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Abstract In production-inventory problems customer demand is often subject to
uncertainty. Therefore, it is challenging to design production plans that satisfy both
demand and a set of constraints on e.g. production capacity and required inventory
levels. Adjustable robust optimization (ARO) is a technique to solve these dynamic
(multistage) production-inventory problems. In ARO, the decision in each stage is a
function of the data on the realizations of the uncertain demand gathered from the
previous periods. These data, however, are often inaccurate; there is much evidence in
the information management literature that data quality in inventory systems is often
poor. Reliance on data “as is” may then lead to poor performance of “data-driven”
methods such as ARO. In this paper, we remedy this weakness of ARO by introducing
a model that treats past data itself as an uncertain model parameter. We show that
computational tractability of the robust counterparts associated with this extension of
ARO is still maintained. The benefits of the new model are demonstrated by a numer-
ical test case of a well-studied production-inventory problem. Our approach is also
applicable to other ARO models outside the realm of production-inventory planning.
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1 Introduction

With the uprise of Big Data, most of the currently available (theoretical or practical)
methods for controlling a multi-stage production-inventory system, are using a “data-
driven” approach. At each period t data in the future is treated as uncertain, while data
from the past is considered known (certain). The affinely adjustable robust counterpart
(AARC) method (Ben-Tal et al. 2004), which is the focus of this paper, needs exact
past demands to derive a decision, by inserting them in a linear decision rule. In
reality, however, there is a strong evidence (see below) that even past data is far from
being exact. For example, in inventory/production systems what is usually reported
as a surrogate for the demand are sales, which then ignores lost sales due to excess
demand.

In general, evenwhen it seems that the full data on the uncertain demand is available
at some stage, one cannot rely blindly on this information. Arguably, many develop-
ments in information technology have enabled firms to collect real-time data.However,
despite these enormous developments in our Big Data era, poor data quality is still a
big issue. In DeHoratius and Raman (2008) results of an empirical study are reported;
they found that 65% of the inventory records were inaccurate, and “the value of the
inventory reflected by these inaccurate records amounted to 28% of the total value of
the expected on-hand inventory”. In Redman (1998) it is estimated that 1–5% of data
fields are erred, which led to a costs increase of 8–12% of revenue in some carefully
studied cases, and to a consumption of 40–60% of the expenditure in service orga-
nizations. Haug et al. (2011) summarize the literature that deal with the big impact
of poor data quality: “Less than 50% of companies claim to be very confident in the
quality of their data”, “75%of organizations have identified costs stemming from dirty
data”. See also Soffer (2010) for a general exploration of data inaccuracy in business
processes. One paper that develops a method to handle inaccurate inventory records is
by Kök and Shang (2007). Their approach assumes that the distribution of the errors
(describing the inaccuracy) is known and that inspections can be made at certain costs
to exactly observe these errors.

In this paper we extend the AARC method to a method named adjustable robust
counterpart with decision rules based on inexact data (ARCID) that incorporate
past data uncertainty while keeping the resulting (deterministic) robust counterpart
tractable. This is our main contribution, and it is achieved using results and techniques
from the current robust optimization arsenal.

We illustrate the benefits of the ARCID model by revisiting the inventory problem
that was used in the first paper on ARO (Ben-Tal et al. 2004). Numerical results for
this production-inventory problem show that if one neglects the inexact nature of the
revealed data, then the resulting solution might violate the constraints in many scenar-
ios. For our numerical example, violations occurred for up to 80% of the simulated
demand trajectories. The ARCID model is able to avoid this severe infeasibility and
produce more reliable solutions.
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Robust optimization of uncertain multistage inventory systems… 47

Although the focus of this paper is on production-inventory problems, there are
various other areas where our ARCID model could be used to solve uncertain multi-
stage problems. For example, ARO techniques were used in facility location planning
(Baron et al. 2011), flexible commitment models (Ben-Tal et al. 2005), portfolio opti-
mization (Calafiore 2008, 2009; Rocha and Kuhn 2012), capacity expansion planning
(Ordóñez and Zhao 2007) and management of power systems (Guigues and Sagas-
tizábal 2012; Ng and Sy 2014) among others. A more elaborate list of examples up
to 2011 can be found in the aforementioned survey by Bertsimas et al. (2011a). We
emphasize that our proposed ARCID framework remains applicable for multistage
problems outside the realm of production-inventory planning.

The remainder of this paper is organized as follows. In Sect. 2 we describe
the adjustable robust models used in the literature. Section 3 then introduces the
new ARCID models with inexact revealed data in the decision rules and derive
tractable representations of the resulting optimization problems. Section 4 presents
our production-inventory model and the corresponding ARCID model. The numer-
ical results are given and analyzed in Sect. 5. Conclusions are presented in Sect. 6.
Throughout this paper we use bold lower-case and upper-case letters for vectors and
matrices, respectively, while scalars are printed in regular font.

2 Adjustable robust models

In the nonadjustableRCmodel all decisions are chosen prior to knowing the realization
of the uncertain parameter. This can be very conservative in a dynamic setting where
part of the variables can be chosen at a later stage when some information on the
uncertain parameters is revealed. Suppose that x ∈ R

n is a here-and-now decision and
that we have an additional wait-and-see decision y ∈ R

m . This means that x has to be
chosen prior to knowing any of the information on the uncertain parameters and y has
to be chosen after some information is revealed. We start with the assumption that y
is chosen after perfectly accurate information on ζ has been revealed. The model with
this underlying assumption is called the adjustable robust optimization model (ARO),
where the variables y can adjust themselves to the revealed information. This model
was introduced in Ben-Tal et al. (2004):

min
x

c�x

s.t. ∀ζ ∈ Z ∃y ∈ R
m : (ai + Aiζ )�x + b�

i y ≤ di ∀i = 1, . . . , J, (ARO)

where J is the number of constraints, ai , c ∈ Rn , Ai ∈ R
n×L , bi ∈ R

m , and di ∈ R.
The uncertainty in our model is driven by the parameter ζ , which resides in a closed
convex set Z ⊂ R

L . The parameter ai is called the nominal value of the coefficients
for x in the i-th constraint. Thismodel can be readily extended to the case where di also
depends on ζ . We can see y as a function, or decision rule, on the uncertain parameters
since we have to assign a feasible value for each realization ζ . However, finding the
optimal decision rule would involve optimizing over the class of all functions, which
is in general intractable (in fact NP-hard as shown in Guslitzer 2002). We restrict the
functional dependence to linear decision rules for the wait-and-see decision:
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y = u + Vζ ,

where u ∈ R
m and V ∈ R

m×L are new (here-and-now) decision variables that deter-
mine the affine dependence on the revealed value of the parameter ζ . Although the
restriction from ‘any’ function to a linear decision rule might seem very severe, these
linear decision rules appear to perform quite well in practice (Ben-Tal et al. 2004,
2005) and are even provably optimal in some cases (Bertsimas et al. 2011b; Bertsimas
and Goyal 2012; Iancu et al. 2013). With this new so-called linear decision rule, the
problem (ARO) can be written as

min
x,u,V

c�x

s.t. ∀ζ ∈ Z : (ai + Aiζ )�x + b�
i (u + Vζ ) ≤ di ∀i = 1, . . . , J. (AARC)

This problem is now again a standard robust optimization problem. We may, without
loss of generality, consider the uncertainty constraint-wise, see Ben-Tal et al. (2009),
in order to derive the tractable affinely adjustable robust counterpart (AARC) for each
constraint i :

∀ζ ∈ Z : (ai + Aiζ )�x + b�
i (u + Vζ ) ≤ di ,

which is equivalent to

ai�x + b�
i u + max

ζ∈Z

{
(A�

i x + V�bi )�ζ
}

≤ di .

or

ai�x + b�
i u + δ∗(A�

i x + V�bi | Z) ≤ di . (1)

where δ∗(ν | Z) = maxζ∈Z {ζ�ν} is the so-called support function of the set Z . The
notation δ∗ is the conjugate function of the indicator function

δ(ζ | Z) =
{
0 if ζ ∈ Z
∞ otherwise.

(2)

For many different closed convex sets Z the support function can be explicitly con-
structed. Some examples are given in Table 1 and manymore can be found in (Ben-Tal
et al. 2015, pp. 275).

3 The new adjustable robust model based on inexact data

This section introduces our model that extends the ARC model to the case where
revealed data is inexact. We stress that the models described here are more general
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Table 1 Examples of uncertainty sets and their support functions

Uncertainty set Z δ∗(ν|Z)

Box {ζ : ||ζ ||∞ ≤ α} α||ν||1
Ball {ζ : ||ζ ||2 ≤ α} α||ν||2
Polyhedral {ζ : b − Bζ ≥ 0}

{
b�z if B�z = ν, z ≥ 0

∞ otherwise

and not limited to production-inventory problems. They could be used for any ARO
problem within operations management where the revealed data is inexact.

The ARO model with decision rules based on exact data assumes that there is one
moment in time where the data ζ ∈ Z , used to decide upon the variable y, is known
exactly. However, in many practical applications only an estimate ζ̂ ∈ Z of the true
value ζ can be obtained. In that case we have inexact data and ζ̂ is not exactly equal to
ζ , but we may assume that the estimation error ζ̂ − ζ resides in another closed convex
set Ẑ , which we call the estimation uncertainty. We also denote this as ζ ∈ {̂ζ } + Ẑ ,
the Minkowski sum of a singleton and a set. Note that estimation errors of different
components of ζ̂ −ζ can be correlated. The decision rule for the wait-and-see variable
is only allowed to use the estimate ζ̂ (and not the unobserved ζ ):

y = u + Vζ̂ ,

where (here-and-now) decision variables u andV determine the affine dependence of y
on estimate ζ̂ . We call the robust counterpart in this new setting the (affine) adjustable
robust counterpart with decision rules based on inexact data, or ARCID:

min
x,u,V

c�x

s.t.∀(ζ , ζ̂ ) ∈ U : (ai + Aiζ )�x + b�
i (u + Vζ̂ ) ≤ di ∀i = 1, . . . , J, (ARCID)

where

U = {(ζ , ζ̂ ) : ζ , ζ̂ ∈ Z, (̂ζ − ζ ) ∈ Ẑ} (3)

provides us with a new uncertainty set that describes in a general way the uncertain
parameter ζ , its estimate ζ̂ and the relation between these two uncertain vectors. Note
that the set U is closed and convex whenever the setsZ and Ẑ are closed and convex.
The relation between the RC, the new ARCID and the classical ARC uncertainty sets
in terms of the inexactness in the revealed data, is depicted in Fig. 1. In the RC none
of the revealed information is used, so it assumes that the parameter can still take
any value in the uncertainty set when deciding upon y. The ARCID uses the revealed
information and takes into account that the data used in the decision rule is inexact
and therefore is still uncertain to some extent. The ARC model also uses the revealed
information, but does however assume that these data are exact. The implications of
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ζ ∈ Z

RC

Z
ζ ∈ ̂ζ + ̂Z

ARCID

Z

ζ = ζ̂

ARC

Fig. 1 Comparison between uncertainty of the revealed information in the RC, ARCID and ARC concepts

this assumption,when in reality the observed information is inexact, shall become clear
in our numerical example in Sect. 4. Note that in the uncertainty described in (3) both
the true parameter and its estimate are in the setZ . Another modelling choice could be
to leave out any further condition on the estimate and just have (̂ζ − ζ ) ∈ Ẑ . Omitting
this condition ζ̂ ∈ Z , however, leads to an increase of the size of the uncertainty set
for the estimate. In that case, the decision rule should be valid on a larger uncertainty
set which might lead to more conservative solutions. Furthermore, some values for
the estimates can be naturally omitted. For example, demand is nonnegative and any
negative estimates can be rounded up to zero.

As in the previous ARC setting we consider, without loss of generality, constraint-
wise uncertainty. Hence, we only have to determine the tractable formulation of the
i-th constraint

∀(ζ , ζ̂ ) ∈ U : (ai + Aiζ )�x + b�
i (u + Vζ̂ ) ≤ di , (4)

which follows from the next theorem.

Theorem 1 Let U be a closed set with nonempty relative interior as given in (3). Then
(x,u,V) satisfies constraint (4) if and only if there exists a wi ∈ R

L that satisfies

ai�x + b�
i u + δ∗(A�

i x − wi | Z) + δ∗(V�bi + wi | Z) + δ∗(wi | Ẑ) ≤ di .

Proof We can replace the semi-infinite constraint (4) by constraints involving maxi-
mization over the uncertainty and obtain the following constraint:

ai�x + b�
i u + max

(ζ ,̂ζ )∈U

⎧⎨
⎩

(
A�
i x

V�bi

)� (
ζ

ζ̂

)⎫⎬
⎭ ≤ di ,

or, by using the definition of support functions,

ai�x + b�
i u + δ∗

((
A�
i x

V�bi

)
| U

)
≤ di . (5)

Hence, all we need to do is to find an expression for the support function of U . To do
so, note that for the indicator function we have δ

((
ζ

ζ̂

)
| U

)
= δ(ζ | Z)+ δ(̂ζ | Z)+
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δ((̂ζ − ζ ) | Ẑ). If we define the function h(ζ , ζ̂ ) = δ
(
(̂ζ − ζ ) | Ẑ)

, then by using the
definition of conjugate functions as in Rockafellar (1997), we can obtain its conjugate
function:

h∗(wi , w̃i ) =
{

δ∗ (
wi | Ẑ)

if wi + w̃i = 0

∞ otherwise.

Using this conjugate function, and the fact that U has nonempty relative interior, we
can now find the expression for the support function in (5) using the conjugate of a
sum of functions (see Rockafellar 1997, Chapter 16):

δ∗
((

A�
i x

V�bi

)
| U

)
= min

wi ,w̃i ,zi , z̃i

{
δ∗(zi | Z) + δ∗( z̃i | Z) + h∗(wi , w̃i )

| wi + zi = A�
i x, w̃i + z̃i = V�bi

}

= min
wi ,w̃i ,zi , z̃i

{
δ∗(zi |Z) + δ∗( z̃i |Z) + δ∗(wi | Ẑ)

| wi + zi = A�
i x, w̃i + z̃i = V�bi , wi + w̃i = 0

}
.

Substituting this result in (5) yields that (4) is feasible if and only if there exist
wi , w̃i , zi , z̃i ∈ R

L that satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ai�x + b�
i u + δ∗(zi | Z) + δ∗( z̃i | Z) + δ∗(wi | Ẑ) ≤ di

wi + zi = A�
i x

w̃i + z̃i = V�bi
wi + w̃i = 0.

The result then follows by elimination of the variables w̃i , zi and z̃i . ��
The two assumptions on the uncertainty set (closedness and nonempty relative

interior ofU) used in Theorem1 are satisfied for all closed setsZ and Ẑ with nonempty
relative interior and 0 being an element of the relative interior of Ẑ . A few common
choices for uncertainty sets, that satisfy these conditions, have been given in Table 1.
Below we give two examples of constraints with different choices for the estimation
uncertainty. In the first example (Box-Box) we have both box uncertainty for the
parameter ζ and a box for the estimation error (independent estimation errors). In the
second example (Box-Ball) the estimation errors reside in a ball.

Example 1 [Box-Box] If Z = {ζ : ||ζ ||∞ ≤ θ} and Ẑ = {ξ : ||ξ ||∞ ≤ ρ} for some
scalar uncertainty levels θ, ρ ≥ 0 then, according to Theorem 1, (x,u,V) satisfies
constraint (4) if and only if there exists a wi ∈ R

L such that

ai�x + b�
i u + θ ||A�

i x − wi ||1 + θ ||V�bi + wi ||1 + ρ||wi ||1 ≤ di ,
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where the expressions for the support functions with these choices for the uncertainty
sets are found using Table 1. This constraint can be represented by a set of linear
constraints.

Example 2 [Box-Ball] If Z = {ζ : ||ζ ||∞ ≤ θ} and Ẑ = {ξ : ||ξ ||2 ≤ ρ} for some
scalar uncertainty levels θ, ρ ≥ 0 then, according to Theorem 1, (x,u,V) satisfies
constraint (4) if and only if there exists a wi ∈ R

L such that

ai�x + b�
i u + θ ||A�

i x − wi ||1 + θ ||V�bi + wi ||1 + ρ||wi ||2 ≤ di ,

where the expressions for the support functions with these choices for the uncertainty
sets are again found using Table 1. This constraint can be represented by a set of linear
constraints and a conic quadratic constraint.

Theorem 1 can also be used to argue that the new ARCID model bridges the gap
between models that do not use information at all in the second stage (RC) and those
that rely on fully accurate revealed information in the decision rules (ARC). Namely, if
the estimation uncertainty is large (i.e. Ẑ is large), then there is no value in the revealed
inexact data. In that case the optimal value of the nonadjustable version is equal to the
optimal value of (ARCID). More formally, consider the situation where there exists
a realisation ζ̄ ∈ Z such that Z ⊂ ζ̄ + Ẑ . Then, if (P:ARCID) is feasible, it follows
directly that there must also exist a decision rule with V = 0, i.e., a nonadjustable
decision. For Example 1 and 2 we have that the ARCID model is equivalent to the
nonadjustable model when ρ ≥ θ for the first example (Box-Box) and ρ ≥ √

Lθ

for the second example (Box-Ball). In case there is no estimation error (Ẑ = {0}),
the ARC and the ARCID are equivalent in the sense that they have the same feasible
region and the same optimal objective value.

So far, we have focussed on the two period case for illustrative purposes. How-
ever, often we have multiple periods 1, 2, . . . , T , in which we consecutively have to
make decisions y1, y2, . . . , yT . In period t we can make decisions based on estimates
available in that period: estimate ζ̂

t . So, we have in period t a linear decision rule
yt = ut +Vt Rt ζ̂

t , with variables ut ∈ R
m andVt ∈ R

m×L . The matrix Rt ∈ R
L×L is

the (fixed) diagonal information matrix with entries 0 everywhere but on the diagonal.
The entries on the diagonal are either 0 (if no data is revealed) or 1 if the estimate is
available at time t . For the standard case in the literature, with decision rules based on
exact data ζ , we have

∀ζ ∈ Z : (ai + Aiζ )�x +
T∑
t=1

(bti )
�(ut + Vt Rtζ ) ≤ di .

Note that the true parameter has the same (unknown) value over all periods t =
1, . . . , T , only the information matrix might change. If we now take into account
the inexact nature of our estimates, i.e., basing decision in period t on the observed
estimate ζ̂

t , this constraint becomes
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∀(ζ , ζ̂
1
, ζ̂

2
, . . . , ζ̂

T
) ∈ UT : (ai + Aiζ )�x +

T∑
t=1

(bti )
�(ut + Vt Rt ζ̂

t
) ≤ di , (6)

which is the multistage equivalent of constraint (4) with uncertainty set

UT =
{
(ζ , ζ̂

1
, ζ̂

2
, . . . , ζ̂

T
) : ζ , ζ̂

1
, ζ̂

2
, . . . , ζ̂

T ∈ Z, (ζ − ζ̂
t
) ∈ Ẑt ∀t

}
, (7)

where Ẑt describes the estimation uncertainty for ζ̂
t , which is the estimate of ζ in

period t . We can readily extend Theorem 1 to these types of constraints in multistage
problems. The proof is similar to the proof for the two period case and can be found
in Appendix 1.

Theorem 2 LetZ, Ẑ1, . . . , ẐT be closed sets with nonempty interior as given in (7).
Then (x, u1, . . . ,uT ,V1, . . . ,VT ) satisfies (6) if and only if there existwi1, . . . ,wiT ∈
R

L that satisfy

ai�x +
T∑
t=1

(bti )
�ut + δ∗

(
A�
i x −

T∑
t=1

wi t | Z
)

+ · · ·

× w

T∑
t=1

δ∗ (
(Vt Rt )�bti + wi t | Z

)
+

T∑
t=1

δ∗ (
wi t | Ẑt

) ≤ di .

In Theorem 1 we only consider constraints that are linear. This theorem can be readily
extended to the case where the constraint is convex (but not necessarily linear) in the
here-and-now variables x. To do so, we can use Fenchel duality as has been done for
nonadjustable robust models in Ben-Tal et al. (2015).

The construction of the standard uncertainty set and the estimation uncertainty set
can be done in different ways. Our model based on inexact revealed data has additional
uncertainty in the estimates described by the uncertainty sets Ẑ or Ẑ1, . . . , ẐT in
the multiperiod case. We have to construct another uncertainty set that captures all
estimation errors for which we want to be protected in our future planning periods.
For constructing the estimation uncertainty set we can use the same techniques as for
the static case (see e.g. Bertsimas et al. 2013). We can for instance use historical data
on the errors, ζ − ζ̂

t , obtained from previous planning horizons. If there is insufficient
historical data, one can still define uncertainty sets with realistic a priori reasoning.
In retail stores, and especially with the growing share of online retail, customers
often return a product if it does not meet their requirements. Sales figures then give an
indication of the total demand, but it is known that in each period between, for example,
5 and 10% of all products are returned. The bandwidth of this percentage can then
be used to construct the estimation uncertainty around the demand estimate obtained
via sales figures. Another situation of estimation uncertainty arises when the demand
estimate is obtained via accumulation of (correlated) demand from different stores. If
we know that different stores need different amounts of time to come up with accurate
data (e.g., sales reports), then there is still some uncertainty on the total demand if, for
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example, only 9 out of 10 stores have reported their sales. In both of these described
situations more information will be revealed in later periods and estimates are likely
to become more accurate over time. An example of this type of uncertainty set where
estimates becomemore accurate over time is used in the production-inventory problem
in the next section.

4 Production-inventory problem

In this section we apply the ARCID approach to the production-inventory problem
that was introduced in Ben-Tal et al. (2004), the seminal paper on adjustable robust
optimization.

4.1 The nominal model

Weconsider a single product inventory system,which is comprised of awarehouse and
I factories. A planning horizon of T periods is used. In the model we use the following
parameters and variables, using the same notation as in Ben-Tal et al. (2004):

Parameters

dt Demand for the product in period t ;
Pi (t) Production capacity of factory i in period t ;
ci (t) Costs of producing one product unit at factory i in period t ;
Vmin Minimal allowed level of inventory at the warehouse;
Vmax Storage capacity of the warehouse;
Qi Cumulative production capacity of the i-th factory throughout the planning

horizon.

Variables

pi (t) The amount of the product to be produced in factory i in period t ;
v(t) Inventory level at the beginning of period t (v(1) is given).

We try to minimize the total production costs over all factories and the whole
planning horizon. The restriction is that all demand in period t must be satisfied by
units in stock in the warehouse or by the production in period t . If all the demand, and
all other parameters, are certain in all periods 1, . . . , T , then the problem is modeled
by the following linear program (Ben-Tal et al. 2004, Sect. 5):

min
pi (t),v(t),F

F

s.t.
T∑
t=1

I∑
i=1

ci (t)pi (t) ≤ F
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0 ≤ pi (t) ≤ Pi (t), ∀i = 1, . . . , I,∀t = 1, . . . , T
T∑
t=1

pi (t) ≤ Qi , ∀i = 1, . . . , I

v(t + 1) = v(t) +
I∑

i=1

pi (t) − dt , ∀t = 1, . . . , T

Vmin ≤ v(t) ≤ Vmax, ∀t = 2, . . . , T + 1. (P:Nominal)

4.2 The affinely adjustable robust model based on inexact data

We assume that we can make decisions based on estimates of the realized demand
scenario d = (d1, . . . , dT ). We should specify our production policies for the factories
before the planning periods starts, at period 0. When we specify these policies, we
only know that demand in consecutive periods are independent and reside in a certain
box region,

dt ∈ Zt = [d∗
t − θd∗

t , d∗
t + θd∗

t ], t = 1, . . . , T, (8)

with given 0 < θ ≤ 1, the level of uncertainty, and nominal demand d∗
t in period t .

So far the model is exactly the same as in Ben-Tal et al. (2004) if we assume that we
can estimate the demand dt exactly in periods r ∈ It , where It is a given subset of
{1, . . . , T }. In Ben-Tal et al. (2004) different sets for It are used:
– It = {1, . . . , t}, the information basis where demand from the past and the present
is known exactly, for the future no extra information is known;

– It = {1, . . . , t−1}, the information basis where all demand from the past is known
exactly, there is no information about the present;

– It = {1, . . . , t−4}, the information about the past is receivedwith a four day delay.
For other periods in the past (t − 3, t − 2 and t − 1) there is no extra information
at all.

Now we assume the decisions in period t are based on estimates d̂r,t , made in period t ,
for the actual demand dr in the period r ∈ {1, . . . , t}. We assume that these estimates
can, in principle, take any value that the demand dr can take, so d̂r,t ∈ Zr and that the
estimation error d̂r,t − dr lies in a box region:

d̂r,t − dr ∈ Ẑr,t = [−ρr,tθd
∗
t , ρr,tθd

∗
t ], (9)

where the parameter ρr,t indicates the fraction of initial uncertainty level θ for the
estimate d̂r,t .

Note that if we have exact information for periods in the information basis, i.e.,
d̂r,t = dt for all r ∈ It and no extra information (besides d̂r,t ∈ Zt ) for all periods
outside the information basis, then we end up in the case of exact revealed information
as considered byBen-Tal et al. (2004). This situation can be can bemodeled as a special
case of our model by using the following values for ρr,t
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ρr,t =
{
0 if r ∈ It
1 otherwise,

which means that the estimation error equals zero for estimates on demand in peri-
ods that lie in the information set and it is θ (so very large) for periods outside this
information basis.

The general situation with inexact data lies in between the two extreme scenar-
ios where one either knows the demand exact, or not at all. For this we specify the
information set in a more general way:

Ît := {r : ρr,t < 1}.

This definition of Ît is indeed a more general description. For large estimation errors
(ρr,t ≥ 1) we could just as well decide on the variables beforehand, i.e., we have no
extra useful information on the actual realizations compared to the information at time
t = 0. We can therefore safely exclude all periods where the estimates are too noisy
(the periods for which r /∈ Ît ). Since we apply the ARCID method based on inexact
data, we take affine decision rules based on inexact estimates:

pi (t) = π0
i,t +

∑

r∈ Ît
πr
i,t d̂r,t , (10)

where the coefficients πr
i,t are the new nonadjustable variables in the model. For

notational convenience wewrite the vector d̂t as the vector containing all the estimates
d̂r,t for all r ∈ Ît , t = 1, . . . , T . The uncertainty set can now be written as:

U :=
{
(d, d̂1, . . . , d̂T ) : dr , d̂r,t ∈ Zr , (d̂r,t − dr ) ∈ Ẑr,t , ∀r ∈ Ît , ∀t

}
,

with Zt and Ẑr,t as specified in respectively (8) and (9). The linear problem
(P:Nominal) becomes (after elimination of the v-variables) a semi-infinite LP if we
use linear decision rule (10):

min
π,F

F

s.t. ∀(d, d̂1, . . . , d̂T ) ∈ U :
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑T
t=1

∑I
i=1 ci (t)

(
π0
i,t + ∑

r∈ Ît π
r
i,t d̂r,t

)
≤ F

0 ≤ π0
i,t + ∑

r∈ Ît π
r
i,t d̂r,t ≤ Pi (t), ∀i, t

∑T
t=1

(
π0
i,t + ∑

r∈ Ît π
r
i,t d̂r,t

)
≤ Qi , ∀i

Vmin ≤ v(1) + ∑t
s=1

∑I
i=1

(
π0
i,s + ∑

r∈ Ît π
r
i,s d̂r,s

)
− ∑t

s=1 ds ≤ Vmax, ∀t.
(P:ARCID)
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Fig. 2 Demand
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The resulting tractable robust counterpart can be found using Theorem 2 and is
given in Appendix 2.

4.3 Data set from Ben-Tal et al. (2004)

We take the same data set as in the illustrative example by Ben-Tal et al. (2004, p. 370–
371): “There are I = 3 factories producing a seasonal product, and one warehouse.
The decisions concerning production are made every two weeks, and we are planning
production for 48 weeks, thus the time horizon is T = 24 periods. The nominal
demand d∗ is seasonal, reaching its maximum in winter, specifically,

d∗
t = 1000

(
1 + 1

2 sin
(

π(t−1)
12

))
, t = 1, . . . , 24.

We assume that the uncertainty level θ is 20%, i.e., dt ∈ [0.8d∗
t , 1.2d∗

t ], as shown on
Fig. 2.

The production costs per unit of the product depend on the factory and on time and
follow the same seasonal pattern as the demand, i.e., rise in winter and fall in summer.
The production costs for a factory i at a period t is given by (Fig. 3):

ci (t) = αi

(
1 + 1

2 sin
(

π(t−1)
12

))
, t = 1, . . . , 24.

α1 = 1

α2 = 1.5

α3 = 2

Themaximal production capacity of each one of the factories at each two-weeks period
is Pi (t) = 567 U, and the integral production capacity of each one of the factories for
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Fig. 3 Costs
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a year is Qi = 13,600. The inventory at the warehouse should be no less than 500
units, and cannot exceed 2000 U”.

The initial inventory level v(1) was not stated in Ben-Tal et al. (2004), but this
value is equal to the lower bound of the inventory level at the warehouse, namely 500.
Note that the initial inventory level could also be chosen uncertain if the initial state is
unkown. For new products, where no past demand has occured, it is realistic to assume
no uncertainty on the stock as the inventory level is set by the manager itself. Here we
also assume that the initial inventory level is known, as in Ben-Tal et al. (2004).

5 Numerical results

Ben-Tal et al. (2004) conduct two series of experiments based on the data given in
Sect. 4.3. In the first series of experiments they modify the parameter θ to analyze the
influence of demand uncertainty on the total production cost. In the second series of
experiments they change the information basis It , the (exact) information that is used
in the decision rule. Note that Ben-Tal et al. (2004) deal with the case where in period
t all demand from the periods in the information set It is known exactly. For instance,
if the information set is equal to It = {1, . . . , t − 1}, then in period t we can base
our production decision rule on the exact values of the demand realizations in periods
1, . . . , t − 1, and use no information on the demand in periods after t − 1. We extend
these experiments to include inexact data in some periods to show the benefits of the
ARCID model over the ARC model.

Just as in Ben-Tal et al. (2004), we test the management policies by simulating 100
demand trajectories, d = (d1, . . . , dT ). For every simulation the demand trajectory is
randomly generated with dt uniformly distributed in [(1 − θ)d∗

t , (1 + θ)d∗
t ], where

20% (θ = 0.2) is the chosen uncertainty level. The uncertainty level of the demand
is set to 20% in all experiments, as this seems to be the most restrictive level of
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uncertainty and is the same level that has been used by Ben-Tal et al. (2004). For
higher uncertainty levels like 30%, even the model without uncertainty (P:Nominal)
is no longer feasible for the maximal demand pattern with dt = (1 + θ)d∗

t (without
uncertainty) because of the bounds on production imposed by Pi (t) and Qi . In linewith
the experiments performed by Ben-Tal et al. (2004), we compute the average costs for
our solutions by assuming an uniform distrutibution for the estimated demand. In Ben-
Tal et al. (2004) they have used 100 simulated demand trajectories to approximate the
mean costs. However, since the costs are linear in the estimated demand parameter,
this can be found by substituting the expected (nominal) demand in the objective
function. All solutions are obtained by the commercial solver (Gurobi Optimization
2015) programmed in the YALMIP language (Löfberg 2004) in MATLAB.

5.1 Experiments with decision rules using inexact data on demand

Similar to Ben-Tal et al. (2004), we saved the demand trajectories to compute the so-
called costs of the ideal setting, the utopian world where the entire demand trajectory
is known beforehand. The ideal setting is used to benchmark the performance of
the ARCID solution. In the ideal setting one sets the policy only for one sample
demand realization, so the solution does not have to be feasible for all possible demand
trajectories. Hence, the costs in the ideal setting are obviously a lower bound of the
costs for the ARCID solutions. For the ideal setting the worst case is the demand
trajectory with the highest demand: dt = (1 + θ)d∗

t for all t . The worst case costs in
the ideal setting can be easily solved and turns out to be 44,199. The mean costs in
the ideal case are approximated by averaging the ideal costs for the 100 simulated
demand trajectories and equals 33,729.

In our model, the demand from the past periods is not known exactly, but we
assume to have inexact estimates for some past and present periods. Several cases
are investigated, for instance those where the delay for receiving the exact demand
information is even more than 2 periods, i.e., the exact demand is known after 3, 4 or
more periods. These cases are infeasible in the ARC model, see Ben-Tal et al. (2004).

In the experiments, the influence of the estimation error ρr,t on the total production
costs is tested. An estimation error of 0% for the demand in period t − 1 means that
ρt−1,t = 0 (exact information). An estimation uncertainty of 10% for the demand
in period t − 4 means that ρt−4,t = 0.1 and so forth. We have considered various
estimation uncertainties for the estimates on past realizations, as depicted in Table 2.
Note that in all cases the estimates become more accurate over time. In other words,
the estimation error decreases over time: ρt−r,t ≤ ρt−s,t for all r ≤ s and all periods
t . In Table 2 one notices this by seeing that the values for the estimation errors are
decreasing right-to-left. Therefore, estimates on demand values from longer ago in the
past are more accurate than estimates on recent demand realizations.

The cases in Table 2 can be explained as follows:

• ForCases 1 and2 we assume that all demand from the past is knownexactly. For the
present period we have a good estimate on the demand that gives extra information
compared to the information known at the start of the planning period (t = 0).
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Table 2 The influence of the estimation errors on the mean costs and worst case costs (WC) in the ARCID
model

Case Demand estimation error ρr,t (in %) Costs

ρ1,t , . . . ,

ρt−9,t

ρt−8,t ρt−7,t ρt−6,t ρt−5,t ρt−4,t ρt−3,t ρt−2,t ρt−1,t ρt,t Mean WC

1 0 0 0 0 0 0 0 0 0 10 35,167 44,268

2 0 0 0 0 0 0 0 0 0 20 35,077 44,273

3 0 0 0 0 0 0 0 0 20 – 35,740 44,582

4 0 0 0 0 0 0 0 0 – – 35,740 44,582

5 0 0 0 0 0 0 1 5 10 – 36,882 44,883

6 0 0 0 5 5 5 10 10 10 – 36,867 45,326

The dashes represent estimation errors of 100%

• The Cases 3–6 assume to have no additional knowledge about the present. Fur-
thermore, the exact demand from previous periods is received with a certain delay,
but there are already estimates on the demand available before this information is
received.

• Case 4 is equivalent to the uncertainty set from (Ben-Tal et al. 2004) with exact
revealed information and the information sets being {1, . . . , t − 2}.

To compare the solutions in different cases we have to take into account that there
could be multiple optimal solutions. These solutions all give the same worst case
costs, but could perform differently on individual demand trajectories and therefore
also result in different mean costs. To overcome this problem, we used the two step
approach that has been given in Iancu and Trichakis (2013) and de Ruiter et al. (2016).
In this two step approach, one first minimizes the worst case costs as usual in robust
optimization. To choose one solution among the set of robustly optimal solutions that
performs good on average, a second step is introduced. In this second step, we add a
constraint that the worst case costs do not exceed the optimal worst case costs and we
replace the objective by the costs attained for the nominal demand. If in the second
step the costs are minimized for the nominal demand, then one obtains the costs that
are best for the mean.

The mean costs in Table 2 show a strange pattern among the different cases at first
sight. For instance, Case 5 produces higher mean costs than Case 6, but the estimation
error is much less. This phenomenon can be explained in the following way. In the
two step approach, we first search for a solution with minimal worst case costs F∗
and then we search among all solutions with worst case costs F∗ for the solution that
minimizes the nominal demand trajectory. Hence, the information in Case 2 is used
to decrease the worst case costs, possibly at the costs of the average behavior.

5.2 Comparison with affinely adjustable robust model based on exact data

For each case we compare the WC costs and feasibility of the ARCID to the costs
and feasibility resulting from the AARC approach, where one is only allowed to use
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Table 3 Worst case costs of the
AARC model and the ARCID
model for each case

Cases Worst case costs

AARC ARCID

1 44,273 44,268

2 44,273 44,273

3 44,582 44,582

4 44,582 44,582

5 Infeasible 44,883

6 Infeasible 45,326

the estimates that are exact (estimates with an estimation error of 0%). Hence, for
the AARC solutions we only included the exact estimates, those corresponding with
ρr,s = 0, in the decision rule. The results are given in Table 3.

Case 4 only deals with exact estimates. The ARCID and the AARC are equivalent
in those cases because there is no estimation uncertainty. There are other situations,
namely in Case 5 and 6, where the ARCID use the extra inexact data to produce
feasible solutions whereas the AARC is infeasible.

For the cases where both the AARC and the ARCID model are feasible, we notice
that there is only a minor improvement in the worst case costs. For those cases, the
question might rise whether we can neglect the estimation error and just apply the
AARC model from (Ben-Tal et al. 2004). In contrast to the AARC that we used
to obtain the results in Table 3, we now take the information set for the AARC that
includes all (estimated) demands that have an estimation error less than 100%. Hence,
all estimation errors strictly between 0 and 100% are neglected and the corresponding
demand estimates are used as if they were exact. To empirically see how many vio-
lations occur if the inexact nature is neglected in the AARC model, we also have to
draw the demand estimates in each of the 100 demand trajectories. We draw the esti-
mates on demand from a uniform distribution as well, using the same simulated actual
demand trajectories across all cases. In every period t we know for the estimate d̂r,t
on the simulated demand in period r that d̂r,t − dr ∈ [−ρr,tθd∗

r , ρr,tθd∗
r ], where the

value dr is taken from the earlier simulated demand patterns. Furthermore, d̂r,t resides
in the box region [(1− θ)d∗

r , (1+ θ)d∗
r ]. The estimates are therefore uniformly drawn

from the region:

[dr − ρr,tθd
∗
r , dr + ρr,tθd

∗
r ] ∩ [(1 − θ)d∗

r , (1 + θ)d∗
r ].

For each case we check for how many demand trajectories, out of the 100 simulated
realizations, the inventory level is lower than the minimimum inventory level Vmin of
500 or higher than the maximum inventory level Vmax at some point in the planning
period. The results are given in Table 4.

In Case 4 there are no violations, since this one is equivalent to the AARC based
on exact information as we argued in Sect. 5.1. Table 4 also shows that constraints are
violatedmore often when the estimation uncertainty is in the recent periods t and t−1.
For example, the solution in Case 1, which has only 10% estimation uncertainty in
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Table 4 Percentage of
simulated demand trajectories
that violate the minimum
required inventory level (Vmin)
and maximum allowed inventory
level (Vmax) when neglecting
estimation errors

Cases Percentage of demand trajectories
that violate the bounds

Vmin Vmax

1 64 55

2 80 38

3 42 38

4 0 0

5 27 15

6 26 15
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Fig. 4 Inventory level of case 4 for three simulated demand trajectories when estimation errors are taken
into account (ARCID) and when estimation errors are neglected (AARC)

period t , violates the minimum required inventory level 64 out of 100 times and for 55
simulated demand trajectories the stock level exceeded maximum allowed inventory
level. The inventory levels for three arbitrary trajectories of Case 4 are depicted in
Fig. 4 for both the ARCID and the AARC that neglects the estimation errors.

6 Conclusions

In this study we consider uncertain multistage inventory systems where the observed
data on demand obtained in each period is inexact. We extend the adjustable robust
counterpart (ARC) method for production-inventory problems to the (ARCID) model
in which the decision rules are based on inexact revealed data. Our numerical results
demonstrate that ARCID outperforms ARC, which can only rely on exact revealed
demand data. Two cases that are infeasible for the ARC solution, are feasible for the
ARCID model. It is evident that neglecting the inexact nature of the revealed data
may have severe consequences. For example, the inventory level dropped below the
allowed minimum in up to 80% of the simulated demand trajectories.
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The use of the ARCIDmethod is thus well justified, in particular so since the result-
ing optimization problem that need to be solved maintain a comparable tractability
status to that of the ARC method. Furthermore, there exist several software packages,
such as YALMIP (Löfberg 2012), ROME (Goh and Sim 2011) and (AIMMS 4.19
2016), that can do reformulation of adjustable robust optimization problems which
can be readily extended to the ARCID model. Finally, we emphasize that the ARCID
model set up in this paper can also be applied to other ARC models where revealed
data in each stage is inexact in various areas of operations management, such as
facility location planning, flexible commitment models, capacity expansion planning,
portfolio optimization and management of power systems.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Proof of Theorem 2

Proof We can replace the semi-infinite constraint by constraints involving maximiza-
tion over the uncertainty and obtain the following constraint:

ai�x +
T∑
t=1

b�
i tut + max

(ζ ,̂ζ
1
,̂ζ

2
,...,̂ζ

T
)∈UT

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

A�
i x

(V1R1)�bi1
...

(VT RT )�biT

⎞
⎟⎟⎟⎟⎠

� ⎛
⎜⎜⎜⎜⎜⎝

ζ

ζ̂
1

...

ζ̂
T

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

≤ dT ,

or, by using the definition of support functions,

ai�x +
T∑
t=1

b�
i tut + δ∗

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

A�
i x

(V1R1)�bi1
...

(VT RT )�biT

⎞
⎟⎟⎟⎟⎠

∣∣∣∣ UT

⎞
⎟⎟⎟⎟⎠

≤ dT , (11)

Hence, all we need to do is to find an expression for the support function, similar as
we did in the proof of Theorem 1. To do so, note that for the indicator function we
have now

δ

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

ζ

ζ̂
1

...

ζ̂
T

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣ U

⎞
⎟⎟⎟⎟⎟⎠

= δ(ζ | Z) +
T∑
t=1

δ(̂ζ
t | Zt ) +

T∑
t=1

δ
(
(̂ζ

t − ζ ) | Ẑt

)
.
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If we define the function ht (ζ , ζ̂
t
) = δ

((
ζ̂
t − ζ

)
| Ẑt

)
, then by using the definition

of conjugate functions we obtain

h∗
t (wi t , w̃i t ) =

{
δ∗ (

wi t | Ẑt
)

if w̃i t + wi t = 0

∞ otherwise.

Using this conjugate function, and the fact that U has nonempty relative interior, we
can now find the expression for the support function in (5) using the sum relation for
conjugate functions (see again Rockafellar 1997, Chapter 16):

δ∗

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

A�
i x

(V1R1)�bi1
...

(VT RT )�biT

⎞
⎟⎟⎟⎟⎠

∣∣∣∣ UT

⎞
⎟⎟⎟⎟⎠

= min
wi ,w̃i ,zi , z̃i

{
δ∗(zi | Z) +

T∑
t=1

δ∗( z̃i t | Z) +
T∑
t=1

δ∗(wi t | Ẑ)

| zi +
T∑
t=1

wi t = A�
i x, w̃i t + z̃i t = (Vt Rt )�bi t ,

wi t + w̃i t = 0 ∀t = 1, . . . , T

}
.

Substituting this result into (11) yields that (6) is feasible if and only if there exist zi ,
z̃i1, . . . , z̃iT , wi1, . . . ,wiT , w̃i1, . . . , w̃iT ∈ R

L that satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ai�x + ∑T
t=1(b

t
i )

�ut + δ∗(zi | Z) + ∑T
t=1 δ∗( z̃i t | Z) + ∑T

t=1 δ∗(wi t | Ẑ) ≤ di

zi + ∑T
t=1 wi t = A�

i x

w̃i t + z̃i t = (Vt Rt )�bi t ∀t = 1, . . . , T

wi t + w̃i t = 0 ∀t = 1, . . . , T .

The result then follows by elimination of the variables w̃i t , z̃i t for all t = 1, . . . , T
and zi . ��

Appendix 2: The tractable robust counterpart based on inexact data

Here we present the final tractable robust counterpart for the model (P:ARCID). Note
that all but the last two sets of constraints on Vmin and Vmax are the same as in Ben-
Tal et al. (2004), since those are the only constraints involving both the true demand
parameters and their inexact estimates.
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min
π,F,α,β,γ,δ,ζ,ξ,η,μ,ν

F

s.t.

T∑
t=1

I∑
i=1

ci (t)π
0
i,t +

T∑
r=1

αr d
∗
r + θ

T∑
r=1

βr d
∗
r ≤ F

I∑
i=1

∑

t :r∈ Ît
ci (t)π

r
i,t = αr , −βr ≤ αr ≤ βr , 1 ≤ r ≤ T

− γ r
i,t ≤ πr

i,t ≤ γ r
i,t , 1 ≤ i ≤ I, 1 ≤ r, t ≤ T ;

π0
i,t +

∑

r∈ Ît
πr
i,t d

∗
r − θ

∑

r∈ Ît
γ r
i,t d

∗
r ≥ 0, 1 ≤ i ≤ I, 1 ≤ t ≤ T,

π0
i,t +

∑

r∈ Ît
πr
i,t d

∗
r + θ

∑

r∈ Ît
γ r
i,t d

∗
r ≤ Pi (t), 1 ≤ i ≤ I, 1 ≤ t ≤ T,

∑

t :r∈ Ît
πr
i,t = δri ,−ζ ri ≤ δri ≤ −ζ ri , 1 ≤ r ≤ T

T∑
t=1

π0
i,t +

T∑
r=1

δri d
∗
r + θ

T∑
r=1

ζ ri d
∗
r ≤ Qi , 1 ≤ i ≤ I

τ rt = −1 −
∑

s≤t,r∈ Ît
λrs,t , ξ rt =

∑

s≤t,r∈ Ît

I∑
i=1

πr
i,s − 1, 1 ≤ r ≤ t ≤ T

− μr
s,t ≤

I∑
i=1

πr
i,s + λrs,t ≤ μr

s,t , −ωr
s,t ≤ λrs,t ≤ ωr

s,t , s : r ∈ Is , 1 ≤ r ≤ t ≤ T

− νrt ≤ τ rt ≤ νrt , ηrt = νrt +
t∑

s=1

μr
s,t , 1 ≤ r ≤ t ≤ T

t∑
s=1

I∑
i=1

π0
i,s +

t∑
r=1

ξ rt d
∗
r + θ

t∑
r=1

ηrt d
∗
r +

t∑
r=1

∑

s≤t,r∈ Ît
ρr,sθωr

s,t d
∗
r ≤ Vmax − v(1), 1 ≤ t ≤ T

−
t∑

s=1

I∑
i=1

π0
i,s −

t∑
r=1

ξ rt d
∗
r + θ

t∑
r=1

ηrt d
∗
r +
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∑
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ρr,sθωr

s,t d
∗
r ≤ v(1) − Vmin, 1 ≤ t ≤ T .

(ARCID-BT)
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