

Edinburgh Research Explorer

Towards a practical parallelisation of the simplex method

Citation for published version:
Hall, J 2010, 'Towards a practical parallelisation of the simplex method', Computational Management
Science, vol. 7, no. 2, pp. 139-170. https://doi.org/10.1007/s10287-008-0080-5

Digital Object Identifier (DOI):
10.1007/s10287-008-0080-5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computational Management Science

Publisher Rights Statement:
The final publication is available at Springer via http://dx.doi.org/10.1007/s10287-008-0080-5

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 15. May. 2024

https://doi.org/10.1007/s10287-008-0080-5
https://doi.org/10.1007/s10287-008-0080-5
https://www.research.ed.ac.uk/en/publications/0dcf6633-4490-4676-b15e-ed473ee99128

Towards a practical parallelisation of
the simplex method

J. A. J. Hall

23rd April 2007

Abstract

The simplex method is frequently the most efficient method of solv-
ing linear programming (LP) problems. This paper reviews previous
attempts to parallelise the simplex method in relation to efficient serial
simplex techniques and the nature of practical LP problems. For the
major challenge of solving general large sparse LP problems, there has
been no parallelisation of the simplex method that offers significantly
improved performance over a good serial implementation. However,
there has been some success in developing parallel solvers for LPs that
are dense or have particular structural properties. As an outcome of
the review, this paper identifies scope for future work towards the goal
of developing parallel implementations of the simplex method that are
of practical value.

Keywords: linear programming, simplex method, sparse, parallel comput-
ing

MSC classification: 90C05

1 Introduction

Linear programming (LP) is a widely applicable technique both in its own
right and as a sub-problem in the solution of other optimization problems.
The simplex method and interior point methods are the two main approaches
to solving LP problems. In a context where families of related LP problems
have to be solved, such as integer programming and decomposition methods,
and for certain classes of single LP problems, the simplex method is usually
more efficient.

1

The application of parallel and vector processing to the simplex method
for linear programming has been considered since the early 1970’s. However,
only since the beginning of the 1980’s have attempts been made to develop
implementations, with the period from the late 1980’s to the late 1990’s
seeing the greatest activity. Although there have been a few experiments
using vector processing and shared memory machines, the vast majority of
implementations have made use of distributed memory multiprocessors and
ethernet-connected clusters.

The initial aim of this paper is to provide a comprehensive review of
past approaches to exploiting parallelism in the simplex method, including
an assessment of the extent to which they have yielded implementations of
practical value. To facilitate this, Section 2 introduces the simplex method
and discusses issues of implementation and behaviour that influence its par-
allelisation. A short overview of the nature of practical LP problems and
suitable test problems is given in Section 3. Terms and concepts in parallel
computing that are used in this paper are introduced briefly in Section 4.

It is clear from the review of past work in Section 5 that, in most cases, the
focus of attention has been the development of techniques by which speed-
up can be achieved. Little thought, if any, has been given to the underlying
computational scheme in terms of serial efficiency and numerical robustness.
As a consequence, although many implementations have demonstrated good
speed-up, and a few were worthwhile parallel challenges at the time, fewer
still have been of practical value.

The second aim of the paper is to identify promising computational strate-
gies for worthwhile future parallel implementations. This is done in Section 6.
Although the feasibility of their implementation is considered, detailed dis-
cussion of techniques and architectures is beyond the scope of this paper.

2 The simplex method

The simplex method and its computational requirements are most conve-
niently discussed in the context of LP problems in standard form

minimize cT x

subject to Ax = b

x ≥ 0,
(1)

where x ∈ IRn and b ∈ IRm. The matrix A in (1) usually contains columns
of the identity corresponding to logical (slack) variables introduced to trans-
form inequality constraints into equations. The remaining columns of A
correspond to structural (original) variables.

2

In the simplex method, the indices of variables are partitioned into sets
B corresponding to m basic variables xB, and N corresponding to n − m
nonbasic variables xN , such that the basis matrix B formed from the columns
of A corresponding to B is nonsingular. The set B itself is conventionally
referred to as the basis. The columns of A corresponding to N form the
matrix N . The components of c corresponding to B and N are referred to
as, respectively, the basic costs cB and non-basic costs cN .

When the nonbasic variables are set to zero the values b̂ = B−1b of
the basic variables, if non-negative, correspond to a vertex of the feasible
region. The expression xB + B−1N = b̂ derived from the equations in (1)
allows the basic variables to be eliminated from the objective which becomes
(cT

N
− cT

B
B−1N)xN + cT

B
b̂. If none of the components of the vector of reduced

costs ĉN = cT
N
− cT

B
B−1N is negative then the current basis is optimal.

In each iteration of the simplex method, if the current basis is not optimal
a nonbasic variable xq with negative reduced cost is chosen to enter the
basis. Increasing this variable from zero whilst maintaining the equations
in (1) corresponds to moving along an edge of the feasible region such that
the objective function decreases. The direction of this edge is given by the
column âq of N̂ = B−1N corresponding to xq. By considering the ratios of

the components of b̂ to the corresponding components of âq (when positive),
the simplex method finds the first basic variable to be reduced to zero as
xq is increased and, hence, the step to the next vertex of the feasible region
along this edge.

There are many strategies for choosing the nonbasic variable xq to enter
the basis. The original rule of choosing the variable with the most negative
reduced cost is commonly referred to as the Dantzig criterion. However, if
the components of âj are large relative to ĉj it is likely that only a small
increase in xj will be possible before one of the basic variables is reduced to
zero. Alternative pricing strategies weight the reduced cost by dividing it by
(a measure of) the length of âj. The exact steepest edge strategy, described
by Goldfarb and Reid [34], maintains weights sj = 1+‖âj‖

2 corresponding to
the step length for a unit change in xj. Practical (approximate) steepest edge
techniques are described by Forrest and Goldfarb [29] and the Devex strategy
due to Harris [42] maintains approximate edge weights. Using these strate-
gies, the number of iterations required to solve an LP problem in practice
can be taken as O(m+n) and no problem is known for which the theoretical
complexity of O(2n) is achieved.

A popular technique for choosing the variable to leave the basis is the
EXPAND procedure of Gill et al. [32]. By expanding the constraint bounds
by a small amount, this strategy often enables the leaving variable to be

3

chosen from a set of possibilities on grounds of numerical stability.
The two main variants of the simplex method correspond to different

means of calculating the data required to determine the step to the new
vertex. The first variant is the standard simplex method in which the reduced
costs and the directions of all edges at the current vertex are maintained in
a rectangular tableau. In the revised simplex method, the reduced costs and
the direction of the chosen edge are determined by solving systems involving
the basis matrix B.

2.1 The standard simplex method

In the standard simplex method the matrix N̂ , the (reduced) right-hand-side
vector b̂, the reduced costs ĉN and current value of the objective f̂ = cT

B
b̂

are maintained in a tableau of the following form.

N RHS

B N̂ b̂

ĉT
N

−f̂

Each iteration of the standard simplex method requires a Gauss-Jordan
elimination operation to be applied to the columns of the tableau so that the
updated tableau corresponds to the new basis.

The simplex method is commonly started from a basis for which B = I
so the matrix in the standard simplex tableau is N . As such the tableau is
sparse. It is widely assumed that the extent of fill-in caused by the elimination
operations is such that it is not worth exploiting sparsity. As a consequence,
the standard simplex method is generally implemented using a dense data
structure.

The standard simplex method is inherently numerically unstable since it
corresponds to a long sequence of elimination operations with pivots chosen
by the simplex algorithm rather than on numerical grounds. If the simplex
method encounters ill-conditioned basis matrices, any subsequent tableau
corresponding to a well-conditioned basis can be expected to have numerical
errors reflecting the earlier ill-conditioning. This can lead to choices of enter-
ing or leaving variables such that, with exact arithmetic, the objective does
not decrease monotonically, feasibility is lost, or the basis matrix becomes
singular. Robustness can only be achieved by monitoring errors in the tableau
and, if necessary, recomputing the tableau in a numerically stable manner.
Error checking can be performed by comparing the updated reduced cost
with the value computed directly using the pivotal column and basic costs.
Alternatively, since operations with the inverse of the basis matrix can be

4

performed using appropriate entries of the tableau, calculating the pivotal
column directly and comparing this with the tableau entries would provide
a more extensive but expensive error checking mechanism.

2.2 The revised simplex method

The computational components of the revised simplex method are illustrated
in Figure 1. At the beginning of an iteration, it is assumed that the vector
of reduced costs ĉN and the vector b̂ of current values of the basic variables
are known and that a representation of B−1 is available. The first operation
is CHUZC which scans the (weighted) reduced costs to determine a good
candidate q to enter the basis. The pivotal column âq is formed using the
representation of B−1 in an operation referred to as FTRAN.

The CHUZR operation determines the variable to leave the basis, with
p being used to denote the index of the row in which the leaving variable
occurred, referred to as the pivotal row. The index of the leaving variable
itself is denoted by p′. Once the indices q and p′ have been interchanged
between the sets B and N , a basis change is said to have occurred. The RHS
vector b̂ is then updated to correspond to the increase α = b̂p/âpq in xq.

CHUZC: Scan ĉ
N

for a good candidate q to enter the basis.
FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A.

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the

basis. Let α = b̂p/âpq.

Update b̂ := b̂ − αâq.
BTRAN: Form πT

p = eT
p B−1.

PRICE: Form the pivotal row âT
p = πT

p N .

Update reduced costs ĉT
N

:= ĉT
N
− ĉqâ

T
p .

If {growth in representation of B} then

INVERT: Form a new representation of B−1.
else

UPDATE: Update the representation of B−1 corresponding to the basis
change.

end if

Figure 1: Operations in an iteration of the revised simplex method

Before the next iteration can be performed it is necessary to obtain the
reduced costs and a representation of the new matrix B−1. Although the
reduced costs may be computed directly using the following operations,

πT
B

= cT
B
B−1; ĉT

N
= cT

N
− πT

B
N, (2)

5

it is more efficient computationally to update them by computing the pivotal
row âT

p = eT
p B−1N of the standard simplex tableau. This is obtained in two

steps. First the vector πT
p = eT

p B−1 is formed using the representation of

B−1 in an operation known as BTRAN, and then the vector âT
p = πT

p N of
values in the pivotal row is formed. This sparse matrix-vector product with
N is referred to as PRICE. Once the reduced costs have been updated, the
UPDATE operation modifies the representation of B−1 according to the basis
change. Note that, periodically, it will generally be either more efficient, or
necessary for numerical stability, to find a new representation of B−1 using
the INVERT operation.

When using the Devex strategy [42] the pivotal row computed to up-
date the reduced costs is used to update the Devex weights at no significant
computational cost. To update the exact steepest edge weights requires, in
addition to the pivotal row, a further BTRAN operation to form âT

q B−1 and
a further PRICE operation to form the product of this vector with N . It
is also computationally expensive to initialise steepest edge weights if the
initial basis matrix is not the identity. As a consequence of these overheads,
and since the Devex strategy performs well in terms of reducing the number
of iterations required to solve LP problems, Devex is commonly the default
in efficient sequential implementations of the revised simplex method.

2.3 The revised simplex method with multiple pricing

When in-core memory was severely restricted, a popular variant of the revised
simplex method was to incorporate minor iterations of the standard simplex
method, restricted to a small subset of the variables. This is described by
Orchard-Hays [61] and is referred to as multiple pricing. The major com-
putational steps of this variant, together with those required when using
Devex or steepest edge weights, are illustrated in Figure 2. The features
of these variants, in particular those incorporating Devex or steepest edge,
make exploiting parallelism particularly attractive.

The CHUZC operation scans the (weighted) reduced costs to determine a
set Q of good candidates to enter the basis. The inner loop then applies the
standard simplex method to the LP problem corresponding to the candidates
in Q so requires the corresponding columns âj = B−1aj, j ∈ Q, of the
standard simplex tableau. These columns are formed as a multiple FTRAN.
The matrix formed by the columns âj, j ∈ Q and the corresponding vector
of reduced costs for the candidates j ∈ Q are conveniently denoted by âQ

and ĉQ.
In each minor iteration, CHUZC MI scans the (weighted) reduced costs of

the candidates in Q and selects one, q say, to enter the basis. Once a basis

6

CHUZC: Scan ĉ
N

for a set Q of good candidates to enter the basis.
FTRAN: Form âj = B−1aj, ∀ j ∈ Q, where aj is column j of A.
Loop {minor iterations}

CHUZC_MI: Scan ĉ
Q

for a good candidate q to enter the basis.

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to

leave the basis, where b̂ = B−1b. Let α = b̂p/âpq.

UPDATE_MI: Update Q := Q\{q} and b̂ := b̂ − αâq.
Update the columns âQ and reduced costs ĉ

Q
.

If {Devex} then

Update the Devex weights for the candidates in Q.
else if {steepest edge} then

Update the steepest edge weights for the candidates in Q.
end if

End loop {minor iterations}
For {each basis change} do

If {Devex} then

BTRAN: Form πT
p = eT

p B−1.

PRICE: Form pivotal row âT
p = πT

p N .

Update reduced costs ĉN := ĉN − ĉqâ
T
p and Devex weights.

else if {steepest edge} then

BTRAN: Form πT
p = eT

p B−1.

PRICE: Form pivotal row âT
p = πT

p N .

Update reduced costs ĉN := ĉN − ĉqâ
T
p .

BTRAN: Form w = âT
q B−1.

PRICE: Form wT aj for nonzero components of pivotal row âT
p .

end if

If {growth in factors} then

INVERT: Form a new representation of B−1.
else

UPDATE: Update the representation of B−1 corresponding to the
basis change.

end if

End do

If {Dantzig} then

BTRAN: Form πT
B

= cT
B
B−1.

PRICE: Form ĉT
N

= cT
N
− πT

B
N .

end if

Figure 2: The revised simplex method with multiple pricing and the Dantzig,
Devex and steepest edge pricing strategies

7

change has been determined by CHUZR and the RHS has been updated,
the standard simplex tableau corresponding to the new basis is obtained by
updating the previous tableau in an operation known as UPDATE MI. The
matrix âQ and reduced costs ĉQ are updated by the standard Gauss-Jordan
elimination step. Any Devex weights are updated using row p of the updated
tableau. Any steepest edge weights may be computed directly using the
known tableau columns. Minor iterations are terminated when either Q = ∅
or there are no negative reduced costs for q ∈ Q.

An original advantage of multiple pricing was that the reduced costs were
only computed (from scratch) every major iteration using (2). As a result,
the frequency with which BTRAN and, in particular, PRICE were performed
was reduced significantly.

Leaving aside any advantages due to efficient use of memory, the value
of the revised simplex method with multiple pricing depends on the extent
to which the variables that were good candidates to enter the basis when Q
was formed remain good candidates, or even remain attractive, during the
course of minor iterations. This property is commonly referred to as candi-
date persistence and its effect depends upon both the problem being solved
and the number of candidates chosen when forming Q. Since the entering
variable in the second and subsequent minor iteration is not necessarily the
best candidate according to the original selection criterion, it is possible that
the number of basis changes required to solve the LP problem will increase,
perhaps significantly. If any of the original candidates becomes unattractive
and minor iterations terminate with Q 6= ∅, the FTRAN and update opera-
tions required to form and maintain the tableau column for such a candidate
are wasted.

2.4 The representation of B−1

Forming and updating the explicit inverse matrix of B as a dense data struc-
ture is simple and, if reformed when appropriate, is numerically stable. The
FTRAN and BTRAN operations thus reduce to dense matrix-vector products.
For general large sparse LP problems the computational cost of an iteration
of the revised simplex method with a dense inverse is O(m2). This is compa-
rable with the O(mn) cost of the standard simplex method, and so is of no
greater practical interest. Efficient implementations of the revised simplex
method use a data structure corresponding to a factored representation of
B−1. This representation is based on that obtained by the INVERT opera-
tion for some basis matrix B0. There are various techniques for updating the
factored representation of B−1, the original and simplest being the product
form update of Dantzig and Orchard-Hays [22].

8

2.4.1 Procedures for INVERT

Although there are many techniques for factorising a general unsymmetric
sparse matrix, in the context of the revised simplex method, there is much
commonality of approach. The general aim is to use Gaussian elimination
to obtain a factored representation of B−1, seeking a reconciliation of the
partially conflicting goals of low computational cost, low fill-in and numerical
stability. Using an active submatrix that is, initially, B, Gaussian elimination
determines a sequence of m entries to be used as pivots. Each pivot is
used to eliminate any other entries in the corresponding column. The active
submatrix is then updated by removing the row and column corresponding
to the pivot. No INVERT technique is optimal for all LP problems.

LP basis matrices frequently contain significant numbers of columns of
the identity matrix corresponding to logical variables. These are examples
of singleton columns whose entries can be used as pivots without incurring
any fill-in. It is also likely that there will be singleton rows that can be
used as pivots similarly. As singletons are identified, pivoted on and their
corresponding rows and columns removed from the active submatrix, further
singletons may be created. The use of this triangularisation phase is due
to Orchard-Hays [61] and ends when no further singletons can be identified.
Any remaining rows and columns contain at least two nonzeros and form
what is frequently referred to as the bump.

For certain LP problems, in particular network problems, the triangular-
isation phase only terminates when all rows and columns have been pivoted
on. This corresponds to permuting the rows and columns of B so that it
is triangular, allowing B−1 to be factored without incurring any fill-in. For
many LP problems, the number of rows and columns remaining after tri-
angularisation is very small. In this case, the technique used to factor the
bump is largely immaterial since the computationally intensive part of IN-

VERT is triangularisation and any fill-in is small relative to the number of
nonzeros in the representation of B−1. For other LP problems, the size of
the bump is comparable to that of the matrix, in which case it is important
how the bump is factored. A simple technique due to Tomlin [70] is effective
for all but the most numerically awkward and structurally unfortunate LP
problems, for which a Markowitz [54] strategy such as that used by Suhl and
Suhl [68] may be preferable.

In a typical implementation of the revised simplex method for large sparse
LP problems, B−1

0 is represented as a product of KI elimination operations
derived directly from the nontrivial columns of the matrices L and U in the
LU decomposition of (a row and column permutation of) B0 resulting from
the elimination. This invertible representation allows B−1

0 to be expressed

9

algebraically as B−1
0 =

∏

1

k=KI
E−1

k , where

E−1

k =





























1 −ηk
1

. . .
...

1 −ηk
pk−1

1
−ηk

pk+1 1
...

. . .

−ηk
m 1























































1
. . .

1
µk

1
. . .

1



























. (3)

Within an implementation, the nonzeros in the ‘eta’ vector

ηk = [ηk
1 . . . ηk

pk−1 0 ηk
pk+1 . . . ηk

m]T

are stored as value-index pairs and the data structure {pk, µk, ηk}
KI

k=1 is re-
ferred to as an eta file. Eta vectors associated with the matrices L and U
coming from Gaussian elimination are referred to as L-etas and U -etas re-
spectively. The operations with pk, µk and ηk required when forming E−1

k r

during the standard algorithms for FTRAN and E−T
k r during BTRAN are

illustrated in Figure 3.

if (rpk
6= 0) then

rpk
:= µkrpk

r := r − rpk
ηk

end if

(a) FTRAN

rpk
:= µk(rpk

− rT ηk)

(b) BTRAN

Figure 3: Standard operations in FTRAN and BTRAN

2.4.2 Updating the factored representation of B−1

If EU is used to denote the transformation of B0 corresponding the basis
changes following INVERT, such that B = B0EU , it follows that B−1 may be
expressed as B−1 = E−1

U
B−1

0 . The product form update leaves the factored
form of B−1

0 unaltered and represents E−1

U as a product of pairs of elementary
matrices of the form (3). In the UPDATE operation, the modification of
B−1 corresponding to the basis change is obtained directly from the pivotal
column and is given by pk = p, µk = 1/âpq and ηk = âq − âpqep.

In solvers based on the product form, the representation of the UPDATE

operations can be appended to the eta file following INVERT, resulting in a

10

single homogeneous data structure. However, in this paper, the particular
properties of the INVERT and UPDATE etas and the nature of the operations
with them may be exploited, so FTRAN is viewed as the pair of operations

ãq = B−1

0 aq (I-FTRAN)

followed by
âq = E−1

U
ãq. (U-FTRAN)

Conversely, BTRAN is viewed as

π̃T = rT E−1

U
(U-BTRAN)

followed by
πT = π̃T B−1

0 . (I-BTRAN)

Other procedures for UPDATE modify the factored representation of B−1
0

with the aim of reducing the size of the eta file and achieving greater numer-
ical stability. Whilst they may be more efficient in serial for some problems,
there is a significant value in leaving the factored representation of B−1

0 unal-
tered. Techniques for improving the efficiency of FTRAN and BTRAN, both
in serial and parallel, may require an analysis of the representation of B−1

0

following INVERT that is only a worthwhile investment if many FTRAN and
BTRAN operations are performed with the original representation of B−1

0 .

2.5 Hyper-sparsity

For most sparse LP problems the pivotal column âq has sufficient zero entries
that it is efficient to exploit this when creating the corresponding product
form eta in UPDATE. Similarly, it is often found that the vector πT

p = eT
p B−1

has a significant proportion of zero entries. Thus, if PRICE is performed as a
set of inner products πT

p ai, i ∈ N , there will be many operations with zeros.
In this case it is more efficient to evaluate πT

p N as a linear combination of
the rows of N corresponding to the nonzeros in πp, even allowing for the
overhead of updating a row-wise representation of N following each basis
change.

For some important classes of LP problems, the number of nonzeros in
the vectors âq, πp, and pivotal tableau row âT

p is sufficiently small to be
worth exploiting further. This property, which Hall and McKinnon [40] refer
to as hyper-sparsity, has also been identified by Bixby et al. [13, 14]. For such
problems, Hall and McKinnon [41] have shown that significant performance
improvement can be gained by exploiting hyper-sparsity. This is achieved by
maintaining the indices of the nonzeros in these vectors and exploiting this

11

information when they are both formed and used. Practical experience shows
that the threshold at which it is worth exploiting hyper-sparsity corresponds
to an average density of pivotal columns (and hence the standard simplex
tableau itself) of about 10%. For the basis matrices of LP problems that
exhibit hyper-sparsity the dimension of the bump within INVERT is very
small relative to that of the matrix.

For some LP problems B−1 is typically sparse. This property has been
exploited in some implementations of the revised simplex method based on
an explicit inverse. However, it is general for the number of nonzeros in B−1

(even when freshly formed) to be vastly more than the number of nonzeros in
an efficient factored representation. This property is illustrated, for example,
by Shu [66].

2.6 PRICE when the column/row ratio is large

For LP problems with a large column/row ratio (n � m), the cost of the
revised simplex variants set out in Figures 1 and 2 is dominated by that
of PRICE. However, for such problems, it is typical for a good candidate
to enter the basis to be identified from only a small subset of the columns.
The numerous variants of partial and multiple pricing [61] stem from this
observation. In general, their use leads to a reduction in the solution time
that is significant, and in some cases vast, despite the fact that they are
largely incompatible with the use of edge weight pricing strategies.

3 Practical LP problems

The following overview provides the necessary background on LP problems
for reviewing parallel simplex techniques in Section 5 in terms of their value
as practical LP solvers. In view of some of the LP problems that have been
used to test parallel simplex implementations, a few observations on this
issue are also in order.

A direct consequence of many modelling techniques that generate large
LP problems is structure and sparsity in the constraint matrix. Variable
and constraint sets corresponding to related LP subproblems are linked to
build large single problems. Two important classes of practical LP problems
have block-angular structure. Applications involving decentralised planning
and specific problems such as multicommodity network flow yield row-linked
block-angular LP problems. Stochastic programming problems in applica-
tions such as asset liability management yield column-linked block-angular
LP problems. Depending on the application, the nature of the blocks may

12

range from being fully dense to highly sparse and structured, as in the case
of multicommodity flow problems.

In determining the computational challenge of solving a given LP prob-
lem, structure and sparsity are often more important than problem dimen-
sion. In particular, they have a critical influence on which of the simplex and
interior point methods is the more efficient solution procedure. For problems
that exhibit hyper-sparsity when solved using the revised simplex method, it
is typical for an interior point solver to be several times slower and in some
cases the margin is more than an order of magnitude. For LP problems that
are not (fully) hyper-sparse, an interior point solver is usually faster by sim-
ilar factors. It is not properly understood what model properties determine
whether the LP will exhibit hyper-sparsity, but it is often associated with
a significant amount of network structure. In terms of developing a par-
allel simplex solver of practical value, two challenges emerge. A successful
parallelisation of the revised simplex method when exploiting hyper-sparsity
would lead immediately to a solver of great value, whereas a parallel simplex
solver for problems that are not hyper-sparse may catch up valuable “lost
ground” in the competition with interior point methods. These challenges
are discussed in greater detail in Section 6.

There are a few applications such as the design of filters and wavelet anal-
ysis which yield large dense LP problems. Their existence is used to justify
the practical value of developing parallel implementations of the standard
simplex method and the revised simplex method with dense matrix algebra.
However, the existence of these applications should not be over-played, nor
obscure the fact that the development of methods for the efficient solution
of sparse LP problems remains the overwhelmingly important goal.

As well as sparsity and structure, the degeneracy and numerical properties
of an LP problem are important factors affecting the computational challenge
posed by its solution. Both of these attributes is usually a consequence of
the modelling process. For this reason, randomly generated problems offer a
poor means of testing the performance of an LP solver, with random sparsity
patterns being particularly misleading. Despite the availability of sparse LP
test problems, it is disappointing how many authors give results for randomly
generated problems.

For many years the Netlib set [31] was the standard source of general
sparse LP test problems. Although a few are difficult to solve for numeri-
cal or structural reasons and some are highly degenerate, none can now be
viewed as being large. The original Kennington set [18] contains significantly
larger problems. The test problems used by Mittelmann for benchmarking
commercial LP solvers [59] are large by modern standards and reflect the full
range of attributes that contribute to the computational challenge of solving

13

large sparse practical LP problems.

4 Parallel computing

In classifying the approaches to attempts to parallelise the simplex method,
reference is made to terms and concepts in parallel computing. This section
introduces the necessary terms. A full and more general introduction to
parallel computing is given by Kumar et al. [49].

4.1 Parallel multiprocessors

When classifying parallel multiprocessor architectures, an important distinc-
tion is between distributed memory, when each processor has its own local
memory, and shared memory, when all processors have access to a common
memory. Modern massively parallel machines may consist of a set of dis-
tributed clusters, each of which has a number of processors with shared mem-
ory. On smaller multiprocessors memory may be either purely distributed or
shared.

4.2 Speed-up, scalability and Amdahl’s law

In general, success in parallelisation is measured in terms of speed-up, the
time required to solve a problem with more than one parallel processor com-
pared with the time required using a single processor. The traditional goal
is to achieve a speed-up factor equal to the number of processors. Such
a factor is referred to as linear speed-up and corresponds to a parallel effi-
ciency of 100%. The increase in available cache, and frequently RAM, with
the number of parallel processors occasionally leads to the phenomenon of
super-linear speed-up being observed. Parallel schemes for which, at least in
theory, performance improves linearly and without limit as the number of
processors increases are said to be scalable. If parallelism is not exploited in
all major algorithmic operations then the speed-up is limited, according to
Amdahl’s law [2], by the proportion of the execution time for the non-parallel
operations.

4.3 Programming paradigms and their implementation

There are two principal parallel programming paradigms. If the work of a ma-
jor algorithmic operation may be distributed across a set of processors then

14

data parallelism may be exploited. Conversely, if it is possible to perform sev-
eral major algorithmic operations simultaneously, then task parallelism may
be exploited. In practice, it may be possible to exploit both data parallelism
and task parallelism for a particular (set of) major algorithmic operation(s).

There are two fundamental means of implementing algorithms on par-
allel machines. On distributed memory machines the concept of communi-
cating data between processors using instructions initiated by explicit calls
to message-passing subroutines is natural and immediate. On shared mem-
ory machines the conceptually natural technique is data-parallel program-
ming in which operations are coded as if they were to be executed serially
but translated into a parallel executable by use of an appropriate compiler.
Many message-passing environments are also supported on shared memory
machines and data-parallel programming techniques are also supported on
distributed memory machines.

On distributed memory machines, the overhead of sending messages to
communicate data between processors is determined by both latency and
bandwidth. The former is a time overhead that is independent of the size
of the message and the latter is the rate of communication. For generic
message-passing environments, the latency and bandwidth on a particular
architecture may be significantly higher than for an architecture-dependent
environment that is usually supplied and tuned by the vendor. When an algo-
rithm has a high ratio of communication to computation, growing communi-
cation overhead may outweigh any improvement in potential computational
performance resulting from the use of an increased number of processors.

5 Parallel simplex and simplex-like methods

Past approaches to exploiting parallelism in the simplex method and simplex-
like methods are conveniently classified according to the variant of the sim-
plex method that is considered and the extent to which sparsity is exploited.
This classification is correlated positively with the practical value of the im-
plementation as a means of solving LP problems, and negatively with the
success of the approaches in terms of speed-up.

A few of the parallel schemes discussed below offered good speed-up rel-
ative to efficient serial solvers of their time. However, some techniques that
have been parallelised are only seen as being inefficient in the light of serial
revised simplex techniques that were either little known at the time or de-
veloped subsequently. This is identified below to emphasise that, as a result
of the huge increase in efficiency of serial revised simplex solvers both during
and since the period of research into parallel simplex, the task of developing

15

a practical parallel simplex-based solver has increased enormously.

5.1 Parallel simplex using dense matrix algebra

The dense standard simplex method and the revised simplex method with a
dense explicit inverse have been implemented in parallel many times. The
simple data structures involved and potential for linear speed-up makes them
attractive exercises in parallel computing. However, for solving general large
scale sparse LP problems, the serial inefficiency of these implementations
is such that only with a massive number of parallel processes could they
conceivably compete with a good sparsity-exploiting serial implementation
of the revised simplex method.

Early work on parallelising the simplex method using dense matrix alge-
bra was mainly restricted to discussion of data distribution and communica-
tion schemes, with implementations limited to small numbers of processes on
distributed memory machines. Surveys are given by Zenios [74] and Luo et
al. [53], and examples of other early references to work in this area are due to
Finkel [28], Boffey and Hay [17], Babayev and Mardanov [8] and Agrawal et
al. [1]. A relatively early work which is representative of this era is due to
Stunkel [67] who implemented both the dense standard simplex method and
the revised simplex method with a dense inverse on a 16-processor Intel hy-
percube, achieving a speed-up of between 8 and 12 for small problems from
the Netlib set [31]. Cvetanovic et al. [20] report a speed-up of 12 when solv-
ing two small problems using the standard simplex method, a result that is
notable for being achieved on a 16-processor shared memory machine. Luo
and Reijns [52] obtained speed-ups of more than 12 on 16 transputers when
using the revised simplex method with a dense inverse to solve modest Netlib
problems. However, they developed their parallel scheme on the assumption
that the computational cost of updating the inverse using the expression
B−1 := E−1

k B−1 was O(m3), rather than O(m2) if the structure of E−1

k (3)
is properly exploited, an error which might well explain their high efficiency.

Eckstein et al. [25] parallelised the standard simplex method and the
revised simplex method with a dense inverse on the massively parallel Con-
nection Machine CM-2 and CM-5, incorporating the steepest edge pricing
strategy [34] in their standard simplex implementation. When solving a
range of larger Netlib problems and very dense machine learning problems,
speed-ups of between 1.6 and 1.8 were achieved when doubling the number of
processors. They also presented results which indicated that the performance
of their implementation was generally superior to the Minos 5.4 serial sparse
revised simplex solver, particularly for the denser problems. Thomadakis
and Liu [69] also used steepest edge in their implementation of the standard

16

simplex method on a MasPar MP-1 and MP-2. Solving a range of large,
apparently randomly-generated problems, they achieved a speed-up of up to
three orders of magnitude on the 128×128 processor MP-2. More recently,
theoretical work on parallel implementations of the standard simplex method
with steepest edge, and practical implementation on modest numbers of pro-
cessors, has also been reported by Yarmish [73].

Reports of small-scale parallel implementations of the dense standard
simplex method continue to appear. Very recently, Badr et al. [9] presented
results for an implementation on eight processors, achieving a speed-up of
five when solving small random dense LP problems.

5.2 Parallel simplex using sparse matrix algebra

The real challenge in developing a parallel simplex implementation of general
practical value is to exploit parallelism when using efficient sparse matrix
algebra techniques. Only then could the resulting solver be competitive with
a good serial implementation when solving general large sparse LP problems
using a realistic number of processors.

At the time when the parallelisation of the simplex method was first and
most widely considered, practical parallel factorisation and solution meth-
ods for sparse unsymmetric linear systems were in their infancy. As a con-
sequence, although work on parallelising the simplex method using dense
matrix algebra has generally exploited data parallelism, it was a commonly
held view that when using sparse matrix algebra, there was relatively little
scope for exploiting data parallelism (with the exception of PRICE). This has
led some to conclude that there is no real scope for developing a worthwhile
parallel implementation. However, not only is this (now) open to question:
despite the apparently sequential nature of the computational components
of the revised simplex method, there is scope for exploiting task parallelism.

5.2.1 Sparse standard simplex method

It was observed above that the standard simplex method is generally im-
plemented using dense matrix algebra. However, based on the observation
that fill-in in the tableau can be low, Lentini et al. [50] developed a paral-
lel implementation of the standard simplex method with the tableau stored
as a sparse matrix. In this remarkably novel approach, they incorporated a
Markowitz-like criterion into column and row selection with the aim of reduc-
ing fill-in. When solving medium sized Netlib problems on four transputers
they achieved a speed-up of between 0.5 and 2.7, with a super-linear speed-up
of 5.2 on one problem with a relatively large column-row ratio. They com-

17

pared their results on eight transputers with a sparse revised simplex solver
running on a mainframe (without giving any justification of the validity of
this comparison) and found that their parallel solver was a little faster on
smaller problems but slower on larger problems, particularly when solving
four proprietary problems. Although they describe their results as disap-
pointing, this brave and imaginative approach to parallelising the simplex
method deserves to be better known.

5.2.2 Revised simplex method with a sparse inverse

When the revised simplex method with an explicit inverse is implemented,
dense data structures are generally used to maintain B−1. However, Shu [66]
identified that B−1 is by no means full and considered parallelising the revised
simplex method with B−1 maintained using a sparse data structure. At first
sight, her results using up to 64 processors on a Touchstone Delta, and up
to 16 processors on an Intel iSPC/2 hypercube, appear good. Using the
sparse representation of B−1, as well as the traditional dense representation,
Shu obtained a speed-up of up to 17 on the Touchstone Delta when solving
small to modest Netlib problems. Unfortunately, for all but one of these
problems the average density of B−1 is between 33% and 47% so there is
little difference in the solution times when using a sparse or dense B−1. Of
those problems for which comparative dense-sparse results are given, only in
the case of SHIP08L is the average sparsity (6%) of B−1 worth exploiting: the
serial sparse implementation was twice as fast as the dense implementation
and a speed-up of 16 was achieved, compared with a speed-up of 17 for the
dense case. Results for significantly larger problems, including some of the
CRE and OSA problems from the Kennington test set [18], are also given,
although it is not clear how B−1 was represented. Speed-ups of up to 8 were
achieved on both machines. However, for these larger problems, analysis by
Shu [66] of the computational cost of components of her implementation of
the revised simplex method with a factored inverse indicated that PRICE,
which parallelises easily, constitutes between 65% and 96% of the solution
time. Although these proportions would be lower in the explicit inverse
implementation, they are much higher than would be the case were Shu
to have updated reduced costs and use a row-wise PRICE, exploiting the
moderate to high levels of hyper-sparsity that these problems are now known
to possess [41]. If the results for the problems where PRICE dominates are
excluded, the speed-ups obtained are in low single figures, even when using
up to 64 processors.

18

5.2.3 Revised simplex method with a factored inverse

Efficient serial simplex solvers are based on the revised simplex method with
a factored inverse since the practical LP problems whose solution poses a
computational challenge are large and sparse. For such problems, the supe-
riority of the revised simplex method with a factored inverse over the serial
simplex techniques underlying the parallel schemes reviewed above is over-
whelming. It follows that the only scope for developing a really worthwhile
parallel simplex solver is to identify how the revised simplex method with a
factored inverse may be parallelised.

The natural data parallelism of PRICE has been exploited by most au-
thors. Some have then considered the data parallelism in other computational
components, whereas others have studied the extent to which task parallelism
can be exploited by overlapping operations that are then executed either in
serial or, in the case of PRICE, by exploiting data parallelism.

Theoretical pure data parallel approaches

In an early work, Pfefferkorn and Tomlin [63] discussed how parallelism could
be exploited in each computational component of the revised simplex method.
This purely data-parallel scheme, devised for the ILLIAC IV, was never im-
plemented. After observing the parallelism of a column PRICE operation,
they then considered FTRAN and BTRAN. They identified that if a sequence
E−1

s . . . E−1
r within the factored representation of B−1 has the property that

the pivots are in distinct rows and the eta vectors have no entries in these
rows, then the application of these etas is independent in both FTRAN and
BTRAN. This may be illustrated, without loss of generality, by assuming that
r = 1, s = K and that the pivots are in rows 1, . . ., K, in which case it is
readily established that

E−1

K . . . E−1

1 =
[

I
E I

] [

M
I

]

where Eij = −ηj
K+i and M = diag{µ1, . . . , µK}. The corresponding opera-

tions E−1

K . . . E−1
1 r in FTRAN may now be performed as

rK := MrK; rK′ := rK′ + ErK where r =
[

rK

rK′

]

and, in BTRAN, rT
K := (rT

K + rT
K′E)M . Note that for this technique to

be effective it is necessary for most of the (initial) components of rK to be
nonzero or, equivalently, that most of the etas will have to be applied in
the conventional view of FTRAN and BTRAN. For LP problems exhibiting

19

hyper-sparsity this does not occur so this technique will not be of value. For
other problems, the assumption that such sequences exist to a significant
extent may be unreasonable. Any techniques developed by Pfefferkorn and
Tomlin for exploiting parallelism during INVERT, which is based on that
of Tomlin [70], are either not stated or unclear, possibly referring to the
potential for parallelising the search for singletons in the triangularisation
phase.

Helgason et al. [43] discussed the scope for parallelising FTRAN and
BTRAN based on the quadrant interlocking factorisation of Evans and Hat-
zopoulos [26]. This relatively unknown factorisation scheme corresponds to
forming an LU decomposition of (a row and column permutation of) B in
which, along their diagonals, L has 2×2 blocks and U has 2×2 identity ma-
trices. Thus the entire eta file following INVERT consists of sequences of
the type identified by Pfefferkorn and Tomlin [63], each of length two. It
follows that if r fills in sufficiently fast during FTRAN and BTRAN, there is
the potential for speed-up bounded above by two. Developed with a shared
memory machine in mind, this scheme was never implemented. Whilst the
potential speed up of two is small, an extension of this scheme using larger
blocks could have greater potential.

McKinnon and Plab [57] considered how data parallelism could be ex-
ploited in FTRAN for both dense and sparse right hand sides. They also
investigated how the Markowitz criterion could be modified in order to in-
crease the potential for exploiting data parallelism in subsequent FTRAN

operations [56].
Since the time when the parallelisation of the simplex method was first

and most actively considered, there have been huge efforts and advances in
practical parallel factorisation and solution methods for sparse unsymmetric
linear systems. However, the techniques thus developed have not yet been
applied to the revised simplex method, the scope for which is discussed in
Section 6.

Parallel PRICE for the dual simplex method

Virtually all attempts to exploit parallelism in the simplex method have fo-
cused on the primal simplex method. The dual simplex method, which is
very much more efficient for many single LP problems and is valuable when
solving LP subproblems in branch-and-bound for integer programming, has
computational requirements in each iteration that are very similar to those of
the primal algorithm. There is, however, one important distinction between
the primal and dual simplex methods. In the latter there is no variant cor-
responding to partial pricing in the primal simplex method whereby PRICE

20

is restricted to just a subset of the nonbasic variables. For problems with
very large column/row ratios, the overwhelmingly dominant cost of serial
dual simplex solvers is PRICE. Hence its parallelisation can be expected to
yield a significant improvement in performance over that of efficient serial
dual simplex solvers.

Bixby and Martin [15] investigated the scope for parallelism in the dual
simplex method and chose to parallelise only those operations whose cost
is related to the number of columns in the problem, that is PRICE, the
dual ratio test and update of the dual variables. Much the most expensive
of these is PRICE which, in the context of the dual algorithm, is used to
refer to the matrix-vector product zT N . Each process formed a part of
zT N , with the corresponding columns of N held row-wise so that sparsity
in z can be exploited. The work of Bixby and Martin is also notable since
the underlying dual simplex code being parallelised was CPLEX. Thus any
speed-up was necessarily relative to a state-of-the-art serial solver. They
implemented the dual simplex method on several architectures but, for the
full Netlib set, the overhead of exploiting parallelism exceeded any gain in
performance. This is unsurprising since few problems in the Netlib set have
significantly more columns than rows. Focusing on test problems with very
large column/row ratios, using two Sun workstations connected by ethernet
they achieved very little speed-up. Performance using up to 4 processors on
an IBM SP2 was better, with speed-up ranging from 1 to 3. Switching to
experiments using 2 processors on shared memory machines, little speed-up
was obtained with a Sun S20-502 but better results were obtained with a
Silicon Graphics multiprocessor. In later work reported in this paper [15],
the speed-up achieved using 4 processors of a shared memory SGI Power
challenge was better still, being near linear for most problems with more than
64 columns per row. Strangely this behaviour tailed off for the problems with
most extreme numbers of columns per row.

Task and data parallel revised simplex

The first attempt to exploit task parallelism in the revised simplex method
was reported by Ho and Sundarraj [46]. In addition to the natural data par-
allelism of (column-wise) PRICE, Ho and Sundarraj identified that INVERT

can be overlapped with simplex iterations. Once formed, the representation
of B−1

0 is generally not up-to-date with respect to basis changes that occurred
during INVERT. However, when using the product form update, a represen-
tation of B−1 is readily obtained by incorporating the eta vectors formed
since INVERT was started. By dedicating one processor solely to INVERT,
Ho and Sundarraj observe that the frequency of INVERT should be increased.

21

This can be expected to reduce the cost of FTRAN and BTRAN since the
representation of B−1 will involve fewer eta vectors. Whilst they claim that
having fewer eta vectors will have advantages in terms of numerical stability,
they do not discuss the potential for numerical instability identified earlier by
Hall and McKinnon [37]. As can be expected for only a partially parallelised
algorithm, the practical performance of Ho and Sundarraj’s implementation,
on an Intel iPSC/2 and Sequent Balance 8000, is limited in accordance with
Amdahl’s law. On a set of small Netlib and proprietary problems, they report
an average saving of 33% over the serial solution time.

To date, there have only been four implementations of the revised simplex
method that have attempted to exploit parallelism anything like fully: one by
Shu [66], one by Wunderling [71, 72] and two by Hall and McKinnon [38, 39].
The most ambitious of the parallel simplex implementations developed by
Shu [66] remains the only pure data parallel implementation of the revised
simplex method. It was based a parallel triangularisation phase for INVERT,
a distributed sparse LU decomposition of the basis matrix for parallel FTRAN

and BTRAN, as well as parallel PRICE. She did not parallelise the application
of the product form update etas, claiming wrongly that its parallelisation is
inconceivable. Unfortunately no speed-up was achieved. For one problem
the solution time using two processors was the same as the serial time and,
otherwise, the parallel solution time deteriorated rapidly.

P2P1UTP2P1FTRAN

P1

FTRAN2

P2BTRAN StEdUTP2

P2

UT P1 P2

3 FTRAN FTRAN P1 UT P1 P2 UT P1 P2

UT0 C FTRAN FTRAN R BTRAN P1 P2 UT R BTRAN P1 P2 R BTRAN P1 P2 INVERT

1 FTRAN FTRAN BTRAN StEd P1 P2 UT BTRAN StEd P1

C: CHUZC R: CHUZR P1: Update PRICE P2: Steepest edge PRICE

Figure 4: Wunderling’s parallel revised simplex with steepest edge

Wunderling’s variant of the revised simplex method was based on mul-
tiple pricing with steepest edge weights. The theoretical task parallelism is
conveniently illustrated by the Gantt chart in Figure 4. Wunderling did not
perform explicit multiple pricing since all steepest edge weights were updated
after each basis change. However, since the remaining tableau columns for
attractive candidates were updated, the variant was equivalent to multiple
pricing. Since INVERT was not overlapped with other calculations, the im-
plementation was not quite fully parallel. If this serial operation is excluded
then the implementation is fully parallel for two processors so long as there is

22

not a significant load imbalance between the two BTRAN operations. How-
ever, a good simplex solver will exploit the fact that the right hand side of
the standard ‘update’ BTRAN, πT

p = eT
p B−1, contains only one nonzero (in

a pivotal row), whereas it may not be worth exploiting any sparsity in the
right hand side of the additional steepest edge BTRAN, w = âT

q B−1. Thus
the parallelism of the BTRAN operations may be illusory.

It is unfortunate that the only published account of Wunderling’s very
interesting work on parallel (and serial) simplex is his PhD Thesis [71] which
is written in German. At a workshop presentation [72], he described his par-
allel simplex implementation and gave limited results. Wunderling’s parallel
scheme was implemented on a 2-processor Sun 20 and a Cray T3D using
modules of Soplex, his efficient public-domain simplex solver. On general LP
problems any performance improvement that was achieved was minimal and
significant speed-up was only achieved for problems with large column/row
ratios.

The first of Hall and McKinnon’s two parallel revised simplex schemes
was ASYNPLEX [39]. This corresponds to a variant of the revised sim-
plex method in which reduced costs are computed directly (as ĉT

N
= cT

N
−

πT
B
cT

B
B−1N) rather than being updated and Dantzig pricing is used. Ideally,

one processor is devoted to INVERT and the remaining processors perform
simplex iterations. The theoretical operations of these processors are illus-
trated by the Gantt chart in Figure 5. If a single path through the feasible
region is to be followed then, clearly, two processors cannot perform basis
changes simultaneously. An additional processor was introduced to act as
‘basis change manager’ to ensure that a processor is only allowed to start
CHUZR if its basis is up-to-date and no other processor has been allowed
to start CHUZR at the current basis. Although each processor has reduced
costs, more up-to-date reduced costs may be known on other processors.
Thus, once a processor has computed the full set of reduced costs, a small
set of good candidates are communicated to a further processor. This acts as
a ‘column selection manager’ and responds to requests made prior to FTRAN

by the iteration processors, by communicating the best (known) candidate
to enter the basis. Note that, due to the fact that basis changes were deter-
mined during the course of calculating reduced costs, column selection was
generally performed using out-of-date reduced costs. These reduced costs be-
came further out-of-date as a consequence of basis changes occurring during
FTRAN.

ASYNPLEX was implemented on a Cray T3D using modules of Hall’s
highly efficient revised simplex solver and tested using four modest but rep-
resentative Netlib test problems. Using between eight and twelve iteration
processors, the speed with which simplex iterations were performed was in-

23

BTRANRFTRANCPRICEBTRAN

PRICE

RFTRANCPRICEBTRAN3

FTRAN4 F R BTRAN PRICE C R BTRAN PRICE C FTRAN R

PRICE

0 INVERT INVERT

1 C FTRAN R BTRAN PRICE C FTRAN R BTRAN C F

2 PRICE C FTRAN R BTRAN PRICE C FTRAN R BTRAN

C: CHUZC R: CHUZR

Figure 5: ASYNPLEX

creased by a factor of about five in all cases. However, the increase in the
number of iterations required to solve the problem (resulting from the use of
out-of-date reduced costs) led to the speed-up in solution time ranging from
2.4 to 4.8. Although the speed-up obtained was felt to be satisfactory, it was
limited by various factors. A further consequence of limited candidate persis-
tence was the time wasted on candidates which, upon completion of FTRAN,
were found to be unattractive. Efficiency was also reduced by the overhead of
communicating the pivotal column to all other iteration processors, together
with the duplicated work of bringing the eta file up-to-date on all processors.
Numerical instability, due to the need to re-use eta vectors from the previous
representation of B−1, was observed for many test problems.

Hall and McKinnon’s second parallel scheme was PARSMI [38]. This was
developed in an attempt to address the deficiencies of ASYNPLEX [39]. In
order to make realistic comparisons with good serial solvers, PARSMI up-
dates the reduced costs and uses Devex pricing. To reduce the communication
overheads, each processor is associated with one of the major computational
components of the revised simplex method, with a variant of multiple pricing
being used to increase the scope for parallelism. The operations performed
on processors of different types and the inter-processor communications are
illustrated in Figure 6, where MI represents the processors performing minor
iterations and MI CT is the single processor coordinating the MI processors.

The FTRAN processors receive sets of attractive candidates to enter the
basis from the PRICE processors and apply the INVERT etas. The resulting
partially completed tableau columns are distributed over the MI processors
where the update etas are applied. The MI CT processor determines the
best candidate for which the up-to-date tableau column is known and coor-
dinates CHUZR, which is distributed over the MI processes. Once the pivotal
row has been determined, the MI CT processor applies the update etas to
start BTRAN. This is done very efficiently using the technique described by

24

=a~ a
q’q’

B 1−

O(n)

O(1)

p

O(n)

O(1)

O(10n)

O(10n)PRICE
INVERT MI_CT MI

FTRAN

BTRAN

O(1)

O(P)

Form

O(n)

π

p,q

CHUZR

q’ a~
q’

−

â
q

1−EUa
q

~=c T̂
N c

~

B 1−

B 1−

Tπ Tπ~ B 1−=
π

T

π~ 1−EU=
ScanĉQ

a
q

~

B 1

T

^
N

Tπ N:= −ĉ
q

ĉNScan
T
p

e

Figure 6: Operations and inter-processor communications for PARSMI

Hall and McKinnon [41]. The resulting partially formed vector πp is then
communicated to a BTRAN processor which applies the INVERT etas before
distributing the completed vector πp across the PRICE processors. After a
distributed PRICE operation, the PRICE processors update the reduced costs
and Devex weights before determining sets of candidates and communicating
them to the FTRAN processors. One or more INVERT processors factorise the
basis matrix serially and communicate the result to the FTRAN and BTRAN

processors. Although presented sequentially, operations are overlapped as
much as possible. For a six-processor implementation, the operation of the
scheme is illustrated in Figure 7. Note that this Gantt chart was created
from actual data when applying the T3D implementation of PARSMI to the
LP test problem 25FV47.

As with ASYNPLEX, the implementation of PARSMI was a highly com-
plex programming task, magnified by fact that communication times are not
deterministic and the order of arrival of messages determined the operation
of the program. Programming difficulties, together with numerical instability
(for the same reason as with ASYNPLEX) meant that the implementation
was never reliable. In the very limited results that were obtained on modest
Netlib problems, using eight processors the speed-up in iteration speed of
between 2.2 and 2.4 was eroded by the consequences of limited candidate
persistence to yield a speed-up in solution time of between 1.7 and 1.9.

25

F Unpack INVERT

Unpack INVERT

3.008003.002002.99600

R

2.990002.984002.97800

RU_FTR

BTRAN

INVERT

FTRAN

PRICE

BTRAN

MI

MI_CT

U_FTR

BTRAN BTRAN

U_FTR U_FTR

PRICE

INVERT SI INVERT

BTRAN

P C PRICE C C PRICE C

F F F F F F F F F F

R R R

C: CHUZC F: I-FTRAN U FTR: U-FTRAN R: CHUZR SI: Send INVERT

Figure 7: Real processor activity and illustrative communication for PARSMI

5.2.4 The simplex method on supercomputers

From the results quoted by Beasley [11] in a review of experience with the
simplex method on Cray supercomputers, it may be concluded that these ma-
chines were used principally to study algorithmic performance when solving
large LP problems, rather than to investigate the scope for exploiting their
vector arithmetic facilities. When the latter was not used, the performance
decreased by only a few tens of percent.

The most notable attempt to exploit a vector facility is reported by For-
rest and Tomlin [30]. They vectorised (column-wise) PRICE by identifying
those sets of columns of the constraint matrix for which the numbers of nonze-
ros are equal and at least 20, and storing the values and row indices in dense
rectangular arrays. Using a set of moderate test problems, some of which
were drawn from the Netlib set, they achieved speed-ups that are generally
modest (less than 2), although for one problem the speed-up of 3.8 compares
well with the figure of 4.5 which is the maximum attainable on the particular
architecture. They did not consider the consequences of π being sparse, in
which case their vectorised PRICE would involve many operations with zero.
For a sparse π, a row-oriented PRICE avoids operations with zero but, since
the numbers of nonzeros in N change from one iteration to another, it is hard
to imagine their vectorisation technique being of value. Forrest and Tomlin
go on to consider the extent to which a vector processor can be exploited
in FTRAN, BTRAN and UPDATE. In their serial revised simplex implemen-
tation, the latter has a significant computational overhead since it modifies
the factors obtained by INVERT but, typically, yields a significantly smaller

26

eta file than would be obtained with the product form update. Estimated
speed-ups of 1.5 and 2.0 for FTRAN, BTRAN and UPDATE are reported for
two illustrative problems. As for other computational components, Forrest
and Tomlin observe that when packing the pivotal column prior to CHUZR

in ‘easy’ problems (where the pivotal column contains a large proportion
of zeros) much time is spent identifying nonzeros and identify that this op-
eration vectorises well. In modern revised simplex solvers, exploiting such
hyper-sparsity during FTRAN leads to list of indices of (potential) nonzeros
being known so the full packing operation is unnecessary. The overall ef-
fect of exploiting a vector processor is a general speed-up of up to 4, with a
speed-up of 12 for one problem, relative to a (then) state-of-the-art revised
simplex solver.

5.2.5 Following parallel paths

An alternative approach to exploiting parallel computation when using the
simplex method is to allow each processor to follow different paths through
the feasible region and, periodically, determine which processor has made the
best progress and then repeat the process from the corresponding basis. The
simplest possible scheme of this kind would correspond to a parallelisation
of the maximum improvement rule for column selection. This is a criterion
in which CHUZR is performed for all attractive candidates to enter the basis
and the basis change performed is that which yields the greatest reduction
in the objective. Unless it is performed within the context of the standard
simplex tableau, as a variant for serial computation it is prohibitively expen-
sive. However it parallelises naturally. A more practical approach that has
been considered is to distribute the best candidates, one to each processor,
and allow the simplex method to perform a fixed number of basis changes
before determining the process that has made the best progress. Whilst this
is simple to implement and has minimal communication overhead, it cannot
be expected to yield worthwhile speed-up. One argument why is that, if the
simplex method starts from a basis of logical variables and the optimal basis
consists of structural variables, then the number of simplex iterations that
must be performed is bounded below by m. Since efficient serial simplex
solvers will, typically, determine the optimal basis in a small multiple of m
iterations, this is an immediate bound on the speed-up that can be achieved.
For some LP problems, typically those that are highly degenerate, the num-
ber of iterations required even by good solvers is a significant multiple of
m. However, even for such problems, it is doubtful that the number of iter-
ations required would be reduced sufficiently by any parallel path-following
implementation.

27

Another approach to following parallel paths has been investigated by
Maros and Mitra [55]. Rather than using the same variant of the revised
simplex method to follow paths, Maros and Mitra’s strategy is to start from
different edges at a common vertex and use eight different pricing strategies,
including Dantzig, Devex, multiple pricing and several variants of partial
pricing. They refer to this as a parallel mixed strategy. Although Devex
pricing is commonly used as a default strategy, it is well known that for
certain LP problems it is far from being optimal. This is particularly so for
problems with large column/row ratios and Maros and Mitra give evidence of
this. Further, it is also widely acknowledged that, during the course of solving
a given LP problem, the best pricing strategy is likely to change. Early in the
solution process, when the basis matrix contains a high proportion of logical
variables, Devex may be significantly less effective than partial or multiple
pricing. Many efficient serial simplex solvers have a run-time pricing strategy
that first decides whether the column/row ratio is such that partial pricing
it is expected to be more efficient and, if not, starts with some cheap pricing
strategy before switching to a full pricing strategy such as Devex.

Maros and Mitra implemented their mixed strategy on a twelve processor
Parsytec CC-12, using an extension of their efficient FortMP simplex solver
and tested it on fifteen of the largest Netlib problems. Note that the default
pricing strategy for FortMP is dynamic cyclic partial multiple pricing. The
mixed strategy is generally more efficient than the best single serial strat-
egy (by an average factor of 1.19), and always more efficient than both the
FortMP default strategy (by an average factor of 1.69) and Devex (by an
average factor of 1.56). Whilst the the mixed strategy was more than three
times faster than both the default strategy and Devex (for a different single
LP problem in both cases), the average speed-up is modest. It would be
interesting to compare the performance of the mixed strategy with a serial
run-time mixed strategy such as that described above.

5.3 Parallelising the network simplex method

When the simplex method is applied to a minimum cost network flow prob-
lem, exploiting its structure yields the network simplex method. Although
it exploits sparsity and structure very efficiently, the data structures and al-
gorithmic requirements for implementing the network simplex method are
much simpler than those when implementing the revised simplex method for
general LP problems. The parallelisation of the network simplex method has
been considered by several authors, including Chang et al. [19], Peters [62]
and Barr and Hickman [10]. The latter two are of interest since they identify
the value of overlapping computational components, subject to sufficient co-

28

ordination to ensure that the simplex method follows a single path through
the feasible region. As such they predate the task-parallel approaches to
the revised simplex method of Hall and McKinnon [38, 39] and Wunder-
ling [71, 72].

5.4 Parallelising simplex-like methods

The parallelisation of other simplex-like methods for solving LP problems has
also been studied. These techniques offer more immediate scope for paralleli-
sation but, in serial, are generally uncompetitive with a good implementation
of the revised simplex method. They are also frequently only of relevance
to LP problems which possess a particular, but common, structure. This is
either inherent, as a consequence of the underlying model, or identified by
analysing the constraint matrix.

In the technique of Dantzig-Wolfe decomposition [21] for row-linked block-
angular problems, the requirement to solve a (possibly large) number of in-
dependent smaller LP subproblems is a natural source of parallelism. This
was identified by Ho et al. [45] and load-balancing issues were addressed by
Gnanendran and Ho [33]. Boduroglu [16] parallelised a special case of the
little-known technique of Kaul [47] for block-angular problems and obtained
some impressive results, even beating a world class revised simplex solver on
several standard test problems. The solution of problems with block-angular
structure using parallel bundle methods is described by Medhi [58].

For column-linked block-angular LP problems, Benders decomposition [12]
may be used. The requirement to solve (nested) sets of independent LP
problems has been exploited in a number of parallel implementations, for
example [24, 44, 60]. Rosen and Mayer [65] describe a method for row-linked
block-angular problems in which, after forming the dual problem, a procedure
similar to Benders decomposition yields a set of independent LP subproblems
to be solved in parallel.

Work on identifying block-angular structure in general LP problems was
reported by Pinar and Aykanat [64] and more recent work is reported by
Aykanat et al. [7]. Ferris and Horn [27] discuss how block-angular structure
may be identified in general LP problems prior to applying parallel bundle
methods, for which they achieved an efficiency of approximately 90% when
using 32 processors of a Thinking Machines CM-5.

Klabjan et al. [48] describe a primal-dual simplex algorithm in which
several primal subproblems are solved in parallel. Their algorithm is only ef-
ficient for problems with very high column/row ratios and, for such problems,
they achieve a speed-up of up to 4 on a cluster of 16 PCs.

29

5.5 Summary

Attempts to exploit parallelism in the simplex method have been associated
with many of the leading figures in the development of efficient serial tech-
niques for the revised simplex method. That the success relative to good
serial implementations has been limited is a measure of the difficulty of the
task.

None of the attempts to exploit parallelism in the simplex method has,
for general large sparse LP problems, offered significantly improved perfor-
mance over a good serial implementation of the revised simplex method.
Parallelising the standard or revised simplex method with dense matrix al-
gebra is uncompetitive unless a massive number of processors is used. With
sparse matrix algebra, parallelising just the PRICE operation, even for LP
problems with a high column/row ratio, may still be uncompetitive with
the revised simplex method if the latter uses partial pricing. For problems
with a high column/row ratio, if the dual simplex method is preferred to the
revised simplex method with partial pricing, then parallelising PRICE has
yielded a worthwhile performance improvement. The success of attempts to
exploit task parallelism has been limited by lack of candidate persistence, nu-
merical instability and the communication overheads of distributed memory
multiprocessors.

6 Directions for the future

The period when most of the work on parallelising the simplex method took
place ended in the late 1990s. Since then, a number of developments have
taken place that affect the scope for future work in this area and its expected
value.

The identification and exploitation of hyper-sparsity within the revised
simplex method has led to huge improvements in the performance of serial
revised simplex solvers. For hyper-sparse LP problems, the revised simplex
method is preferable to interior point methods so any parallel implementation
that offers significant speed-up over a good serial solver will yield advances
at the cutting edge of LP solution techniques.

An important area of computational linear algebra that has seen much
activity over the past ten years has been solution techniques for general
unsymmetric sparse linear systems. For problems with a significant bump
during INVERT, the lack of techniques for parallelising its factorisation had
led to INVERT being viewed as inherently serial. This is no longer the case.
Similarly, techniques for exploiting parallelism when applying a sparse fac-

30

tored inverse, even with a sparse right-hand-side, have also been developed
and it can be expected that they will facilitate the parallelisation of FTRAN

and BTRAN.
Since the late 1990s, parallel computing hardware has developed greatly.

There have been advances in the availability of shared memory multiproces-
sors, from desktop machines with small numbers of processors to large high
performance computing resources. Massive distributed memory machines
have ever larger numbers of processors and total memory.

Against the backdrop of these events, there have been no significant ad-
vances in parallelising the simplex method. The scope for exploiting these
developments, as well as other novel research avenues, is explored below.

6.1 The standard simplex method

Although the parallelisation of the standard simplex method with dense ma-
trix algebra has been fully explored on modest numbers of processors and has
been implemented successfully using large numbers of processors, exploiting
modern massively parallel resources offers several major challenges. Imple-
mentations must be robust, offer very high scalability and address the issue
of numerical stability. Techniques used by efficient serial simplex solvers to
reduce the number of iterations required to solve a given LP problem should
also be incorporated (as has been done in several previous implementations).
For several reasons, developing a massively parallel implementation of the
standard simplex method with these properties and using dense matrix alge-
bra would be worthwhile as an exercise in parallel programming. However, as
established in the analysis below, for most practical LP problems, alternative
methods of solution would be very much more efficient.

For large LP test problems (with mn ≈ 1011), to store the standard
simplex tableau as a full array would require of the order of 1TB of memory.
This is available on many of the world’s current top 500 computer systems
and, at their maximum practical performance, about 10% of them would be
capable of performing 100 iterations per second if each tableau entry were
updated every iteration. Since the number of iterations required to solve
LP problems of this size would be of order 105, the total solution time for
most large sparse test problems would be no better than a good serial revised
simplex implementation. Very few of the world’s top 500 computer systems
would be able to store the tableau as a full array for problems with ten
times as many variables and constraints in order to solve LP problems that,
if sparse, could still be expected to be solved by a good serial solver. Thus
a massively parallel implementation of the standard simplex method would
not be expected to offer the opportunity to solve larger sparse problems than

31

a serial revised simplex solver.
There are a few classes of slightly smaller sparse LP problems for which

fill-in makes the memory requirement of serial revised simplex and interior
point solvers prohibitive. For these problems, as well as large dense LP
problems, a robust and numerically stabilised parallel implementation of the
standard simplex method would be of value. Note that a dense interior point
solver would have a practical computational cost of O((m3 + m2n) log n) so
cannot be expected to compete with the O(m2n + mn2) cost of the dense
standard simplex method unless n � m.

For hyper-sparse LP problems, the proportion of nonzeros in standard
simplex tableau columns ranges from an average of 10% to several orders of
magnitude less. If the tableau update does not test whether the multiplier of
the pivotal row is zero then an overwhelming majority of the floating point
operations add zero so should be avoided. While skipping the update if the
multiplier is zero leads to an immediate and significant serial performance
improvement, for a parallel implementation it may have an impact on scala-
bility. An investigation of this and its impact on data distribution strategies
would be interesting.

As identified earlier, the work of Lentini et al. [50] represents the only
study of the parallel sparse standard simplex method. For the LP problems
they considered, the average density of the optimal tableau was found to be
about 10%. For large problems, such a density would make the serial sparse
standard simplex method prohibitively expensive and only with a massive
number of parallel processes could it conceivably compete with a good serial
revised simplex solver. For LP problems that exhibit the greatest degree of
hyper-sparsity, if they are large the average tableau density still corresponds
to a huge memory overhead. However, developing a massively parallel imple-
mentation of the sparse standard simplex method would represent a worth-
while challenge. It would facilitate further study of hyper-sparsity and may
allow larger hyper-sparse LP problems to be solved than would be possible
on a serial machine.

A massively parallel implementation of the standard simplex method
would have to be robust with respect to hardware faults. This could be
achieved using the techniques described in Section 2.1 to address numeri-
cally stability.

6.2 Kaul’s method for block-angular LP problems

Although parallel Dantzig-Wolfe decomposition for row-linked block-angular
LP problems has been investigated, Kaul’s method [47] appears to be a very
much more attractive means of developing a parallel solver for such problems.

32

Indeed, as reported in Section 5.4, impressive results have been obtained for
a special case of block-angular problems. Kaul’s method corresponds to the
revised simplex method, with the structure of the LP problem exploited by
expressing the inverse of the basis matrix in terms of the inverses of sub-
matrices corresponding to the blocks in the LP problem. The structure of
the problem is also exploited in PRICE which is performed as a set of in-
dependent sparse matrix vector products. Efficient pricing techniques such
as Devex and approximate steepest edge are readily incorporated, setting
it apart from Dantzig-Wolfe. A parallel implementation of Kaul’s method
for general row-linked block-angular problems, with an efficient approximate
edge weight pricing strategy and sparse factored inverses of the basis ma-
trix submatrices, offers considerable scope for the highly efficient solution of
practical large block-angular LP problems.

6.3 Primal revised simplex method for problems with
a large column/row ratio

Techniques of partial pricing mean that parallelising the computationally
dominant full PRICE operation for problems with a large column/row ratio
is not sufficient to achieve worthwhile speed-up. However, for such problems,
when edge weight pricing strategies are particularly important in terms of re-
ducing the number of simplex iterations, excessive parallel resources may not
be required for a solver with full parallel PRICE to compete with an efficient
revised simplex solver using partial or multiple pricing. No such comparisons
have been made. If the parallel resources were also used to update and apply
a dense representation of B−1 then there may be a subclass of problems with
a large column/row ratio which compete with a serial revised simplex solver
with a sparse factored inverse and partial or multiple pricing.

6.4 Revised simplex with a factored inverse

To date, the brave but unsuccessful work by Shu [66] represents the only real
attempt to a develop anything like a full data-parallel implementation of the
revised simplex method using a sparse factored inverse. Following the major
advances since this time, the state of the art in parallel techniques for the
factorisation of general sparse matrices is represented by, for example, Su-
perLU from Berkeley [23, 51] and MUMPS from Lyon-Toulouse [5, 6]. Many
features distinguish the factorisation and linear system solution requirements
in the revised simplex method. The fact that the matrix being factored is
often highly reducible can be exploited in many ways. It has been shown by
Amestoy et al. [4, 3] that general preprocessing and reordering techniques

33

can combine numerical accuracy and reducibility detection in the context of
general sparse solvers. For hyper-sparse LP problems, the overwhelming cost
of INVERT is the triangularisation phase and results reported by Hall [36]
using a serial simulation of a parallel triangularisation scheme are very en-
couraging. With the fruits of these advances as yet un-tapped in the context
of the revised simplex method, the time is right for more work in this area.

The task parallel scheme SYNPLEX [35] is variant of PARSMI developed
by Hall that is numerically stable. This has been achieved by overlapping IN-

VERT with multiple BTRAN, multiple PRICE, CHUZC and multiple FTRAN.
SYNPLEX has the added advantage of being algorithmically independent of
both the number of processors and the time required to transmit data be-
tween them. A prototype implementation by Hall on a shared memory Sun
Fire E15k has achieved a speed-up of between 1.8 and 3.0 when using eight
processors. The limitations due to lack of candidate persistence have been
reduced but cannot be eliminated. Load balancing problems when overlap-
ping INVERT have motivated, and should be alleviated by, the development
of a parallel INVERT.

7 Conclusions

Despite its value in both the academic and commercial worlds, there has been
no parallelisation of the simplex method that offers significantly improved
performance over a good serial implementation of the revised simplex method
for general large scale LP problems. The successes in terms of speed-up
typically correspond to parallelisation of implementations that are partly or
wholly inefficient in serial.

Attention has mainly been directed at inefficient simplex and simplex-like
techniques in which exploiting parallelism is relatively straightforward. There
have been only a few discussions of schemes by which parallelism might be
exploited by (variants of) the revised simplex method with a factored inverse.
Fewer still of these schemes have been implemented and none has met with
any real success when applied to a full range of LP problems.

Despite the large amount of work reviewed in Section 5, the reference
list in this paper is not exhaustive. The five articles that stand out as best
representing the state of the art are those by Bixby and Martin [15], Eck-
stein et al. [25], Forrest and Tomlin [30], Lentini et al. [50] and Shu [66] and,
together with this paper, should be viewed as required reading for anyone
contemplating the exploitation of parallelism in the simplex method.

In Section 6, several promising avenues for future work are identified.
Without underestimating the challenge of implementing them, the rewards

34

for any success are now all the greater since the identification of hyper-
sparsity has given the revised simplex method renewed prominence. The
time is ripe for further work on developing parallel simplex method imple-
mentations of practical value.

The author would like to thank Patrick Amestoy for his insight into the
developments in techniques for parallel factorisation and solution techniques
for general unsymmetric sparse linear systems, and the potential for their
application to the revised simplex method. Comments and suggestions from
the referees have also been very valuable and have improved both the content
and focus of the paper.

References

[1] A. Agrawal, G. E. Blelloch, R. L. Krawitz, and C. A. Phillips. Four
vector-matrix primitives. In ACM Symposium on Parallel Algorithms
and Architectures, pages 292–302, 1989.

[2] G. M. Amdahl. Validity of the single-processor approach to achieving
large scale computing capabilities. In AFIPS Conference Proceedings,
volume 30, pages 483–485. AFIPS Press, Reston, Va., 1967.

[3] P. Amestoy, X. S. Li, and E. G. Ng. Diagonal Markowitz scheme with
local symmetrization. SIAM Journal on Matrix Analysis and Applica-
tions, 29(1):228–244, 2007.

[4] P. Amestoy, S. Pralet, and X. S. Li. Unsymmetric orderings using a
constrained Markowitz scheme. SIAM Journal on Matrix Analysis and
Applications, 29(1):302–327, 2007.

[5] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully
asynchronous multifrontal solver using distributed dynamic scheduling.
SIAM Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.

[6] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel
distributed symmetric and unsymmetric solvers. Comput. Methods Appl.
Mech. Eng., 184:501–520, 2000.

[7] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek. Permuting sparse rect-
angular matrices into block-diagonal form. SIAM Journal on Scientific
Computing, 25(6):1860–1879, 2004.

35

[8] D. A. Babaev and S. S. Mardanov. A parallel algorithm for solving linear
programming problems. Zhurnal Vychislitel’noi Matematiki i Matem-
aticheskoi Fiziki, 31(1):86–95, 1991.

[9] E.-S. Badr, M. Moussa, K. Papparrizos, N. Samaras, and A. Sifaleras.
Some computational results on MPI parallel implementations of dense
simplex method. Transactions on Engineering, Computing and Tech-
nology, 17:228–231, December 2006.

[10] R. S. Barr and B. L. Hickman. Parallel simplex for large pure network
problems: Computational testing and sources of speedup. Operations
Research, 42(1):65–80, 1994.

[11] J. E. Beasley. Linear programming on Cray supercomputers. Journal of
the Operatrional Research Society, 41(2):133–139, 1990.

[12] J. F. Benders. Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik, 4:238–252, 1962.

[13] R. E. Bixby. Solving real-world linear programs: A decade and more of
progress. Operations Research, 50(1):3–15, 2002.

[14] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP:
Theory and practice closing the gap. In M. J. D. Powell and S. Scholtes,
editors, System Modelling and Optimization: Methods, Theory and Ap-
plications, pages 19–49. Kluwer, The Netherlands, 2000.

[15] R. E. Bixby and A. Martin. Parallelizing the dual simplex method.
INFORMS Journal on Computing, 12:45–56, 2000.

[16] İ. İ. Bodurog̃lu. Scalable Massively Parallel Simplex Algorithms for
Block-Structured Linear Programs. PhD thesis, GSAS, Columbia Uni-
versity, New York, NY, 1997.

[17] T. B. Boffey and R. Hay. Implementing parallel simplex algorithms. In
CONPAR 88, pages 169–176, Cambridge, UK, 1989. Cambridge Univer-
sity Press.

[18] W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, and S. J. Wich-
mann. An empirical evaluation of the KORBX algorithms for military
airlift applications. Operations Research, 38(2):240–248, 1990.

[19] M. D. Chang, M. Engquist, R. Finkel, and R. R. Meyer. A paral-
lel algorithm for generalized networks. Annals of Operations Research,
14:125–145, 1988.

36

[20] Z. Cvetanovic, E. G. Freedman, and C. Nofsinger. Efficient decomposi-
tion and performance of parallel PDE, FFT, Monte-Carlo simulations,
simplex, and sparse solvers. Journal of Supercomputing, 5:19–38, 1991.

[21] G. B. Dantzig. The decomposition principle for linear programs. Oper-
ations Research, 8:101–111, 1960.

[22] G. B. Dantzig and W. Orchard-Hays. The product form for the inverse
in the simplex method. Math. Comp., 8:64–67, 1954.

[23] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H.
Liu. A supernodal approach to sparse partial pivoting. SIAM Journal
on Matrix Analysis and Applications, 20(3):720–755, 1999.

[24] M. A. H. Dempster and R. T. Thompson. Parallelization and aggrega-
tion of nested Benders decomposition. Annals of Operations Research,
81:163–187, 1998.

[25] J. Eckstein, İ. İ. Bodurog̃lu, L. Polymenakos, and D. Goldfarb. Data-
parallel implementations of dense simplex methods on the Connection
Machine CM-2. ORSA Journal on Computing, 7(4):402–416, 1995.

[26] D. J. Evans and M. Hatzopoulos. A parallel linear system solver. Inter-
national Journal of Computer Mathematics, 7:227–238, 1979.

[27] M. C. Ferris and J. D. Horn. Partitioning mathematical programs for
parallel solution. Mathematical Programming, 80:35–61, 1998.

[28] R. A. Finkel. Large-grain parallelism—three case studies. In L. H.
Jamieson, D. Gannon, and R. J. Douglas, editors, The Characteristics
of Parallel Algorithms, pages 21–63. MIT Press, Cambridge, MA, 1987.

[29] J. J. Forrest and D. Goldfarb. Steepset-edge simplex algorithms for
linear programming. Mathematical Programming, 57:341–374, 1992.

[30] J. J. H. Forrest and J. A. Tomlin. Vector processing in the simplex
and interior methods for linear programming. Annals of Operations
Research, 22:71–100, 1990.

[31] D. M. Gay. Electronic mail distribution of linear programming test
problems. Mathematical Programming Society COAL Newsletter, 13:10–
12, 1985.

37

[32] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A practical
anti-cycling procedure for linearly constrained optimization. Mathemat-
ical Programming, 45:437–474, 1989.

[33] S. K. Gnanendran and J. K. Ho. Load balancing in the parallel opti-
mization of block-angular linear programs. Mathematical Programming,
62:41–67, 1993.

[34] D. Goldfarb and J. K. Reid. A practical steepest-edge simplex algorithm.
Mathematical Programming, 12:361–371, 1977.

[35] J. A. J. Hall. SYNPLEX, a task-parallel scheme for the revised simplex
method. Contributed talk at the Second International Workshop on
Combinatorial Scientific Computing (CSC05), June 2005.

[36] J. A. J. Hall. Parallel matrix inversion for the revised simplex method -
a study. Contributed talk at the CERFACS Sparse Days Meeting, June
2006.

[37] J. A. J. Hall and K. I. M. McKinnon. Update procedures for the parallel
revised simplex method. Technical Report MSR 92-13, Department of
Mathematics and Statistics, University of Edinburgh, 1992.

[38] J. A. J. Hall and K. I. M. McKinnon. PARSMI, a parallel revised
simplex algorithm incorporating minor iterations and Devex pricing. In
J. Waśniewski, J. Dongarra, K. Madsen, and D. Olesen, editors, Applied
Parallel Computing, volume 1184 of Lecture Notes in Computer Science,
pages 67–76. Springer, 1996.

[39] J. A. J. Hall and K. I. M. McKinnon. ASYNPLEX, an asynchronous
parallel revised simplex method algorithm. Annals of Operations Re-
search, 81:27–49, 1998.

[40] J. A. J. Hall and K. I. M. McKinnon. Exploiting hyper-sparsity in the
revised simplex method. Technical Report MS99-014, Department of
Mathematics and Statistics, University of Edinburgh, 1999.

[41] J. A. J. Hall and K. I. M. McKinnon. Hyper-sparsity in the revised
simplex method and how to exploit it. Computational Optimization and
Applications, 32(3):259–283, December 2005.

[42] P. M. J. Harris. Pivot selection methods of the Devex LP code. Mathe-
matical Programming, 5:1–28, 1973.

38

[43] R. V. Helgason, L. J. Kennington, and H. A. Zaki. A parallelisation of
the simplex method. Annals of Operations Research, 14:17–40, 1988.

[44] R. S. Hiller and J. Eckstein. Stochastic dedication: designing fixed in-
come portfolios using massively parallel Benders decomposition. Man-
agement Science, 39(11):1422–1438, 1993.

[45] J. K. Ho, T. C. Lee, and R. P. Sundarraj. Decomposition of linear pro-
grams using parallel computation. Mathematical Programming, 42:391–
405, 1988.

[46] J. K. Ho and R. P. Sundarraj. On the efficacy of distributed simplex
algorithms for linear programming. Computational Optimization and
Applications, 3(4):349–363, 1994.

[47] R. N. Kaul. An extension of generalized upper bounding techniques for
linear programming. Technical Report ORC 65-27, O. R. Center U. C.
Berkley, San Fransisco, CA, 1965.

[48] D. Klabjan, E. L. Johnson, and G. L. Nemhauser. A parallel primal-dual
simplex algorithm. Operations Research Letters, 27:47–55, 2000.

[49] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Par-
allel Computing: Design and Analysis of Algorithms. Addison-Wesley,
2nd edition, 2003.

[50] M. Lentini, A. Reinoza, A. Teruel, and A. Guillen. SIMPAR: a parallel
sparse simplex. Computational and Applied Mathematics, 14(1):49–58,
1995.

[51] X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems. ACM
Transactions on Mathematical Software, 29(2), 2003.

[52] J. Luo and G. L. Reijns. Linear programming on transputers. In J. van
Leeuwen, editor, Algorithms, Software, Architecture, volume A-12 of
IFIP Transactions A (Computer Science and Technology), pages 525–
534. Elsevier, 1992.

[53] J. Luo, G. L. Reijns, F. Bruggeman, and G. R. Lindfield. A survey of
parallel algorithms for linear programming. In E. F. Deprettere and A.-
J. van der Veen, editors, Algorithms and Parallel VLSI Architectures,
volume B, pages 485–490. Elsevier, 1991.

39

[54] H. Markowitz. The elimination form of the inverse and its application
to linear programming. Management Science, 3:255–296, 1957.

[55] I. Maros and G. Mitra. Investigating the sparse simplex algorithm on
a distributed memory multiprocessor. Parallel Computing, 26:151–170,
2000.

[56] K. I. M. McKinnon and F. Plab. A modified Markowitz criterion to in-
crease parallelism in inverse factors of sparse matrices. Technical report,
Department of Mathematics and Statistics, University of Edinburgh,
1997.

[57] K. I. M. McKinnon and F. Plab. An upper bound on parallelism in
the forward transformation within the revised simplex method. Tech-
nical report, Department of Mathematics and Statistics, University of
Edinburgh, 1997.

[58] D. Medhi. Parallel bundle-based decomposition algorithm for large-scale
structured mathematical programming problems. Annals of Operations
Research, 22:101–127, 1990.

[59] H. D. Mittelmann. Benchmarks for optimization software.
http://plato.asu.edu/bench.html, July 2006.

[60] S. N. Nielsen and S. A. Zenios. Scalable Benders decomposition for
stochastic linear programming. Parallel Computing, 23:1069–1088, 1997.

[61] W. Orchard-Hays. Advanced Linear programming computing techniques.
McGraw-Hill, New York, 1968.

[62] J. Peters. The network simplex method on a multiprocessor. Networks,
20:845–859, 1990.

[63] C. E. Pfefferkorn and J. A. Tomlin. Design of a linear programming
system for the ILLIAC IV. Technical Report SOL 76-8, Systems Opti-
mization Laboratory, Stanford University, 1976.

[64] A. Pinar and C. Aykanat. An effective model to decompose linear pro-
grams for parallel solution. In J. Waśniewski, J. Dongarra, K. Madsen,
and D. Olesen, editors, Applied Parallel Computing, volume 1184 of Lec-
ture Notes in Computer Science, pages 592–601. Springer, 1996.

[65] J. B. Rosen and R. S. Maier. Parallel solution of large-scale, block-
angular linear programs. Annals of Operations Research, 22:23–41, 1990.

40

[66] W. Shu. Parallel implementation of a sparse simplex algorithm on
MIMD distributed memory computers. Journal of Parallel and Dis-
tributed Computing, 31(1):25–40, November 1995.

[67] C. B. Stunkel. Linear optimization via message-based parallel process-
ing. In International Conference on Parallel Processing, volume III,
pages 264–271, August 1988.

[68] U. H. Suhl and L. M. Suhl. Computing sparse LU factorizations for
large-scale linear programming bases. ORSA Journal on Computing,
2(4):325–335, 1990.

[69] M. E. Thomadakis and J.-C. Liu. An efficient steepest-edge simplex
algorithm for SIMD computers. In International Conference on Super-
computing, pages 286–293, 1996.

[70] J. A. Tomlin. Pivoting for size and sparsity in linear programming
inversion routines. J. Inst. Maths. Applics, 10:289–295, 1972.

[71] R. Wunderling. Paralleler und objektorientierter simplex. Technical Re-
port TR-96-09, Konrad-Zuse-Zentrum für Informationstechnik Berlin,
1996.

[72] R. Wunderling. Parallelizing the simplex algorithm. ILAY Workshop on
Linear Algebra in Optimzation, Albi, April 1996.

[73] G. Yarmish. A Distributed Implementation of the Simplex Method. PhD
thesis, Polytechnic University, Brooklyn, NY, March 2001.

[74] S. A. Zenios. Parallel numerical optimization: current status and anno-
tated bibliography. ORSA Journal on Computing, 1(1):20–43, Winter
1989.

41

