Skip to main content
Log in

Path loss prediction in urban environment using learning machines and dimensionality reduction techniques

  • Original Paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract

Path loss prediction is a crucial task for the planning of networks in modern mobile communication systems. Learning machine-based models seem to be a valid alternative to empirical and deterministic methods for predicting the propagation path loss. As learning machine performance depends on the number of input features, a good way to get a more reliable model can be to use techniques for reducing the dimensionality of the data. In this paper we propose a new approach combining learning machines and dimensionality reduction techniques. We report results on a real dataset showing the efficiency of the learning machine-based methodology and the usefulness of dimensionality reduction techniques in improving the prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balandier T, Caminada A, Lemoine V, Alexandre F (1995) 170 MHz Field strength prediction in urban environments using neural nets. In: Proceedings of IEEE international symposium on personal, indoor and mobile radio communication, Sept, vol 1, pp 120–124

  • Bertsekas DP (1999) Nonlinear programming. Athena Scientific, Boston

    Google Scholar 

  • Byrd RH, Lu P, Nocedal J (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Stat Comput 16(5): 1190–1208

    Article  Google Scholar 

  • Blumer A, Ehrenfeucht A, Hausler D, Warmuth MK (1987) Occam’s razor. Inf Process Lett 24: 377–380

    Article  Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, New York

    Google Scholar 

  • Cardona N, Fraile R (1998) Macrocellular coverage prediction for all ranges of antenna height using neural networks. In: Universal personal communications, 1998. ICUPC ’98. IEEE 1998 international conference vol 1, pp 21–25

  • Chang P-R, Yang W-H (1997) Environment-adaptation mobile radio propagation prediction using radial basis function neural networks. IEEE Trans Veh Technol 46(1): 155–160

    Article  Google Scholar 

  • Chan GK (1991) Propagation and coverage prediction for cellular radio systems. IEEE Trans Veh Technol 40(4): 665–670

    Article  Google Scholar 

  • COST 231. http://www2.ihe.uni-karlsruhe.de/forschung/cost231/cost231.en.html

  • Dersch U, Braun WR (1991) A physical radio channel model. IEEE CH2944-7/91/0000/0289

  • Fan R-E, Chen P-H, Lin C-J (2005) Working set selection using the second order information for training SVM. J Mach Learn Res 6: 1889–1918

    Google Scholar 

  • Grippo L, Sciandrone M (2002) Nonmonotone globalization techniques for the Barzilai–Borwein gradient method. Comput Optim Appl 23(2): 143–169

    Article  Google Scholar 

  • Gschwendtner BE, Landstorfer FM (1996) Adaptive propagation modeling using a hybrid neural technique. Electron Lett 32(3): 162–164

    Article  Google Scholar 

  • Hata M (1980) Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh Technol 29(3): 317–325

    Article  Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice-Hall

  • Ikegami F, Yoshida S (1980) Analysis of multipath propagation in urban mobile radio environment. IEEE Trans Antennas Propag 28(4): 531–537

    Article  Google Scholar 

  • Kramer M (1991) Nonlinear principle component analysis using autoassociative neural networks. AIChE J 37(2): 233–243

    Article  Google Scholar 

  • Liu H, Motoda H (1998) Feature selection for knowledge discovery and data mining. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  • Okumara Y, Ohmori E, Kawano T, Fukura K (1968) Field strength and its variability in VHF and UHF land mobile radio service. Rev Elec Comm Lab 16(9–10): 825–873

    Google Scholar 

  • Popescu I, Kanstas A, Angelou E, Nafornita L, Constantinou P (2002) Applications of generalized RBF-NN for path loss prediction. In: The 13th IEEE international symposium on personal, indoor and mobile radio communications, 2002, vol 1, pp 484–488

  • Rumelhart D, Hinton G, Williams R (1986) Learning representations of back-propagation errors. Nature 323: 533–536

    Article  Google Scholar 

  • Stone M (1974) A cross-validatory choice and assessment of statistical predictions. J R Stat Soc 36: 111–147

    Google Scholar 

  • Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  • Walfish J, Bertoni L (1988) A theoretical model of UHF propagation in urban environments. IEEE Trans Antennas Propag 36(12): 1788–1796

    Article  Google Scholar 

  • Zhu C, Byrd RH, Nocedal J (1997) L-BFGS-B: algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Trans Math Softw 23(4): 550–560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rinaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piacentini, M., Rinaldi, F. Path loss prediction in urban environment using learning machines and dimensionality reduction techniques. Comput Manag Sci 8, 371–385 (2011). https://doi.org/10.1007/s10287-010-0121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-010-0121-8

Keywords

Navigation