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Abstract An interesting problem in reliability is to determine the optimal burn-in

time. In [Foschi and Spizzichino(2012)], the solution of such a problem under a par-

ticular cost structure has been studied. It has been shown there that a key role in the

problem is played by a function ρ , representing the reward coming from the use of

a component in the field. A relevant case in this investigation is the one when ρ is

linear.

In view of more general applications to management of production processes, in this

paper, we explore further the linear case and use its solutions as a benchmark for

determining the locally optimal times when the function ρ is not linear or when the

component’s lifetimes distribution is not bathtub (or upside down bathtub) shaped.

Keywords Burn-in · Innovation · Trial duration · Multiple change points distribu-

tions · Reward functions

Mathematics Subject Classification (2010) 90B25 · 62N05 · 60K10

1 Introduction

A well-known problem in reliability is determining the optimal burn-in time for a

component to be put into operations. The term burn-in stands for the procedure of

testing a new component for a period before its active life. This is a widely used en-

gineering method to eliminate “weak” items from a population of industrial products,

reducing the probability of early failures. One of the most widespread problems in

this area is to decide how long such a procedure should last. The best time to stop

the burn-in process for a given criterion is called the optimal burn-in time. Such a

stopping problem comes out as a completely natural one, taking into account the fol-

lowing circumstance: even in the cases when it is convenient to perform a burn-in
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2 Rachele Foschi

procedure, the duration of the latter should not be too long. In fact it is not convenient

to wear out an item, during the burn-in, that could be used for operations; furthermore

the burn-in procedure itself may be expensive in several situations.

Literature on this topic is very wide. In this respect, we address the reader to

the technical papers and overview articles presented in the bibliography and to the

references cited therein.

In spite of the richness of the existing literature, we think that it may be of interest

to reflect further upon this topic, in view of possible extension of the application field,

from production processes to management of production phases or to new products

development.

Development of a new product is a time consuming and expensive process. Great

part of time and costs are due to trials. A wide literature proposes methods attempting

to make trials (especially referring to clinical trials) faster and more efficient.

From the point of view of our investigation, we are not interested just in the test

methodology, but rather in its duration: we can interpret the planning of the duration

of a trial as a reliability problem.

The problem could be formulated as deciding how long a test (e.g. giving not

significant results yet) is worth to be carried on, given incurred and expected costs

and given expected rewards.

Such a decision problem is, under many aspects, analogous to finding the optimal

burn-in time. Application of burn-in analysis techniques out of the classical engi-

neering field and consequently the need of capturing more complex dynamics, like

the ones intervening in the development and marketing of new products, leads us to

release some assumptions, that were natural in the engineering context; for example,

in this new framework, the lifetime probability distribution of a product can be influ-

enced, at any time, by external factors or by the outcomes of the test itself at certain

times, in general, by information, so that it may be too restrictive the hypothesis it

is bathtub shaped, while it is reasonable considering the case it has a more complex

behaviour.

In this paper, we take the cue from [Foschi and Spizzichino(2012)] and broaden

some more analytical aspects of the optimization problem related to the burn-in time

(see in particular Theorem 1 and Corollary 1 below). In [Foschi and Spizzichino(2012)],

the optimal burn-in time problem has been analyzed from the point of view of its con-

nections with ageing and risk-aversion concepts. Such an optimization problem has

been formulated under a particular reward function Rρ , defined by

Rρ(t,δ ) = [ρ(t − δ )+ k̃]1{t≥δ}+ k1{t<δ}+ cmin(t,δ ). (1)

We investigate here in detail the role of the term ρ within the reward function in Eq.

(1). Also, we will show that this particular reward function may be used as a refer-

ence point for the solution of the optimization problem concerning different reward

functions (see Section 6).

In this respect, we recall that several cost structures have been proposed in the lit-

erature (for a detailed survey, see [Block and Savits(1997)] and references therein)

and several are the versions of the problem we could obtain by modifying our reward

function, so as to model different kinds of usage of burned-in units.

The reward function Rρ(t,δ ) depends on
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Optimal trial duration times for multiple change points products lifetime distributions 3

– the burn-in time, δ > 0;

– the total lifetime of the unit, t > 0 (burn-in time plus time in operations).

In the following, t will represent the value taken by a random variable T , with proba-

bility distribution G, and δ will be the quantity to be determined in view of optimizing

the expected value of Rρ(T,δ ).

The reward function in Eq. (1) consists of:

– a cost of conducting burn-in, cmin(t,δ ), proportional to the actual burn-in time,

by means of the constant cost rate c < 0;

– a fixed cost due to failure during the burn-in, k < 0;

– a fixed cost due to failure during the use, k̃ < 0;

– a reward ρ : [0,+∞)→ [0,+∞), that is an increasing function of the duration of

the unit in the operations.

In order to avoid the optimization problem to be trivial, we assume k̃ < k < 0, i.e.

the cost of losing the unit during burn-in is smaller than the cost of failure during

operation.

Even if the case when ρ is linear was discussed at length in [Foschi and Spizzichino(2012)],

some analytical and technical aspects require a further investigation, that we will

carry on here. Subsequently, part of the present paper is devoted to the application of

our results for the linear case to the case when ρ is not linear. In fact, the solution for

the burn-in problem in the non-linear case does not follow straightly from the results

we got in the linear case. Finding a solution for some relevant non-linear cases, by

providing a generalization of the results for the linear case, is the central aim of this

paper.

As a main achievement in this respect, we will provide upper and lower bounds for

the optimal burn-in time, when ρ is concave or convex. We can determine the interval,

or more generally the union of intervals S , that will contain the optimal burn-in time,

by setting up a comparison among different functions ρ . In providing these bounds,

a key role is played by the results about the optimal burn-in time δ ∗
l obtained in the

case when ρ is linear. For the computation of such a δ ∗
l , we can rely on the (sufficient

and necessary) conditions provided in [Foschi and Spizzichino(2012), Proposition 2].

Furthermore, we give conditions on δ ∗
l under which the set S is bounded.

The paper is organized as follows. In Section 2, we recall definitions and results

from [Foschi and Spizzichino(2012)], that are preliminary for our developments here.

In Section 3, we study in detail the burn-in problem associated with a reward function

of the kind in Eq. (1). We provide analytical-type results for the case when ρ is linear,

releasing the hypothesis G bathtub or upside down bathtub. We will use these results

as a benchmark in Sections 4 and 5. In Section 4, we come back to consider G bathtub

or upside down bathtub and use results of Section 3 to obtain bounds for the optimal

burn-in time in the case when ρ is concave or convex. In Section 5, we extend the

results of Section 4, again dropping the hypothesis G bathtub or upside down bathtub.

Finally, in Section 6, we compare the burn-in problem corresponding to the reward

function in Eq. (1) to another version of it, obtained by implementing in the model

a surcharge for a failure occurred during a mission time. The conditions on reward

function needed for applying previous theorems do not hold. We can however provide
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4 Rachele Foschi

some bounds for the optimal burn-in time in the case when ρ is concave or convex,

starting from the local optimal burn-in times for the linear case.

2 Notation and basic results

Let T be a random variable, representing the lifetime of the unit that will undergo the

burn-in, with probability distribution G, survival function G, and density g. Its hazard

rate is denoted by r(t) = rG(t) =
g(t)

G(t)
.

Such a definition implies that G(t)> 0 for all t where r(t) is defined.

By assuming G twice differentiable, we denote by

α(t) = αG(t) =−
g′(t)

g(t)
(2)

the risk aversion coefficient associated with G (see e.g. [Foschi and Spizzichino(2012),

Gupta(2001),Shaked and Shanthikumar(1994)]).

For our purposes, it is convenient to recall the definition of ageing properties of

G (or, that is the same, of G) in terms of monotonicity properties of r(t) and some

connected concepts:

Definition 1 σ ∈ (0,+∞) is called a change (or turning) point for r(t) (or for G), if,

for some ε ∈ (0,σ), it is such that r(t) is decreasing (increasing) for t ∈ (σ − ε,σ)
and increasing (decreasing) for t ∈ (σ ,σ + ε).

Remark 1 Since G twice differentiable implies r differentiable, we can equivalently

define σ as a change point, if it is a root of r′ with odd multiplicity, i.e. a local

minimum or maximum point for r.

For a result on change points, also involving their relation with the coefficient α(t),
see [Gupta(2001)].

Definition 2 We say that G is

– IFR (DFR), if r(t) is increasing (decreasing) for any t ≥ 0;

– δ -IFR (δ -DFR), if r(t) is increasing (decreasing) for any t ≥ δ ;

– bathtub shaped, if an only change point σ ∈ (0,+∞) exists such that r(t) is de-

creasing for t ∈ (0,σ) and increasing for t ∈ (σ ,+∞);
– upside down bathtub ( = UB) shaped, if an only change point σ ∈ (0,+∞) exists

such that r(t) is increasing for t ∈ (0,σ) and decreasing for t ∈ (σ ,+∞).

From now on, we will focus on the conditions G bathtub or upside down bath-

tub (UB) shaped or with multiple change points. DFR and IFR follow as particular

cases of bathtub distributions, for σ = 0 or σ = +∞, while δ -IFR or δ -DFR are not

particular cases, in that the monotonicity character of r(t) for t < δ is not determined.

The criterion under which the optimal burn-in time has to be determined depends

on the cost structure of the model:
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Optimal trial duration times for multiple change points products lifetime distributions 5

Definition 3 Given a reward function Rρ(t,δ ), the optimal burn-in time is

δ ∗
ρ ∈ (0,+∞) such that, for any δ ∈ (0,+∞),

E[Rρ(T,δ
∗
ρ )]≥ E[Rρ(T,δ )].

If such an optimal point does not exist, we set δ ∗
ρ =+∞.

In practice, the condition δ ∗
ρ =+∞ will mean than the burn-in will be not carried out.

As mentioned, we will analyze in detail the burn-in problem associated with a

reward function of the kind in Eq. (1). However the results for this particular case

may be used as a benchmark also for different versions of the reward function.

Our optimization problem will amount to maximizing the expected reward

Rρ(δ )≡E[Rρ(T,δ )] = k̃G(δ )+kG(δ )+

∫ +∞

0
ρ(t)g(t+δ )dt+cδG(δ )+c

∫ δ

0
tg(t)dt

with respect to the variable δ . We remind that δ has the meaning of the duration of

the burn-in procedure.

We use the standard procedure for maximizing a function of one variable: finding

δ ’s such that R ′
ρ(δ ) = 0 and looking for the global maximum point among such δ ’s

and δ ’s where Rρ is not differentiable. For sake of simplicity, we will suppose from

now on ρ to be twice differentiable. Under our regularity hypotheses on G and ρ , the

only point where Rρ is not differentiable is δ = 0. For δ ∈ (0,+∞),

R
′
ρ(δ ) = (k− k̃)g(δ )+

∫ +∞

0
ρ(t)g′(t + δ )dt + cG(δ ) (3)

(see [Foschi and Spizzichino(2012)]).

3 Locally optimal burn-in times in the linear case

We devote this section to the specific case when ρ linear (i.e. ρ(t) = ρ0t). Some as-

pects of this case have already been treated in detail in [Foschi and Spizzichino(2012)].

Here we complete the study from a more analytical point of view. In the next section,

the linear case will be compared with the cases when ρ is, respectively, concave or

convex.

The linearity of ρ makes the corresponding optimal burn-in problem more mathe-

matically tractable.

The first good property the linear case manifests, when G is bathtub or upside

down bathtub, is the uniqueness of the optimal solution δ ∗
l . Such a uniqueness result

is obtained as a corollary (Corollary 1) from Theorem 1. Theorem 1 is the main

result of this section, allowing us also to drop the condition G bathtub or upside

down bathtub.

Before stating and proving the theorem, we need some preliminary remarks.

First of all, we notice that, when ρ is linear, Eq. (3) becomes

R
′
l(δ ) = (k− k̃)g(δ )+ρ0

∫ +∞

0
tg′(t + δ )dt + cG(δ ) (4)

= (k− k̃)g(δ )+ (c−ρ0)G(δ ) (5)

= G(δ )[(k− k̃)r(δ )+ (c−ρ0)] (6)
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6 Rachele Foschi

(see [Foschi and Spizzichino(2012)] for detailed computations).

Remark 2 By letting

b(δ ) := (k− k̃)r(δ )+ (c−ρ0),

we can write

R
′
l(δ ) = G(δ )b(δ );

it straightly follows that

sgn(b(δ )) = sgn(R ′
l(δ )),

where

sgn(x) :=







1 if x > 0,

0 if x = 0,

−1 if x < 0.

Similarly, since b′(δ ) = (k− k̃)r′(δ ),

sgn(b′(δ )) = sgn(r′(δ )).

Lemma 1 If r′(δ )≥ 0 and R ′
l(δ )≤ 0, then R ′′

l (δ )≥ 0.

If r′(δ )≤ 0 and R ′
l(δ )≥ 0, then R ′′

l (δ )≤ 0.

Proof Let δ ∈ (0,+∞) be such that r′(δ )≥ 0 and R ′
l(δ )≤ 0. Then R ′′

l (δ )≥ 0.

In fact,

R
′′
l (δ ) =−g(δ )b(δ )+G(δ )(k− k̃)r′(δ );

the thesis follows by Remark 2 and by noticing that g(δ )> 0 and G(δ ) > 0.

Similarly, if r′(δ )≤ 0 and R ′
l(δ )≥ 0, then R ′′

l (δ )≤ 0.

As mentioned in the previous section, we treat the cases when

– G is bathtub or upside down bathtub;

– changes its monotonicity an arbitrary finite number n of times.

We point out that the condition G is bathtub or upside down bathtub amounts to

require that r′(t) has at most one change of sign, while the second condition is equiv-

alent to r′(t) to have n roots with odd multiplicity. This last case is considered in the

following Theorem 1, allowing us to qualitatively study the graph of the function R ′
l

and providing an upper bound for the number of roots of R ′
l and, consequently, for

the number of points of local optimum of Rl .

We denote respectively by δ ∗
l , δmin ∈ (0,+∞) the point of maximum and of min-

imum of Rl(δ ). Analogously to what has been done for the maximum points (see

Def. 3), we set δmin =+∞ if the minimum does not exist in (0,+∞).
Let also δ f l ∈ (0,+∞) be a point of inflection of Rl(δ ); we can more precisely denote

such a point by δ a
f l when it is a point of rising inflection or by δ d

f l if it is a point of

falling inflection. Let correspondingly be Da
f l the set of the points of rising inflection,

Dd
f l the one of the points of falling inflection and D f l := Da

f l ∪Dd
f l .

Theorem 1 Let σ1 < .. . < σn be the change points of r and set

σ0 = 0, σn+1 =+∞.
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Optimal trial duration times for multiple change points products lifetime distributions 7

– Rl admits at most n+ 1 extremal points in (0,+∞).
– Furthermore, D f l ⊆ {σ1, . . . ,σn}.

Proof The proof is structured in three parts. In the first one, we prove that in any open

interval (σi,σi+1) falls at most one extremal point, that is one point of maximum or of

minimum. For sake of simplicity, we suppose that r′(t) 6= 0 for any t ∈
n
⋃

i=0

(σi,σi+1),

neglecting therefore the occurrence of inflection points for r.

In a second step, we take into account the points t ∈
n
⋃

i=0

(σi,σi+1) such that

r′(t) = 0, showing that the thesis of the theorem is not affected by their existence: also

in presence of inflection points for r, we can conclude that Rl admits no inflection

points in

n
⋃

i=0

(σi,σi+1).

In the third part, we take into account the behaviour of r′ and R ′
l in the change points.

Notice that, by construction, if r′(t)> 0 for some t ∈ (σi,σi+1), then r′(t)> 0 for

any t ∈ (σi,σi+1), i.e. the sign of r′ cannot change within any interval (σi,σi+1).

We consider then an arbitrary interval (σi,σi+1). Four alternatives may manifest,

by scrutinizing all the possible cases about the signs of r′ and R ′
l(σi):

– r′(t)> 0, R ′
l(σi)< 0;

– r′(t)> 0, R ′
l(σi)> 0;

– r′(t)< 0, R ′
l(σi)> 0;

– r′(t)< 0, R ′
l(σi)< 0.

To make the proof more legible, we consider here the strict inequalities, in place of

the non-strict ones. As we will see in a second part of the proof, this restriction does

not affect the thesis.

Let us discuss the first two cases; the situation presented in the last two cases is

symmetric and the proof is analogous.

Thus, let r′(t)> 0 and R ′
l(σi)< 0; by continuity, it implies that ε > 0 exists such

that R ′
l(σi + ε)< 0. By Lemma 1,

R
′′
l (δ )> 0 ∀ δ ∈ (σi,σi+1) or δ ∈ (σi,δmin)⊂ (σi,σi+1),

if a δmin ∈ (σi,σi+1) exists; in this last case, it would be

R
′
l(δmin) = 0 and R

′
l(δ )≥ 0 ∀ δ ∈ (δmin,σi+1).

In fact, for δ ’s such that R ′
l(δ )> 0, R ′

l ’s monotonicity character is not determined by

conditions provided by the Lemma, therefore it may both increase (resulting in such

a case R ′
l different from zero) and decrease. In this last case, some δ̄ ∈ (δmin,σi+1)

may exist such that R ′
l(δ̄ ) = 0. However, for δ ∈ (δ̄ ,σi+1), it cannot be R ′

l(δ ) < 0,

because, by Lemma 1, R ′′
l (δ̄ )≥ 0, so that R ′

l is increasing. Since we cannot a priori
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8 Rachele Foschi

exclude the existence of a certain number of δ̄ ’s, such that R ′
l(δ̄ ) = 0, internal to in-

tervals (δmin,σi+1), R
′
l could have a priori an infinite number of zeros, corresponding

to rising points of inflection for Rl . But, since

R
′
l(δ ) > 0 ⇔ r(δ ) >

ρ0 − c

k− k̃

and r is increasing, it cannot happen that

r(δ̄ ) =
ρ0 − c

k− k̃
for δ̄ > δ , δ̄ ∈ (σi,σi+1);

therefore no inflection points are admitted in any open interval.

This last argument also covers the case when r′(t)> 0 and R ′
l(σi)> 0.

Therefore, in any interval, there is at most one point of maximum or minimum.

Till now, however, we neglect to consider that, for some t ∈ (σi,σi+1), it could be

r′(t) = 0. We take into account now this eventuality. Suppose then to be in the case

when r′(t)≥ 0 and R ′
l(σi)> 0.

The arguments of the previous part of the proof is preserved intact if, for those δ̄ ’s

such that r′(δ̄ ) = 0, R ′
l(δ̄ ) 6= 0. By Lemma 1, in those points R ′

l is strictly increasing

or strictly decreasing. If, on the contrary, for some δ̄ is both r′(δ̄ ) = 0 and R ′
l(δ̄ ) =

0, again by Lemma 1, R ′′
l (δ̄ ) = 0 as well. This fact however has no repercussions

on the proof if r′(δ ) 6= 0 for any δ ∈ (δ̄ ,σi+1). If instead r′(δ ) = 0 on an entire

interval [δ̄ , δ̄ + ε) ⊆ [δ̄ ,σi+1), then R ′
l(δ ) = 0, for any δ ∈ [δ̄ , δ̄ + ε). We recall

that, as described in the previous part of the proof, in (σi, δ̄ ) R ′
l is increasing; in

[δ̄ +ε,σi+1) its monotonicity character is not determined, but it has necessarily to be

sgn(R ′
l)> 0. Therefore [δ̄ , δ̄ + ε) is a set of local minimum points for Rl . However,

since R ′
l(δ ) = 0 for any δ ∈ [δ̄ , δ̄ + ε), Rl(δ ) is constant on [δ̄ , δ̄ + ε). Therefore,

actually, the whole interval [δ̄ , δ̄ +ε) corresponds to a unique minimum value Rl(δ̄ ).
The same argument holds if [δ̄ , δ̄ + ε) is a set of local maximum points for Rl .

As concerns the inflection points, since

r(δ̄ + ε)>
ρ0 − c

k− k̃
and r′(δ )≥ 0 for δ ∈ (δ̄ + ε,σi+1),

it must be

r(δ )>
ρ0 − c

k− k̃
for any δ ∈ (δ̄ + ε,σi+1).

Therefore, even if r had inflection points internally to

n
⋃

i=0

(σi,σi+1), Rl would have

none.

At last, we take into account the behaviour of R ′
l in the change points of r. Such a

completion of the analysis is needed since we want to study the optimization problem

on the connected set (0,+∞) and not only on the union of the disjoint open intervals

(σi,σi+1)’s.

Let us consider the interval (σi−1,σi+1) = (σi−1,σi)∪{σi}∪ (σi,σi+1).
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Optimal trial duration times for multiple change points products lifetime distributions 9

As we saw along the proof, for any δ , if r′(δ ) = 0 but R ′
l(δ ) 6= 0, the arguments we

used in the case when r′(δ ) 6= 0 are not undermined. We are therefore interested in

examining the case when R ′
l(σi) = 0 (being r′(σi) = 0 by definition).

Let us suppose

r′(t)≤ 0 for t ∈ (σi−1,σi) and r′(t)≥ 0 for t ∈ (σi,σi+1)

(the case r′(t)≥ 0 for t ∈ (σi−1,σi) and r′(t)≤ 0 for t ∈ (σi,σi+1) is symmetric) and

R ′
l(σi−1) > 0. As we will see along the proof, this case will also comprehend the

illustration of the one when R ′
l(σi−1)< 0.

Only the following two subcases are possible:

1. δ ∗
l ∈ (σi−1,σi) exists, such that

R
′
l(δ

∗
l ) = 0 and R

′
l(δ )< 0 ∀ δ ∈ (δ ∗

l ,σi);

2. R ′
l(δ )> 0 for any δ ∈ (σi−1,σi).

In the first case (and therefore also when R ′
l(σi−1)< 0), it has to be

R ′
l(σi) 6= 0. In fact, for any δ̄ ∈ (δ ∗

l ,σi),

R
′
l(δ̄ )< 0 ⇔ r(δ̄ )<

ρ0 − c

k− k̃
.

On the other hand, r′(δ )≤ 0 for δ ∈ (σi−1,σi) implies that, for any

δ ∈ (δ̄ ,σi),

r(δ )≤ r(δ̄ )<
ρ0 − c

k− k̃
.

Therefore r(δ ) =
ρ0 − c

k− k̃
is possible once that is again r′(δ ) > 0, that is out of the

considered interval (σi−1,σi) and, by continuity, of its closure as well.

Hence δ ∗
l ∈ (σi−1,σi) implies R ′

l(σi) 6= 0. Therefore σi cannot be a point of minimum

(nor of maximum, in the symmetric case).

In the second case, since for δ ∈ (σi,σi+1) it has to be R ′
l(δ ) > 0, σi is a rising

(or falling) inflection point.

Therefore only the change points may be inflection points for Rl .

From this theorem, in the particular case G is bathtub or UB, one obtains the

following

Corollary 1 Let r′(t) have one change of sign. Then Rl admits at most one point of

optimum δ ∗
l ∈ (0,+∞).

An analogous reasoning to the one used in the proof of Theorem 1 for showing

the non-existence of inflection points leads to the following proposition. It is not a

corollary of Theorem 1, but it consists in an additional and more precise result we

manage in obtaining by requiring stronger hypotheses.

Proposition 1 Let G be bathtub shaped and R ′
l(0)< 0, then δ ∗

l =+∞.
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10 Rachele Foschi

Remark 3 Notice that we are not questioning here about the global optimum, but

about local optima, for which it is enough looking for the points where R ′
ρ(δ ) = 0

and R ′′
ρ(δ )≤ 0. In particular, we are not considering the possibility that δ = 0 is the

optimal burn-in time.

In our treatment of the linear case, however, we need not to know whether δ ∗
l is a

local or global point of optimum, because, for the use we will make of it in the next

section, it is sufficient that δ ∗
l is a local optimum.

4 Bounds for the optimal burn-in time for concave and convex ρ

In this section, we come back to consider G bathtub or upside down bathtub, but

ρ non-linear. In this case, we generally lose the uniqueness of the optimal solution.

However, when ρ is concave or convex, we manage at least in providing some bounds

for the optimal solution of the corresponding burn-in problem. Such bounds will be

obtained by setting up a comparison with the case of ρ linear, where we have nec-

essary and sufficient conditions for a value δ ∗
l ∈ (0,+∞) to be the (unique) optimal

solution (see [Foschi and Spizzichino(2012)]).

For any ρ0 ∈R+, let C vρ0
and C xρ0

respectively denote the class of concave and

convex functions ρ : [0,+∞)→ [0,+∞) such that

ρ ′(0)≡ lim
t→0+

ρ ′(t) = ρ0.

We notice that, for any fixed ρ0, the class of linear functions such that ρ ′(0) = ρ0

consists of the only element ρ(t) = ρ0t, that we have considered till now and which

we continue to refer to. The proofs of our results (stated in Theorems 2 and 3 below)

are based on the following fact:

Lemma 2 For any fixed ρ0 ∈ R+ and for any δ ≥ 0,

– R ′
ρ(δ )> R ′

l(δ ) for any ρ ∈ C vρ0
;

– R ′
l(δ )> R ′

ρ(δ ) for any ρ ∈ C xρ0
.

Proof Since ρ concave (resp. convex) implies that

−
∫ ∞

0
G(t + δ )ρ ′′(t)dt > 0 (resp. < 0),

the thesis follows.

Remark 4 We point out that the inequalities in Lemma 2 are strict. In fact, a non-

strict inequality would imply ρ ′′(t) = 0 for any t ∈ (0,+∞). This fact, on its turn, in

view of the twice-differentiability of ρ , would imply ρ to be linear. This circumstance

has the following consequence (see proof of Theorems 2 and 3): if R ′
l(δ ) = 0 and

ρ ∈ C vρ0
∪C xρ0

, δ cannot be an extremal point for R ′
ρ .

The following result is a straight consequence of Lemma 2:
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Optimal trial duration times for multiple change points products lifetime distributions 11

Corollary 2 If ρ ∈ C vρ0
and δ ∗

ρ ∈ (0,+∞) is the optimal burn-in time, it belongs to

the set

D = {δ ∈ (0,+∞) | R ′
l(δ )< 0}.

Similarly, if ρ ∈ C xρ0
and δ ∗

ρ ∈ (0,+∞) is the optimal burn-in time, it belongs to the

set

I = {δ ∈ (0,+∞) | R ′
l(δ )> 0}.

This corollary is of straight application in the following Theorems 2 and 3, which

provide regions for values of the possible optimal burn-in time in the concave and

convex cases. Such regions are determined in terms of maxima and minima of Rl .

Results about the latter point have been provided in [Foschi and Spizzichino(2012)].

The proof is based on the previous results: we will use in particular Lemma 1, to

qualitatively establish the shape of R ′
l , Theorem 1 and its Corollary 1, to state the

uniqueness of δmin and δ ∗
l and to determine inflection points, affecting the set of the

possible values of δ ∗
ρ , and Lemma 2, to display the graph of R ′

ρ over or under the

one of R ′
l .

In Theorems 2 and 3 the case of G bathtub or upside down bathtub is considered,

that is when r′ changes sign only once. In the next section, we will see how to obtain

this kind of results when such hypothesis is weakened.

Theorem 2 Let ρ ∈ C vρ0
.

– If R ′
l(0)> 0, then δ ∗

ρ ∈ (δ ∗
l ,δmin)∪{+∞};

– if R ′
l(0)< 0, then δ ∗

ρ ∈ (0,δmin)∪ (δ ∗
l ,+∞].

Proof In view of Lemma 1, several situations may occur, depending on the shape of

G and the sign of R ′
l(0). We can distinguish four different cases:

1. G bathtub, R ′
l(0)> 0;

2. G bathtub, R ′
l(0)< 0;

3. G upside down bathtub, R ′
l(0)> 0;

4. G upside down bathtub, R ′
l(0)< 0.

1. We recall that G bathtub means that an only change point σ ∈ [0,+∞] exists such

that r′(δ ) ≤ 0 for any δ ∈ (0,σ) and r′(δ ) ≥ 0 for any δ ∈ (σ ,+∞). By Lemma

1, for any δ ∈ (0,σ), R ′′
l (δ )≤ 0; therefore R ′

l(δ ) may eventually change sign in

a point δ ∗
l ∈ (0,σ).

When R ′
l(δ ) < 0, its monotonicity character is not determined, but R ′

l cannot

become positive, since, if, for some δ̄ , R ′
l(δ̄ ) = 0, it would be R ′′

l (δ̄ )≤ 0 again.

Thus, in (0,σ), R ′
l may change sign at most once and therefore Rl can have (by

Theorem 1) at most one point of optimum.

If R ′
l(σ) < 0, by Lemma 1, R ′′

l (σ) > 0. Again R ′
l(δ ) may change its sign in

a point δmin ∈ (σ ,+∞). When R ′
l(δ ) > 0, for δ ∈ (σ ,+∞), the monotonicity

character of R ′
l is not determined, but, for such δ ’s, it cannot be R ′

l(δ ) < 0,

since, as soon as, for some δ̄ , R ′
l(δ ) = 0, it would be R ′′

l (δ ) ≥ 0 and therefore

R ′
l increasing again. Hence, for any δ > δmin, R ′

l(δ ) > 0. The same happens if

R ′
l(σ)> 0: for any δ > σ , R ′

l(δ )> 0.
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12 Rachele Foschi

Thus, in (σ ,+∞), Rl can only have, again by Theorem 1, at most one point of

optimum or alternatively one (rising) inflection point in σ .

By Lemma 2, if δ ∗
ρ ∈ (0,+∞), it has to be δ ∗

ρ ∈ (δ ∗
l ,δmin); otherwise we set

δ ∗
ρ =+∞.

2. For the argument presented in the previous point, in (0,σ) it must be R ′
l(δ ) ≤ 0

and, because of Theorem 1, Rl has no points of inflection. In (σ ,+∞), at most

one point δmin exists such that R ′
l(δmin) = 0.

Therefore, by Lemma 2, if δ ∗
ρ ∈ (0,+∞), it must be δ ∗

ρ ∈ (0,δmin); otherwise, by

definition, δ ∗
ρ =+∞.

We recall that in this case, by Proposition 1, it is δ ∗
l =+∞, therefore the condition

δ ∗
ρ ∈ (0,δmin)∪{+∞} coincides with the thesis

δ ∗
ρ ∈ (0,δmin)∪ (δ ∗

l ,+∞].

3. In (0,σ), by Lemma 1, it cannot be R ′
l(δ )< 0. Therefore, by Theorem 1, Rl has

neither extremal nor inflection points. In (σ ,+∞), it exists at most one point δ ∗
l

such that R ′
l(δ

∗
l ) = 0, that is a point of optimum for Rl .

For δ > δ ∗
l , R ′

l(δ )< 0. Therefore, δ ∗
ρ ∈ (δ ∗

l ,+∞].
Since, in this case, δmin = +∞, the previous condition coincides with the thesis

δ ∗
cv ∈ (δ ∗

l ,δmin)∪{+∞}.

4. In (0,σ), R ′′
l (δ )≥ 0 till a possible δmin such that R ′

l(δmin) = 0.

For δ ∈ (δmin,σ), R ′
l(δ )> 0.

If R ′
l(σ)< 0, R ′

l(δ )< 0 for any δ ∈ (σ ,+∞); in such a case δ ∗
l = δmin =+∞.

Again in (σ ,+∞), if R ′
l(σ)> 0, R ′′

l (δ )≤ 0.

At most one point δ ∗
l ∈ (σ ,+∞) may exist such that R ′

l(δ
∗
l ) = 0. For any δ > δ ∗

l ,

R ′
l(δ )< 0.

Therefore, δ ∗
ρ ∈ (0,δmin)∪ (δ ∗

l ,+∞].

Remark 5 In the previous proof, we neglect to consider the case when R ′
l(σ) = 0.

Only when G is upside down bathtub and R ′
l(0)< 0 (see point 4.), R ′

l(σ) = 0 implies

that σ is a falling inflection point for Rl and therefore it must be excluded from the

set of the possible values for δ ∗
ρ .

An analogous result holds when ρ is convex. The proof is analogous to the case

when ρ is concave and therefore it is omitted.

Theorem 3 Let ρ ∈ C xρ0
.

– If R ′
l(0)> 0, then δ ∗

ρ ∈ (0,δ ∗
l )∪ (δmin,+∞];

– if R ′
l(0)< 0, then δ ∗

ρ ∈ (δmin,δ
∗
l )∪{+∞}.

Remark 6 Theorem 3 presents some differences from Theorem 2. Such differences

are due to the opposite point of view that we adopt in comparing the present case

to the linear one. One may imagine that we observe a symmetric behaviour for the

concave and convex cases. In fact the theses are in some way inverted with respect

to Theorem 2, as it may be intuitive. Less intuitively, we notice that also the roles of

δmin and δ ∗
l are inverted.
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Optimal trial duration times for multiple change points products lifetime distributions 13

Remark 7 Also for ρ ∈ C xρ0
, we neglect to consider in Theorem 3 the case when

R ′
l(σ) = 0. Only when G is bathtub and R ′

l(0)> 0 (notice again that such conditions

are inverted with respect to the previous case, when ρ ∈ C vρ0
), R ′

l(σ) = 0 implies

that σ is a rising inflection point for Rl and therefore it must be excluded from the

set of the possible values for δ ∗
ρ .

5 Multiple change points distributions

So far, we considered the case when r′ changes sign at most once. We suitably extend

Theorems 2 and 3 to the case when G has multiple change points σ1, . . . ,σn.

Theorems 2 and 3 are based on the uniqueness of δ ∗
l , in the case when r′ has at

most one change of sign. Theorem 1 instead concerns distributions that are not bath-

tub nor upside down bathtub, having multiple change points. In the case considered

therein, Rl admits at most n+1 extremal points, δ0, . . . ,δn ∈ (0,+∞), δ0 < .. . < δn,

and eventual inflection points only at σ1, . . . ,σn. More in particular, Rl admits at

most one extremal point in any interval (σi,σi+1) and at most one optimal point in

any interval (σi−1,σi+1) and therefore at most
⌊n

2

⌋

+ 1 optimal points on (0,+∞).

By iteratively applying Theorems 2 and 3 to any interval (σi−1,σi+1), we obtain

bounds for δ ∗
ρ also if G is not bathtub nor upside down bathtub.

To perform such an iteration, we have to extract from δ0, . . . ,δn two sequences: the

one of the local optima, {δ ∗
k }, and the one of the local minima, {δ min

k }.

If R ′
l(0)> 0, then

δ0 ≡ min({δ | R ′
l(δ ) = 0} \ {σ1, . . . ,σn})

is a maximum point, and we set

δ ∗
1 = δ0;

δ1 ≡ min({δ | R ′
l(δ ) = 0} \ {δ0,σ1, . . . ,σn})

is a minimum point, and we set

δ min
1 = δ1;

and so on.

Rl admits at most n+ 1 extremal points, but not necessarily n+ 1, meaning that it

may happen that for a certain index n̄ ≤ n, we find that

δn̄ ≡ min({δ | R ′
l(δ ) = 0} \ {δ0, . . . ,δn̄−1,δ0,σ1, . . . ,σn}) = +∞.

If n̄ is even, we set

δ ∗
k =+∞, δ min

k =+∞, for k =
n̄

2
+ 1, . . . ,

⌊n

2

⌋

+ 1;

if n̄ is odd, it will be

δ min
k =+∞, for k =

n̄+ 1

2
, . . . ,

⌊n

2

⌋

+ 1, δ ∗
k+1 =+∞, for k =

n̄+ 1

2
, . . . ,

⌊n

2

⌋

.
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14 Rachele Foschi

Symmetrically, if R ′
l(0) < 0, the above-defined δ0 is a minimum point, and we

set

δ min
1 = δ0;

δ1 is instead a maximum point and we set

δ ∗
1 = δ1,

and so on.

If Rl admits less than n+1 extremal points, that is if n̄ ≤ n exists, such that δn̄ =+∞,

when n̄ is even, we set

δ ∗
k =+∞, δ min

k =+∞, for k =
n̄

2
+ 1, . . . ,

⌊n

2

⌋

+ 1;

when n̄ is odd, it will be

δ ∗
k =+∞, for k =

n̄+ 1

2
, . . . ,

⌊n

2

⌋

+ 1, δ min
k+1 =+∞, for k =

n̄+ 1

2
, . . . ,

⌊n

2

⌋

.

We are now in a position to state the following theorem.

Theorem 4 Let ρ ∈ C vρ0
.

If R ′
l(0)> 0, then

δ ∗
ρ ∈

⌊ n
2⌋+1
⋃

i=1

(δ ∗
i ,δ

min
i )∪{+∞};

if R ′
l(0)< 0, then

δ ∗
ρ ∈ (0,δ min

1 )∪





⌊ n
2⌋
⋃

i=1

(δ ∗
i ,δ

min
i+1 )



∪ (δ ∗
⌊ n

2⌋+1
,+∞].

Let ρ ∈ C xρ0
.

If R ′
l(0)> 0, then

δ ∗
ρ ∈ (0,δ ∗

1 )∪





⌊ n
2⌋
⋃

i=1

(δ min
i ,δ ∗

i+1)



∪ (δ min

⌊ n
2⌋+1

,+∞];

if R ′
l(0)< 0, then

δ ∗
ρ ∈

⌊ n
2⌋+1
⋃

i=1

(δ min
i ,δ ∗

i )∪{+∞}.
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6 Reward functions with mission time

Till now, we have considered the special case where the reward function is the one in

Eq. (1). We want to point out that however our results are extendible, at the cost of

slight changes, to other cases. In this section, we describe in particular a model with

the presence of a mission time τ , whose reward function turns out to be

Rτ,ρ(t,δ ) = ρ(t − δ )1{t>τ+δ}+ k̃1{δ<t<τ+δ}+ k1{t<δ}+ cmin(δ , t). (7)

First, along the line of [Foschi and Spizzichino(2012), Proposition 2], we give con-

ditions for finding the locally optimal burn-in times for the version of the reward

function Rτ,ρ(t,δ ) in the case when ρ is linear (see Proposition 2 below), that we

denote by Rτ,l(t,δ ).

In doing that the function
g(τ + δ )

g(δ )
plays an additional role to the one of r in deter-

mining the monotonicity character of R ′
τ,l (see Remark 8 below), therefore we lose

the monotonicity relationship between r and of R ′
l we have had till now (see Lemma

1). As a consequence, even for linear ρ , we do no manage in determining a maximum

number of extremal points for R ′
τ,ρ .

In particular, if we come back again to consider G bathtub or upside down bath-

tub, we lose the uniqueness of δ ∗
l . Therefore, for the discussion of the present case,

we draw inspiration from Theorem 4, providing for the eventuality of more than one

optimal point. However the result of this section differs from it for what concerns the

other hypotheses and assumptions on the number of extremal and inflection points

and their localization with respect to the change points. In order to prove the follow-

ing Theorem 5, we can rely only on a result analogous to Lemma 2, holding for R ′
τ,l

and R ′
τ,ρ as well.

Even if some hypotheses satisfied by the previous reward function are lost, still

we can provide bounds for the solutions of the convex or concave case based on

the solutions in the linear case. However, in applying the theorem, we have to pay

attention to the fact that, even if part of the thesis is still satisfied, we lose any link

with ageing properties represented by the bathtub or UB shape of G or by the multiple

change points form of r. In fact, the reward function in Eq. (7) does not allow us to

find immediate relations with them. Therefore the proof of the following Theorem 5

only can use an analogous relation of Lemma 2.

Correspondingly to Eq. (7), we have

Rτ,ρ(δ )≡ E[Rτ,ρ(T,δ )] =

k̃[G(τ + δ )−G(δ )]+ kG(δ )+

∫ +∞

0
ρ(t)g(t + δ )dt + cδG(δ )+ c

∫ δ

0
tg(t)dt (8)

and

R
′
τ,ρ(δ ) = (k− k̃)g(δ )−

∫ +∞

0
ρ ′′(t)G(t + δ )dt +(c−ρ0)G(δ )+ k̃g(τ + δ ). (9)

Remark 8
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16 Rachele Foschi

– r(δ ) and
g(τ + δ )

g(δ )
decreasing in δ and R ′

τ,ρ(δ )< 0 imply R ′′
τ,ρ(δ )> 0.

– r(δ ) and
g(τ + δ )

g(δ )
increasing in δ and α(δ )R ′

τ,ρ (δ )> 0 imply R ′′
τ,ρ(δ ) < 0.

For this reward function, even in the linear case, we have not warranted the unique-

ness of the optimum, as the following proposition let argue.

Proposition 2 Let ρ be linear. δ ∗
> 0 is a locally optimal burn-in time if and only if

r(δ ∗) =
ρ0 − c

k− k̃

(

1−
g(τ + δ ∗)

g(δ ∗)

) (10)

and






















g(τ + δ ∗)

g(δ ∗)
<

(

1−
k

k̃

r(δ ∗)−α(δ ∗)

r(δ ∗)−α(τ + δ ∗)

)

if r(δ ∗)< α(τ + δ ∗)

g(τ + δ ∗)

g(δ ∗)
>

(

1−
k

k̃

r(δ ∗)−α(δ ∗)

r(δ ∗)−α(τ + δ ∗)

)

if r(δ ∗)> α(τ + δ ∗)

(11)

Proof Maximizing the expected reward Rτ,l(δ ) with respect to δ is equivalent to

finding δ > 0 such that
{

R ′
τ,l(δ ) = 0

R ′′
τ,l(δ )< 0

In the linear case

R
′
τ,l(δ ) = (k− k̃)g(δ )+ (c−ρ0)G(δ )+ k̃g(τ + δ ),

that straightly leads us to Eq. (10).

R
′′
τ,l(δ ) = (k− k̃)g′(δ )+ (ρ0 − c)g(δ )+ k̃g′(τ + δ ).

Therefore R ′′
τ,l(δ )< 0 if and only if

(k̃− k)α(δ )+ρ ′(0)− c− k̃α(τ + δ )
g(τ + δ )

g(δ )
< 0.

Since we are interested in computing R ′′
τ,l(δ ) for those δ ’s already satisfying Eq.

(10), we obtain

(k̃− k)(α(δ )− r(δ ))+ k̃(r(δ )−α(τ + δ ))
g(τ + δ )

g(δ )
< 0.

By discussing the sign of r(δ )−α(τ + δ ), we get the condition (11).

Remark 9 Since
g(τ + δ )

g(δ )
≥ 0 for any τ,δ ≥ 0, the optimization problem has no

solutions if α(δ )< r(δ )<α(τ+δ ), while condition (11) is always satisfied if α(τ+
δ )< r(δ )< α(δ ).
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Also for the expected reward in Eq. (8), Lemma 2 and Corollary 2 hold. More

precisely:

1. for any fixed ρ0 ∈ R and for any δ ≥ 0,

– R ′
τ,ρ(δ )> R ′

τ,l(δ ) for any ρ ∈ C vρ0
;

– R ′
τ,l(δ )> R ′

τ,ρ(δ ) for any ρ ∈ C xρ0
;

2. – if ρ ∈ C vρ0
and δ ∗

ρ ∈ (0,+∞) is the optimal burn-in time, it belongs to the set

D = {δ ∈ (0,+∞) | R ′
τ,l(δ )< 0};

– if ρ ∈ C xρ0
and δ ∗

ρ ∈ (0,+∞) is the optimal burn-in time, it belongs to the set

I = {δ ∈ (0,+∞) | R ′
τ,l(δ )> 0}.

Suitably modified, an analog of Theorem 4 holds even under weaker hypotheses.

We lose the statement about the non-existence of the inflexion points and δk’s just are

the points where R ′
τ,ρ(δ ) = 0, without relation with the change points of r, σk’s.

We also notice that, again, also for the reward function in Eq. (7), in view of

finding bounds for the possible solutions of concave or convex burn-in problems, we

need not to find the global optimum of the linear problem, but only the local ones.

So like Theorem 4, the following theorem uses local maximum and minimum

points for Rτ,l to determine the set where local maximum points of Rτ,ρ can fall.

We denote by h ∈ N the number of solutions of Eq.’s (10) and (11). Now, the

sequences {δ ∗
i }, {δ min

i } respectively consist of the solutions of Eq.’s (10) and (11)

and of the ones of Eq. (10) satisfying Eq. (11) with the reverted inequality signs.

Theorem 5 Let ρ ∈ C vρ0
;

if R ′
τ,l(0)> 0, then

δ ∗
ρ ∈

h
⋃

i=1

(δ ∗
i ,δ

min
i )∪{+∞} \D

d
f l; (12)

if R ′
l(0)< 0, then

δ ∗
ρ ∈ (0,δ min

1 )∪

(

h−1
⋃

i=1

(δ ∗
i ,δ

min
i+1 )

)

∪ (δ ∗
h ,+∞]\D

d
f l.

Let ρ ∈ C xρ0
;

if R ′
τ,l(0)> 0, then

δ ∗
ρ ∈ (0,δ ∗

1 )∪

(

h−1
⋃

i=1

(δ min
i ,δ ∗

i+1)

)

∪ (δ min
h ,+∞]\D

a
f l; (13)

if R ′
τ,l(0)< 0, then

δ ∗
ρ ∈

h
⋃

i=1

(δ min
i ,δ ∗

i )∪{+∞} \D
a
f l.

Notice that, in Eq.’s (12), (13), it can be δ min
h ∈ (δ ∗

h ,+∞) or δ min
h =+∞, while, in

the other two equations, it has necessarily to be δ min
h ∈ (δ ∗

h−1,δ
∗
h ).
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7 Conclusions

In [Foschi and Spizzichino(2012)], some results are provided, linking ageing to the

solution of the optimal burn-in time problem for the cost structure described by Eq.

(1). We chose therein such a reward function, presenting a form that allows us to

highlight connections between the optimal burn-in problem and relevant ageing prop-

erties.

We start from such results, that are, under some aspects, preliminary for the analytical

study we carried on in the present paper. We provide here results about the optimal

burn-in time under a given cost structure, with ρ linear and a hazard rate with a finite

number of monotonicity change points. When ρ is linear, at most one locally optimal

burn-in time falls in any time interval where r is monotonic. As a particular instance

of this result, under the hypothesis that G is bathtub or upside down bathtub, we get

the uniqueness of the optimal burn-in time.

Determining the local maximum points under the hypothesis of ρ’s linearity serves as

a basis for establishing bounds for the set where the local maximum points may fall,

in the cases when ρ is concave or convex. The locally optimal times when ρ is linear

can be determined by applying the condition provided in [Foschi and Spizzichino(2012),

Proposition 2].

In the bathtub or upside down bathtub case, we can also state a more schematic

criterion to establish the existence or the position of δ ∗
l , provided that we know the

sign of R ′
l(σ) and r′(ε) (with 0 < ε < σ ):

– R ′
l(σ)r′(ε)≤ 0 implies that both δ ∗

l and δmin do not exist in (0,+∞);
– R ′

l(σ)< 0, r′(ε)< 0 imply δ ∗
l ∈ (0,σ);

– R ′
l(σ)> 0, r′(ε)> 0 imply δmin ∈ (0,σ).

By combining it with Theorem 2 or 3, we obtain conditions for existence of δ ∗
ρ

also in the case when ρ is concave or convex.

Such a criterion can be extended to the case of r with multiple change points, to

establish the existence or the position of a local optimum point δ ∗
i in any interval

(σi−1,σi+1), i = 1, . . . ,n, provided that we know the sign of R ′
l(σi) and r′(σi − ε)

(with 0 < ε < σi −σi−1).

We also show how our results, obtained under a particular cost structure, can

be used as a starting point for obtaining analogous ones when the model requires a

modification of the cost structure.
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