen, Y., Li, Z., Jing, Q., Hu, C., Liu, H., Bao, J., Hong, Y., Shi, T., Li, K., Zou, H., Song, Y.Y., Wang, H., Wang, X., Wang, Y., Liu, J., Liu, H., Chen, S., Chen, R., Zhang, M., Zhao, J., Xiang, J., Liu, B., Jia, J., Wu, H., Zhao, Y., Wan, L., & Xiong, X. (2020). A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study. EClinicalMedicine, 27.

  4. Han SS, Moon IJ, Lim W, Suh IS, Lee SY, Na JI, Kim SH, Chang SE. Keratinocytic Skin Cancer Detection on the Face Using Region-Based Convolutional Neural Network. JAMA Dermatol. 2020 Jan 1;156(1):29-37. https://doi.org/10.1001/jamadermatol.2019.3807. PMID: 31799995; PMCID: PMC6902187. (a)

    Article  PubMed  Google Scholar 

  5. Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, Kanada K, de Oliveira Marinho G, Gallegos J, Gabriele S, Gupta V, Singh N, Natarajan V, Hofmann-Wellenhof R, Corrado GS, Peng LH, Webster DR, Ai D, Huang SJ, Liu Y, Dunn RC, Coz D. A deep learning system for differential diagnosis of skin diseases. Nat Med. 2020 Jun;26(6):900-908. https://doi.org/10.1038/s41591-020-0842-3. Epub 2020 May 18. PMID: 32424212.

    Article  CAS  PubMed  Google Scholar 

  6. Keel S, Li Z, Scheetz J, Robman L, Phung J, Makeyeva G, Aung K, Liu C, Yan X, Meng W, Guymer R, Chang R, He M. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs. Clin Exp Ophthalmol. 2019 Nov;47(8):1009-1018. https://doi.org/10.1111/ceo.13575. Epub 2019 Jul 25. PMID: 31215760.

    Article  PubMed  Google Scholar 

  7. Kim MC, Okada K, Ryner AM, Amza A, Tadesse Z, Cotter SY, Gaynor BD, Keenan JD, Lietman TM, Porco TC. Sensitivity and specificity of computer vision classification of eyelid photographs for programmatic trachoma assessment. PLoS One. 2019 Feb 11;14(2):e0210463. https://doi.org/10.1371/journal.pone.0210463. PMID: 30742639; PMCID: PMC6370195.

  8. Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, Hamzah H, Ho J, Lee XQ, Hsu W, Lee ML, Musonda L, Chandran M, Chipalo-Mutati G, Muma M, Tan GSW, Sivaprasad S, Menon G, Wong TY, Ting DSW. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health. 2019 May;1(1):e35-e44. https://doi.org/10.1016/S2589-7500(19)30004-4. Epub 2019 May 2. PMID: 33323239.

    Article  PubMed  Google Scholar 

  9. Lu L, Ren P, Lu Q, Zhou E, Yu W, Huang J, He X, Han W. Analyzing fundus images to detect diabetic retinopathy (DR) using deep learning system in the Yangtze River delta region of China. Ann Transl Med. 2021 Feb;9(3):226. https://doi.org/10.21037/atm-20-3275. PMID: 33708853; PMCID: PMC7940941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Son J, Shin JY, Kim HD, Jung KH, Park KH, Park SJ. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Ophthalmology. 2020 Jan;127(1):85-94. https://doi.org/10.1016/j.ophtha.2019.05.029. Epub 2019 May 31. PMID: 31281057.

    Article  PubMed  Google Scholar 

  11. Redd TK, Campbell JP, Brown JM, Kim SJ, Ostmo S, Chan RVP, Dy J, Erdogmus D, Ioannidis S, Kalpathy-Cramer J, Chiang MF; Imaging and Informatics in Retinopathy of Prematurity (i-ROP) Research Consortium. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. Br J Ophthalmol. 2018 Nov 23: bjophthalmol-2018–313156. https://doi.org/10.1136/bjophthalmol-2018-313156. Epub ahead of print. PMID: 30470715; PMCID: PMC7880608.

  12. Jain A, Krishnan R, Rogye A, Natarajan S. Use of offline artificial intelligence in a smartphone-based fundus camera for community screening of diabetic retinopathy. Indian J Ophthalmol. 2021 Nov;69(11):3150-3154. https://doi.org/10.4103/ijo.IJO_3808_20. PMID: 34708760; PMCID: PMC8725118.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wintergerst MWM, Bejan V, Hartmann V, Schnorrenberg M, Bleckwenn M, Weckbecker K, Finger RP. Telemedical Diabetic Retinopathy Screening in a Primary Care Setting: Quality of Retinal Photographs and Accuracy of Automated Image Analysis. Ophthalmic Epidemiol. 2021 Jun 20:1–10. https://doi.org/10.1080/09286586.2021.1939886. Epub ahead of print. PMID: 34151725.

  14. Pawar B, Lobo SN, Joseph M, Jegannathan S, Jayraj H. Validation of Artificial Intelligence Algorithm in the Detection and Staging of Diabetic Retinopathy through Fundus Photography: An Automated Tool for Detection and Grading of Diabetic Retinopathy. Middle East Afr J Ophthalmol. 2021 Sep 25;28(2):81-86. https://doi.org/10.4103/meajo.meajo_406_20. PMID: 34759664; PMCID: PMC8547660.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baget-Bernaldiz M, Pedro R-A, Santos-Blanco E, Navarro-Gil R, Valls A, Moreno A, Rashwan HA, Puig D. Testing a Deep Learning Algorithm for Detection of Diabetic Retinopathy in a Spanish Diabetic Population and with MESSIDOR Database. Diagnostics. 2021; 11(8):1385. https://doi.org/10.3390/diagnostics11081385

    Article  PubMed  PubMed Central  Google Scholar 

  16. Turk LA, Wang S, Krause P, Wawrzynski J, Saleh GM, Alsawadi H, Alshamrani AZ, Peto T, Bastawrous A, Li J, Tang HL. Evidence Based Prediction and Progression Monitoring on Retinal Images from Three Nations. Transl Vis Sci Technol. 2020 Aug 7;9(2):44. https://doi.org/10.1167/tvst.9.2.44. PMID: 32879754; PMCID: PMC7443119.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Biousse V, Newman NJ, Najjar RP, Vasseneix C, Xu X, Ting DS, Milea LB, Hwang JM, Kim DH, Yang HK, Hamann S, Chen JJ, Liu Y, Wong TY, Milea D; BONSAI (Brain and Optic Nerve Study with Artificial Intelligence) Study Group. Optic Disc Classification by Deep Learning versus Expert Neuro-Ophthalmologists. Ann Neurol. 2020 Oct;88(4):785–795. https://doi.org/10.1002/ana.25839. Epub 2020 Aug 7. PMID: 32621348.

  18. Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, Lin Z, Lai W, Long E, Wu X, Lin D, Zhu Y, Chen C, Wu D, Yu T, Cao Q, Li X, Li J, Li W, Wang J, Yang M, Hu H, Zhang L,Yu Y, Chen X, Hu J, Zhu K, Jiang S, Huang Y, Tan G, Huang J, Lin X, Zhang X, Luo L, Liu Y, Liu X, Cheng B, Zheng D, Wu M, Chen W, Liu Y. Diagnostic Efficacy and Therapeutic Decision-making Capacity of an Artificial Intelligence Platform for Childhood Cataracts in Eye Clinics: A Multicentre Randomized Controlled Trial. Volume 9, P52–59, March 01, 2019. https://doi.org/10.1016/j.eclinm.2019.03.001

  19. Berkowitz SJ, Kwan D, Cornish TC, Silver EL, Thullner KS, Aisen A, Bui MM, Clark SD, Clunie DA, Eid M, Hartman DJ, Ho K, Leontiev A, Luviano DM, O'Toole PE, Parwani AV, Pereira NS, Rotemberg V, Vining DJ, Gaskin CM, Roth CJ, Folio LR. Interactive Multimedia Reporting Technical Considerations: HIMSS-SIIM Collaborative White Paper. J Digit Imaging. 2022 Aug;35(4):817-833

    Article  PubMed  PubMed Central  Google Scholar 

  20. van der Waal I, de Bree R, Brakenhoff R, Coebergh JW. Early diagnosis in primary oral cancer: is it possible? Med Oral Patol Oral Cir Bucal. 2011 May 1;16(3):e300-5. https://doi.org/10.4317/medoral.16.e300. PMID: 21441877

    Article  PubMed  Google Scholar 

  21. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May 28;521(7553):436-44. https://doi.org/10.1038/nature14539. PMID: 26017442.

    Article  CAS  PubMed  Google Scholar 

  22. Al-Aswad LA, Kapoor R, Chu CK, Walters S, Gong D, Garg A, Gopal K, Patel V, Sameer T, Rogers TW, Nicolas J, De Moraes GC, Moazami G. Evaluation of a Deep Learning System For Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. J Glaucoma. 2019 Dec;28(12):1029-1034. https://doi.org/10.1097/IJG.0000000000001319. PMID: 31233461.

    Article  PubMed  Google Scholar 

  23. Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RVP, Dy J, Erdogmus D, Ioannidis S, Kalpathy-Cramer J, Chiang MF; Imaging and Informatics in Retinopathy of Prematurity (i-ROP) Research Consortium. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2018 Jul 1;136(7):803–810. https://doi.org/10.1001/jamaophthalmol.2018.1934. PMID: 29801159; PMCID: PMC6136045.

  24. Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2017 Nov 1;135(11):1170-1176. https://doi.org/10.1001/jamaophthalmol.2017.3782. PMID: 28973096; PMCID: PMC5710387.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016 Dec 13;316(22):2402-2410. https://doi.org/10.1001/jama.2016.17216. PMID: 27898976.

    Article  PubMed  Google Scholar 

  26. Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J Invest Dermatol. 2018 Jul;138(7):1529-1538. https://doi.org/10.1016/j.jid.2018.01.028. Epub 2018 Feb 8. PMID: 29428356.

    Article  CAS  PubMed  Google Scholar 

  27. Kim, Y. J., Han, S. S., Yang, H. J., & Chang, S. E. (2020). Prospective, comparative evaluation of a deep neural network and dermoscopy in the diagnosis of onychomycosis. PloS one, 15(6), e0234334. https://doi.org/10.1371/journal.pone.0234334

  28. Meienberger N, Anzengruber F, Amruthalingam L, Christen R, Koller T, Maul JT, Pouly M, Djamei V, Navarini AA. Observer-independent assessment of psoriasis-affected area using machine learning. JEADV 2020, 34, 1362–1368 European Academy of Dermatology and Venereology. https://doi.org/10.1111/jdv.16002

  29. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb 2;542(7639):115–118. https://doi.org/10.1038/nature21056. Epub 2017 Jan 25. Erratum in: Nature. 2017 Jun 28;546(7660):686. PMID: 28117445; PMCID: PMC8382232.

  30. Gurovich, Y., Hanani, Y., Bar, O. et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat Med 25, 60–64 (2019). https://doi.org/10.1038/s41591-018-0279-0

    Article  CAS  PubMed  Google Scholar 

  31. He J, Cao T, Xu F, Wang S, Tao H, Wu T, Sun L, Chen J. Artificial intelligence-based screening for diabetic retinopathy at community hospital. Eye (Lond). 2020 Mar;34(3):572–576. https://doi.org/10.1038/s41433-019-0562-4. Epub 2019 Aug 27. PMID: 31455902; PMCID: PMC7042314.

  32. Hsieh, Yi-Ting, Lee‐Ming Chuang, Yi-Der Jiang, Tien-Jyun Chang, Chung-May Yang, Chang-Hao Yang, Li-Wei Chan, Tzu-Yun Kao, Ta-Ching Chen, Hsuan-Chieh Lin, Chin-Han Tsai and Mingke Chen. “Application of deep learning image assessment software VeriSee™ for diabetic retinopathy screening.” Journal of the Formosan Medical Association = Taiwan yi zhi (2020): n. pag. https://doi.org/10.1016/j.jfma.2020.03.024.

  33. Soenksen LR, Kassis T, Conover ST, Marti-Fuster B, Birkenfeld JS, Tucker-Schwartz J, Naseem A, Stavert RR, Kim CC, Senna MM, Avilés-Izquierdo J, Collins JJ, Barzilay R, Gray ML. Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images. Sci Transl Med. 2021 Feb 17;13(581):eabb3652. https://doi.org/10.1126/scitranslmed.abb3652. PMID: 33597262.

  34. Zhao S, Xie B, Li Y, Zhao X, Kuang Y, Su J, He X, Wu X, Fan W, Huang K, Su J, Peng Y, Navarini AA, Huang W, Chen X. Smart identification of psoriasis by images using convolutional neural networks: a case study in China. J Eur Acad Dermatol Venereol. 2020 Mar;34(3):518-524. https://doi.org/10.1111/jdv.15965. Epub 2019 Oct 17. PMID: 31541556.

    Article  CAS  PubMed  Google Scholar 

  35. Seité S, Khammari A, Benzaquen M, Moyal M, Dréno B. Development and accuracy of an artificial intelligence algorithm for acne grading from smartphone photographs. Experimental Dermatology. 2019;28:1252–1257. https://doi.org/10.1111/exd.14022

    Article  PubMed  PubMed Central  Google Scholar 

  36. Han SS, Moon IJ, Kim SH, Na JI, Kim MS, Park GH, Park I, Kim K, Lim W, Lee JH, Chang SE. Assessment of deep neural networks for the diagnosis of benign and malignant skin neoplasms in comparison with dermatologists: A retrospective validation study. PLoS Med. 2020 Nov 25;17(11):e1003381. https://doi.org/10.1371/journal.pmed.1003381. PMID: 33237903; PMCID: PMC7688128. (b)

  37. Pan, X., Zhang, T., Yang, Q., Yang, D., Rwigema, J. C., & Qi, X. S. (2020). Survival prediction for oral tongue cancer patients via probabilistic genetic algorithm optimized neural network models. The British journal of radiology, 93(1112), 20190825. https://doi.org/10.1259/bjr.20190825

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stadler, T. M., Hüllner, M. W., Broglie, M. A., & Morand, G. B. (2020). Predictive value of suvmax changes between two sequential post-therapeutic FDG-pet in head and neck squamous cell carcinomas. Scientific reports, 10(1), 16689. https://doi.org/10.1038/s41598-020-73914-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song, B., Sunny, S., Uthoff, R. D., Patrick, S., Suresh, A., Kolur, T., Keerthi, G., Anbarani, A., Wilder-Smith, P., Kuriakose, M. A., Birur, P., Rodriguez, J. J., & Liang, R. (2018). Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning. Biomedical optics express, 9(11), 5318–5329. https://doi.org/10.1364/BOE.9.005318.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Uthoff, R. D., Song, B., Sunny, S., Patrick, S., Suresh, A., Kolur, T., Keerthi, G., Spires, O., Anbarani, A., Wilder-Smith, P., Kuriakose, M. A., Birur, P., & Liang, R. (2018). Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities. PloS one, 13(12), e0207493. https://doi.org/10.1371/journal.pone.0207493

  41. Uthoff RD, Song B, Birur P, Kuriakose MA, Sunny S, Suresh A, Patrick S, Anbarani A, Spires O, Wilder-Smith P, ; Liang R. Development of a dual-modality, dual-view smartphone-based imaging system for oral cancer detection. In R. Raghavachari, & R. Liang (Eds.), Design and Quality for Biomedical Technologies XI [104860V] Biomedical Optics and Imaging - Proceedings of SPIE 2018;10486). DOI:https://doi.org/10.1117/12.2296435.

  42. Jeyaraj, P. R., & Samuel Nadar, E. R. (2019). Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. Journal of cancer research and clinical oncology, 145(4), 829–837. https://doi.org/10.1007/s00432-018-02834-7

    Article  PubMed  Google Scholar 

  43. Uthoff, R. D., Song, B., Sunny, S., Patrick, S., Suresh, A., Kolur, T., Gurushanth, K., Wooten, K., Gupta, V., Platek, M. E., Singh, A. K., Wilder-Smith, P., Kuriakose, M. A., Birur, P., & Liang, R. (2019). Small form factor, flexible, dual-modality handheld probe for smartphone-based, point-of-care oral and oropharyngeal cancer screening. Journal of biomedical optics, 24(10), 1–8. https://doi.org/10.1117/1.JBO.24.10.106003

    Article  PubMed  Google Scholar 

  44. Jurczyszyn, K., Kazubowska, K., Kubasiewicz-Ross, P., Ziółkowski, P., & Dominiak, M. (2018). Application of fractal dimension analysis and photodynamic diagnosis in the case of differentiation between lichen planus and leukoplakia: A preliminary study. Advances in clinical and experimental medicine : official organ Wroclaw Medical University, 27(12), 1729–1736. https://doi.org/10.17219/acem/80831

  45. Alhazmi A, Alhazmi Y, Makrami A, Masmali A, Salawi N, Masmali K, Patil S. Application of artificial intelligence and machine learning for prediction of oral cancer risk. J Oral Pathol Med. 2021 May;50(5):444-450. https://doi.org/10.1111/jop.13157. Epub 2021 Jan 17. PMID: 33394536

    Article  PubMed  Google Scholar 

  46. Hung M, Park J, Hon ES, Bounsanga J, Moazzami S, Ruiz-Negrón B, Wang D. Artificial intelligence in dentistry: Harnessing big data to predict oral cancer survival. World J Clin Oncol. 2020 Nov 24;11(11):918-934. https://doi.org/10.5306/wjco.v11.i11.918. PMID: 33312886; PMCID: PMC7701911.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Alabi RO, Elmusrati M, Sawazaki-Calone I, Kowalski LP, Haglund C, Coletta RD, Mäkitie AA, Salo T, Leivo I, Almangush A. Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool. Virchows Arch. 2019 Oct;475(4):489–497. https://doi.org/10.1007/s00428-019-02642-5. Epub 2019 Aug 17. PMID: 31422502; PMCID: PMC6828835.

  48. Welikala RA, Remagnino P, Lim JH, Chan CS, Rajendran S, Kallarakkal TG, Zain RB, Jayasinghe RD, Rimal J, Kerr AR, Amtha R, Patil K, Tilakaratne WM, Gibson J, Cheong SC, Barman AS. Automated Detection and Classification of Oral Lesions Using Deep Learning for Early Detection of Oral Cancer, in IEEE Access, vol.

  49. Page MJ, McKenzie JE, Bossuyt PM , Boutron I , Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM , Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T , Loder EW, Mayo-Wilson E, McDonald E, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. A declaração PRISMA 2020: uma diretriz atualizada para relatar revisões sistemáticas BMJ 2021 ; 372 https://doi.org/10.1136/bmj.n71. Cite isso como: BMJ 2021;372:n7.

  50. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

  51. Usher D, Dumskyj M, Himaga M, Williamson TH, Nussey S, Boyce J. Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening. Diabet Med. 2004 Jan;21(1):84-90. https://doi.org/10.1046/j.1464-5491.2003.01085.x. PMID: 14706060.

    Article  CAS  PubMed  Google Scholar 

  52. Anantharaman R, Anantharaman V, Lee Y. Oro Vision: Deep Learning for Classifying Orofacial Diseases, 2017 IEEE International Conference on Healthcare Informatics (ICHI), 2017, pp. 39-45, https://doi.org/10.1109/ICHI.2017.69.

    Article  Google Scholar 

  53. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Sivaprasad S, Varma R, Jonas JB, He MG, Cheng CY, Cheung GCM, Aung T, Hsu W, Lee ML, Wong TY. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017 Dec 12;318(22):2211-2223. https://doi.org/10.1001/jama.2017.18152. PMID: 29234807; PMCID: PMC5820739.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology. 2018 Aug;125(8):1199-1206. https://doi.org/10.1016/j.ophtha.2018.01.023. Epub 2018 Mar 2. PMID: 29506863.

    Article  PubMed  Google Scholar 

  55. Anantharaman R, Velazquez M, Lee Y. Utilizing Mask R-CNN for Detection and Segmentation of Oral Diseases, 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2018, pp. 2197-2204, https://doi.org/10.1109/BIBM.2018.8621112.

    Article  Google Scholar 

  56. Li Z, Keel S, Liu C, He Y, Meng W, Scheetz J, Lee PY, Shaw J, Ting D, Wong TY, Taylor H, Chang R, He M. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Diabetes Care. 2018 Dec;41(12):2509-2516. https://doi.org/10.2337/dc18-0147. Epub 2018 Oct 1. PMID: 30275284.

    Article  PubMed  Google Scholar 

  57. Shamim, M.Z., Syed, S., Shiblee, M., Usman, M., Ali, S.J., Hussein, H.S., & Farrag, M. (2022). Automated Detection of Oral Pre-Cancerous Tongue Lesions Using Deep Learning for Early Diagnosis of Oral Cavity Cancer. Comput. J., 65, 91-104. https://doi.org/10.1093/comjnl/bxaa136.

    Article  Google Scholar 

  58. Phene, S., Dunn, R. C., Hammel, N., Liu, Y., Krause, J., Kitade, N., Schaekermann, M., Sayres, R., Wu, D. J., Bora, A., Semturs, C., Misra, A., Huang, A. E., Spitze, A., Medeiros, F. A., Maa, A. Y., Gandhi, M., Corrado, G. S., Peng, L., & Webster, D. R. (2019). Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs. Ophthalmology, 126(12), 1627–1639. https://doi.org/10.1016/j.ophtha.2019.07.024

    Article  PubMed  Google Scholar 

  59. Ting DSW, Cheung CY, Nguyen Q, Sabanayagam C, Lim G, Lim ZW, Tan GSW, Soh YQ, Schmetterer L, Wang YX, Jonas JB, Varma R, Lee ML, Hsu W, Lamoureux E, Cheng CY, Wong TY. Deep learning in estimating prevalence and systemic risk factors for diabetic retinopathy: a multi-ethnic study. NPJ Digit Med. 2019 Apr 10;2:24. https://doi.org/10.1038/s41746-019-0097-x. PMID: 31304371; PMCID: PMC6550209.

    Article  Google Scholar 

  60. Yang WH, Zheng B, Wu MN, Zhu SJ, Fei FQ, Weng M, Zhang X, Lu PR. An Evaluation System of Fundus Photograph-Based Intelligent Diagnostic Technology for Diabetic Retinopathy and Applicability for Research. Diabetes Ther. 2019 Oct;10(5):1811–1822. https://doi.org/10.1007/s13300-019-0652-0. Epub 2019 Jul 9. PMID: 31290125; PMCID: PMC6778552.

  61. Zhen Y, Chen H, Zhang X, Meng X, Zhang J, Pu J. ASSESSMENT OF CENTRAL SEROUS CHORIORETINOPATHY DEPICTED ON COLOR FUNDUS PHOTOGRAPHS USING DEEP LEARNING. Retina. 2020 Aug;40(8):1558-1564. https://doi.org/10.1097/IAE.0000000000002621. PMID: 31283737.

    Article  PubMed  Google Scholar 

  62. Jurczyszyn K, Kozakiewicz M. Differential diagnosis of leukoplakia versus lichen planus of the oral mucosa based on digital texture analysis in intraoral photography. Adv Clin Exp Med. 2019 Nov;28(11):1469-1476. https://doi.org/10.17219/acem/104524. PMID: 30916899.

    Article  PubMed  Google Scholar 

  63. Kuo, MT., Hsu, B.WY., Yin, YK. et al. A deep learning approach in diagnosing fungal keratitis based on corneal photographs. Sci Rep 10, 14424 (2020). https://doi.org/10.1038/s41598-020-71425-9

  64. Ludwig CA, Perera C, Myung D, Greven MA, Smith SJ, Chang RT, Leng T. Automatic Identification of Referral-Warranted Diabetic Retinopathy Using Deep Learning on Mobile Phone Images. Transl Vis Sci Technol. 2020 Dec 4;9(2):60. https://doi.org/10.1167/tvst.9.2.60. PMID: 33294301; PMCID: PMC7718806.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jurczyszyn K, Gedrange T, Kozakiewicz M. Theoretical Background to Automated Diagnosing of Oral Leukoplakia: A Preliminary Report. J Healthc Eng. 2020 Sep 13;2020:8831161. https://doi.org/10.1155/2020/8831161. PMID: 33005316; PMCID: PMC7509569.

    Article  Google Scholar 

  66. You W, Hao A, Li S, Wang Y, Xia B. Deep learning-based dental plaque detection on primary teeth: a comparison with clinical assessments. BMC Oral Health. 2020 May 13;20(1):141. https://doi.org/10.1186/s12903-020-01114-6. PMID: 32404094; PMCID: PMC7222297.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Thomas B, Kumar V, Saini S. Texture analysis based segmentation and classification of oral cancer lesions in color images using ANN, 2013 IEEE International Conference on Signal Processing, Computing and Control (ISPCC), 2013, pp. 1–5, https://doi.org/10.1109/ISPCC.2013.6663401.

  68. Rêgo S, Dutra-Medeiros M, Soares F, Monteiro-Soares M. Screening for Diabetic Retinopathy Using an Automated Diagnostic System Based on Deep Learning: Diagnostic Accuracy Assessment. Ophthalmologica. 2021;244(3):250-257. https://doi.org/10.1159/000512638. Epub 2020 Oct 29. PMID: 33120397.

    Article  PubMed  Google Scholar 

  69. Wang Y, Shi D, Tan Z, Niu Y, Jiang Y, Xiong R, Peng G, He M. Screening Referable Diabetic Retinopathy Using a Semi-automated Deep Learning Algorithm Assisted Approach. Front Med (Lausanne). 2021 Nov 25;8:740987. https://doi.org/10.3389/fmed.2021.740987. PMID: 34901058; PMCID: PMC8656222.

  70. Deshmukh M, Liu YC, Rim TH, Venkatraman A, Davidson M, Yu M, Kim HS, Lee G, Jun I, Mehta JS, Kim EK. Automatic segmentation of corneal deposits from corneal stromal dystrophy images via deep learning. Comput Biol Med. 2021 Oct;137:104675. https://doi.org/10.1016/j.compbiomed.2021.104675. Epub 2021 Jul 27. PMID: 34425417.

  71. Ming S, Xie K, Lei X, Yang Y, Zhao Z, Li S, Jin X, Lei B. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study. Int Ophthalmol. 2021 Apr;41(4):1291-1299. https://doi.org/10.1007/s10792-020-01685-x. Epub 2021 Jan 3. PMID: 33389425.

    Article  PubMed  Google Scholar 

  72. Hung JY, Perera C, Chen KW, Myung D, Chiu HK, Fuh CS, Hsu CR, Liao SL, Kossler AL. A deep learning approach to identify blepharoptosis by convolutional neural networks. Int J Med Inform. 2021 Apr;148:104402. https://doi.org/10.1016/j.ijmedinf.2021.104402. Epub 2021 Jan 28. PMID: 33609928; PMCID: PMC8191181.

  73. Zheng C, Xie X, Wang Z, Li W, Chen J, Qiao T, Qian Z, Liu H, Liang J, Chen X. Development and validation of deep learning algorithms for automated eye laterality detection with anterior segment photography. Sci Rep. 2021 Jan 12;11(1):586. https://doi.org/10.1038/s41598-020-79809-7. PMID: 33436781; PMCID: PMC7803760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Malerbi FK, Andrade RE, Morales PH, Stuchi JA, Lencione D, de Paulo JV, Carvalho MP, Nunes FS, Rocha RM, Ferraz DA, Belfort R Jr. Diabetic Retinopathy Screening Using Artificial Intelligence and Handheld Smartphone-Based Retinal Camera. J Diabetes Sci Technol. 2021 Jan 12:1932296820985567. https://doi.org/10.1177/1932296820985567. Epub ahead of print. PMID: 33435711.

  75. Li, F., Wang, Y., Xu, T. et al. Deep learning-based automated detection for diabetic retinopathy and diabetic macular edema in retinal fundus photographs. Eye (2021). https://doi.org/10.1038/s41433-021-01552-8

    Article  PubMed  PubMed Central  Google Scholar 

  76. Katz O, Presil D, Cohen L, Nachmani R, Kirshner N, Hoch Y, Lev T, Hadad A, Hewitt RJ, Owens DR. Evaluation of a New Neural Network Classifier for Diabetic Retinopathy. J Diabetes Sci Technol. 2021 Sep 22:19322968211042665. https://doi.org/10.1177/19322968211042665. Epub ahead of print. PMID: 34549633.

  77. Shah A, Clarida W, Amelon R, Hernaez-Ortega MC, Navea A, Morales-Olivas J, Dolz-Marco R, Verbraak F, Jorda PP, van der Heijden AA, Peris Martinez C. Validation of Automated Screening for Referable Diabetic Retinopathy With an Autonomous Diagnostic Artificial Intelligence System in a Spanish Population. J Diabetes Sci Technol. 2021 May;15(3):655–663. https://doi.org/10.1177/1932296820906212. Epub 2020 Mar 16. PMID: 32174153; PMCID: PMC8120039.

  78. Chiang M, Guth D, Pardeshi AA, Randhawa J, Shen A, Shan M, Dredge J, Nguyen A, Gokoffski K, Wong BJ, Song B, Lin S, Varma R, Xu BY. Glaucoma Expert-Level Detection of Angle Closure in Goniophotographs With Convolutional Neural Networks: The Chinese American Eye Study. Am J Ophthalmol. 2021 Jun;226:100–107. https://doi.org/10.1016/j.ajo.2021.02.004. Epub 2021 Feb 9. PMID: 33577791; PMCID: PMC8286291.

  79. Tanriver G, Soluk Tekkesin M, Ergen O. Automated Detection and Classification of Oral Lesions Using Deep Learning to Detect Oral Potentially Malignant Disorders. Cancers (Basel). 2021 Jun 2;13(11):2766. https://doi.org/10.3390/cancers13112766. PMID: 34199471; PMCID: PMC8199603.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rijsbergen M, Pagan L, Niemeyer-van der Kolk T, Rijneveld R, Hogendoorn G, Lemoine C, Meija Miranda Y, Feiss G, Bouwes Bavink JN, Burggraaf J, van Poelgeest MIE, Rissmann R. Stereophotogrammetric three-dimensional photography is an accurate and precise planimetric method for the clinical visualization and quantification of human papilloma virus-induced skin lesions. J Eur Acad Dermatol Venereol. 2019 Aug;33(8):1506–1512. https://doi.org/10.1111/jdv.15474. Epub 2019 Mar 12. PMID: 30720900; PMCID: PMC6767777.

  81. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L.. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data. 2021; 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ker J, Wang L, Rao J, Lim T. "Deep Learning Applications in Medical Image Analysis," in IEEE Access, vol. 6, pp. 9375-9389, 2018, https://doi.org/10.1109/ACCESS.2017.2788044.

    Article  Google Scholar 

  83. Li Y, Huang C, Ding L, Li Z, Pan Y, Gao X. Deep learning in bioinformatics: introduction, application, and perspective in big data era, Methods (2019), https://doi.org/10.1016/j.ymeth.2019.04.008

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

RFTG, RMF, LFS, and VCC conceived, designed, guided, and coordinated the study and the writing. RFTG and EFH identified publication records from MEDLINE and screened the titles, abstracts, and full text of the articles. Rita identified additional articles that were not retrieved in MEDLINE. RFTG and VCC prepared the figures and tables. All the authors contributed to the writing of the article. The Abstract, Introduction, Materials and Methods, Discussion, and Conclusion sections were written jointly by RFTG and VCC. RFTG and VCC performed thorough editing of the article. All the authors revised and approved the final article.

Corresponding author

Correspondence to Rita Fabiane Teixeira Gomes.

Ethics declarations

Ethics Approval

Ethical approval for this type of study is not required by our institute.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, R.F.T., Schuch, L.F., Martins, M.D. et al. Use of Deep Neural Networks in the Detection and Automated Classification of Lesions Using Clinical Images in Ophthalmology, Dermatology, and Oral Medicine—A Systematic Review. J Digit Imaging 36, 1060–1070 (2023). https://doi.org/10.1007/s10278-023-00775-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-023-00775-3

Keywords

Navigation