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Using tropical optimization to solve constrained

minimax single-facility location problems with

rectilinear distance

N. Krivulin
∗

Abstract

The aim of this paper is twofold: first, to extend the area of ap-
plications of tropical optimization by solving new constrained location
problems, and second, to offer new closed-form solutions to general
problems that are of interest to location analysis. We consider a con-
strained minimax single-facility location problem with addends on the
plane with rectilinear distance. The solution commences with the rep-
resentation of the problem in a standard form, and then in terms of
tropical mathematics, as a constrained optimization problem. We use
a transformation technique, which can act as a template to handle
optimization problems in other application areas, and hence is of in-
dependent interest. To solve the constrained optimization problem,
we apply methods and results of tropical optimization, which provide
direct, explicit solutions. The results obtained serve to derive new so-
lutions of the location problem, and of its special cases with reduced
sets of constraints, in a closed form, ready for practical implementa-
tion and immediate computation. As illustrations, numerical solutions
of example problems and their graphical representation are given. We
conclude with an application of the results to optimal location of the
central monitoring facility in an indoor video surveillance system in a
multi-floor building environment.

Key-Words: minimax location problem, rectilinear distance, idem-
potent semifield, tropical optimization, constrained optimization, ex-
plicit solution.
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1 Introduction

Tropical (idempotent) mathematics, originated in the middle of the last cen-
tury as the theory and applications of semirings with idempotent addition,
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finds use in a variety of fields, from operations research to algebraic geome-
try. The significant advances, achieved in the area of tropical mathematics
in the last decades, are reported in several monographs, including recent
ones by [1, 2, 3, 4, 5, 6], and in a wide range of research papers.

Optimization problems that are formulated and solved in terms of trop-
ical mathematics are a matter of concern for tropical optimization, which
presents an important research domain, with the focus on new solutions
to old and fresh problems in operations research and management science.
Applications of tropical optimization include real-world problems in project
scheduling, location analysis, transportation networks, discrete event dy-
namic systems, decision making, and in other fields.

Location problems constitute one of the classical areas in optimization,
which dates back to the XVII century. A variety of approaches and tech-
niques exists to solve location problems in different settings, including meth-
ods of mathematical programming, and of discrete, combinatorial and graph
optimization (see, e.g. [7, 8, 9, 10, 11] for the current state of the art in the
area).

There are certain location problems that have solutions obtained in the
framework of tropical optimization. Specifically, a solution in terms of tropi-
cal mathematics is proposed by [12, 13] to one-dimensional minimax location
problems defined on graphs. Furthermore, several constrained minimax lo-
cation problems are examined by [14, 15, 16, 17, 18] in the context of the
theory of max-separable functions, which is closely related to the tropical
mathematics approach. Finally, methods of tropical optimization are ap-
plied to solve unconstrained and constrained minimax single-facility location
problems with Chebyshev and rectilinear distances [19, 20, 21, 22, 23, 24].

The aim of this paper is twofold: first, to develop new applications of
tropical optimization by solving new location problems, and second, to offer
new closed-form solutions to rather general problems that are of interest
to location analysis. We consider a constrained minimax single-facility lo-
cation problem with addends on the plane with rectilinear distance, which
can be referred to as a constrained Rawls location problem or a constrained
messenger boy problem. The solution commences with the representation of
the problem, first formulated in a standard form, in terms of tropical math-
ematics as a constrained optimization problem. We use a transformation
technique, which can act as a template to handle optimization problems in
other application areas, and hence is of independent interest. To solve the
constrained optimization problem, we apply methods and results of tropical
optimization [23, 25, 26, 27], which provide direct, explicit solutions of the
problem and of its special cases with reduced sets of constraints. We further
develop the methods to extend the solution of the unconstrained problem
provided by [20, 24] to the constrained problems of interest. The results are
obtained in a closed form, ready for immediate computation, and can serve
to complement and supplement known solutions of the location problems
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under examination. To illustrate application of the results, we describe a
direct solution to the problem of optimal location of the central monitor-
ing facility in an indoor closed-circuit television (CCTV) video surveillance
system in a multi-floor building environment.

The rest of the paper is organized as follows. We begin with Section 2,
where the location problem of interest is formulated in a standard way. Sec-
tion 3 includes an overview of the definitions and notation of idempotent
algebra to be used in the subsequent sections. In Section 4, we consider sev-
eral tropical optimization problems and describe their solutions. Section 5
offers the main result of the paper. First, we represent the location prob-
lem under consideration as a constrained tropical optimization problem, and
then solve this optimization problem using the results of the previous sec-
tion. As a consequence, solutions are obtained to some special cases of the
problem with reduced sets of constraints. We use the results given in terms
of tropical mathematics to derive solutions of the location problems in the
standard form. In Section 6, we present numerical examples and offer graph-
ical illustrations. We conclude with an application to an optimal location
problem, arising in the deployment of an indoor CCTV video surveillance
system, in Section 7, and make some final observations and comments in
Section 8.

2 Constrained minimax rectilinear single-facility

location problem

We start with a brief outline of the optimization problem, which is drawn
from location analysis to motivate the present study. A comprehensive
overview of various location problems, their solutions and application ex-
amples is provided by a series of surveys published at different times, in-
cluding [28, 29, 30, 31, 32]. Further details can be found in monographs and
collections of studies, such as recent books by [7, 8, 9, 10, 11].

We consider a quite general problem to locate a new point (a facility
center) on the plane to minimize the maximum of rectilinear distances to
given points (demand centers), each of which can be modified by adding a
constant called the addend. The optimal location is subject to constraints
that impose upper bounds on distances from each given point to the new
point, and define a strip-shaped feasible location region.

The rectilinear metric (also known as the rectangular, Manhattan, right-
angle, city-block, taxicab or L1 metric) arises in location analysis in various
applied contexts. Examples include locating a public or commercial facility
in an urban area with a grid of rectangular streets, an industrial facility
within a plant or warehouse with a system of perpendicular transport aisles,
and an electronic component on an integrated circuit with orthogonal mesh
of wires. The addends can represent an additional cost or distance required

3



to reach each demand point, such as vertical distance when the rectilinear
metric is defined on the horizontal plane.

Constrained minimax location problems appear in a range of application
areas from urban planning to industrial and electrical engineering. A typical
example is the optimal location of emergency service facilities (hospitals, po-
lice and fire stations, emergency shelters) in urban design, under constraints
on the travel distances prescribed by emergency service standards and rules
set by federal, state or municipal agencies. Since the minimax objectives in
locating public facilities can well be interpreted in the framework of the the-
ory of justice of John Rawls, these problems are frequently referred to as the
Rawls location problems [33, 34]. In addition, minimax single-facility loca-
tion problems with and without addends are sometimes called the messenger
boy problems and the delivery boy problems, respectively [35].

We now represent the location problem under study in a formal way.
First note that the rectilinear distance between vectors a = (a1, a2)

T and
b = (b1, b2)

T in the real plane R
2 is calculated as

ρ(a, b) = |a1 − b1|+ |a2 − b2|.

Suppose there is a set of m ≥ 1 given points, denoted by rj = (r1j , r2j)
T ∈

R
2 for all j = 1, . . . ,m . Let wj ∈ R be the addend, associated with point

j , and dj ∈ R , where dj ≥ 0, be the upper bound on the distance to point
j . Let s, t ∈ R , where s ≤ t , be the left and right boundary of the vertical
strip, representing the feasible location area.

Then, the problem of interest, which can be referred to as the constrained
minimax rectilinear single-facility location problem with addends, is formu-
lated to find points x = (x1, x2)

T ∈ R
2 that

minimize max
1≤j≤m

(ρ(x, rj) + wj),

subject to ρ(x, rj) ≤ dj , j = 1, . . . ,m;

s ≤ x1 ≤ t.

After rewriting the rectilinear distance ρ in coordinate form, the problem
becomes

minimize max
1≤j≤m

(|x1 − r1j |+ |x2 − r2j |+ wj),

subject to |x1 − r1j |+ |x2 − r2j | ≤ dj , j = 1, . . . ,m;

s ≤ x1 ≤ t.

Consider the constraints in the problem. For each j = 1, . . . ,m , the
inequality |x1 − r1j |+ |x2 − r2j | ≤ dj defines on the plane a square rotated
by 45◦ around its center at the point rj = (r1j , r2j)

T , which is often called
the diamond. The common area of all inequalities, if it exists, takes the
form of a rectangle tilted 45◦ to the axes. The feasible location region is
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the intersection of this rectangle with the strip area given by the inequality
s ≤ x1 ≤ t , provided that the intersection is not empty.

Both special cases and extensions of the rectilinear single-facility loca-
tion problem are thoroughly examined in the literature. For some uncon-
strained versions of the problem, direct solutions are obtained in a closed
form, whereas, in other cases, the problems have solutions given by iterative
computational algorithms, which find a solution, if it exists, or indicate that
there are no solutions. Specifically, the unconstrained problem is considered
without addends in [36, 35], and with addends in [35], where closed-form
solutions are derived based on geometric arguments.

An algorithmic solution is proposed by [37] for a weighted extension of
the problem, in which the distances appear in the objective function with
non-negative weights, and for a weighted multi-facility problem. A weighted
multi-facility problem without constraints is solved by means of linear pro-
gramming computational schemes in [38, 39], whereas the constrained prob-
lem is by a network flow algorithm in [40]. An interactive computer graphical
technique is developed in [41] to solve single-facility location problems with
non-convex feasible regions.

An algebraic approach, which uses results of tropical optimization, is
applied in [20, 24] to the problem under consideration when all constraints
are removed. The approach offers a direct, explicit solution based on a
straightforward algebraic technique, rather than on geometric considerations
in the classical works [36, 35].

Below, we further develop the algebraic approach to extend methods of
tropical optimization to the constrained location problem with rectilinear
distance. Based on this approach, we derive closed-form solutions for the
location problem of interest, as well as for its special cases with reduced
sets of constraints. To the best of our knowledge, no direct solutions to the
location problem have been previously reported.

To handle the problem, we first transform it into a tropical optimiza-
tion problem examined in [23] in the context of constrained location with
Chebyshev distances (L∞ metric) to exploit the complete solution derived
therein. Note that, from the geometrical point of view, the location problems
on the plane with rectilinear and Chebyshev distances are known to convert
into each other by rotation of the coordinate axes (see, e.g., [9]), which can
serve as additional intuition and evidence in support of the algebraic tech-
nique proposed for the transformation. Next, we further develop and refine
obtained results to provide complete solutions of the location problems of
interest, which are then represented both in terms of tropical mathematics
and in the conventional form.

To conclude this section, we observe that it is not difficult to represent
the problem under study as a linear program, and then to solve it using
methods and computational techniques of linear programming. However,
these methods normally offer algorithmic solutions, and do not guarantee a
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direct solution in a closed form.

3 Preliminary algebraic definitions and notation

We now present a concise overview of the definitions and notation of idempo-
tent algebra from [23, 25, 26, 27], which provide the basis for the description
of the tropical optimization problems and their solutions in the next section,
and for the use of these solutions to attack location problems in the sub-
sequent sections. Further details on tropical mathematics are available in
various introductory and advanced texts, including [1, 2, 3, 4, 5, 6] to name
only a few recent publications.

3.1 Idempotent semifield

Let X be a non-empty set that is closed under two associative and com-
mutative operations, addition ⊕ and multiplication ⊗ , and equipped with
two distinct elements, zero 0 and one 1 , which are neutral with respect to
addition and multiplication. Addition is idempotent, which indicates that
the equality x⊕ x = x holds for each x ∈ X . Multiplication is distributive
over addition, and invertible, which provides each x 6= 0 with an inverse
x−1 such that x⊗ x−1 = 1 . Under these assumptions, the algebraic system
(X,0,1,⊕,⊗) is frequently called the idempotent semifield.

Idempotent addition provides a partial order on X to define x ≤ y if
and only if x ⊕ y = y . It follows from the definition of the order relation
that the operations in the semifield have the following properties. First,
the inequality x ⊕ y ≤ z is equivalent to the two inequalities x ≤ z and
y ≤ z for any x, y, z ∈ X . Furthermore, both addition and multiplication are
isotone, which implies that the inequality x ≤ y results in the inequalities
x ⊕ z ≤ y ⊕ z and x ⊗ z ≤ y ⊗ z . Finally, inversion is antitone, which
means that x ≤ y yields x−1 ≥ y−1 , provided that x 6= 0 and y 6= 0 . In
addition, the set X is assumed totally ordered by a linear order relation that
is consistent with the partial order associated with addition.

As usual, the multiplication sign ⊗ is omitted below to safe writing.
The integer power notation serves to signify iterated products, defined as
x0 = 1 , xp = xxp−1 , x−p = (x−1)p and 0

p = 0 for all x 6= 0 and integer
p > 0. The power notation is assumed extendable to allow rational and real
exponents.

A representative example of the idempotent semifield under considera-
tion is the real semifield Rmax,+ = (R∪ {−∞},−∞, 0,max,+), where addi-
tion is defined as the operation of taking the maximum and multiplication
is as the arithmetic addition, whereas the zero is given by −∞ and the one
is by 0. For each x ∈ R , there exists the inverse x−1 , which coincides with
−x in conventional algebra. The power xy acts as the arithmetic product
xy defined for any x, y ∈ R . The partial order, which is given by addition,
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conforms to the standard linear order defined on R . Finally, the obvious
equality min(x, y) = −max(−x,−y) yields min(x, y) = (x−1 ⊕ y−1)−1 for
all x, y ∈ R .

As another example, consider the semifield Rmin,× = (R+∪{+∞},+∞, 1,min,×),
where R+ is the set of positive reals. This semifield has ⊕ = min, ⊗ = × ,
0 = +∞ and 1 = 1. Both inversion and exponentiation have standard in-
terpretation. The partial order induced by idempotent addition is opposite
to the natural order on R .

3.2 Vector and matrix algebra

The scalar addition ⊕ and multiplication ⊗ defined on X are routinely
extended to vector and matrix operations. The set of matrices with m rows
and n columns over X is denoted X

m×n . Addition and multiplication of
matrices, and multiplication by scalars follow the standard rules. For any
matrices A = (aij) ∈ X

m×n , B = (bij) ∈ X
m×n and C = (cij) ∈ X

n×l , and
a scalar x ∈ X , the matrix operations are defined by the entry-wise formulae

{A⊕B}ij = aij ⊕ bij , {AC}ij =

n
⊕

k=1

aikckj, {xA}ij = xaij .

The partial order relation and its associated properties of the operations
in X extend entry-wise to the matrix operations.

Consider square matrices of order n , which form the set X
n×n . A matrix

whose diagonal entries are all equal to 1 , and off-diagonal entries are to 0

is the identity matrix denoted by I . The power notation is defined as
A0 = I , Ap = AAp−1 for any square matrix A and integer p > 0 to
indicate repeated multiplication.

The trace of a matrix A = (aij) ∈ X
n×n is calculated as trA = a11 ⊕

· · · ⊕ ann . The traces of matrix powers from 1 to n combine together to
define the scalar

Tr(A) = trA⊕ · · · ⊕ trAn.

Provided that Tr(A) ≤ 1 , the asterate operator (also known as the
Kleene star) maps the matrix A to the matrix

A∗ = I ⊕A⊕ · · · ⊕An−1.

Any matrix that consists of one row (column) specifies a row (column)
vector. All vectors below are assumed column vectors unless otherwise spec-
ified. The set of all column vectors with n elements over X is denoted X

n .
A vector with all elements equal to 0 is the zero vector. Any vector

without zero elements is called regular. For any vectors a = (ai) and b =
(bi) in X

n , and a scalar x ∈ X , the vector addition and scalar multiplication
are given by

{a⊕ b}i = ai ⊕ bi, {xa}i = xai.
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For any nonzero vector a = (ai) ∈ X
n , the multiplicative conjugate

transpose is a row vector a− = (a−i ) that has elements a−i = a−1

i if ai 6= 0 ,
and a−i = 0 otherwise.

The conjugate transposition is antitone in the sense that, if regular vec-
tors a and b satisfy the element-wise inequality a ≤ b , then a− ≥ b− . In
addition, the transposition has the following properties. For any nonzero
vector a , the equality a−a = 1 holds. If the vector a is regular, then the
entry-wise inequality aa− ≥ I is also valid.

4 Tropical optimization problems

In this section, we use idempotent algebra to formulate optimization prob-
lems and to describe their solutions. The problems find applications in
various fields, including location analysis. Specifically, such problems occur
in solving unconstrained and constrained single-facility location problems in
the multidimensional space with Chebyshev distance [21, 22, 23].

In the succeeding sections, we extend the solutions presented here to
constrained single-facility location problems defined on the plane with rec-
tilinear metric.

We start with a general constrained optimization problem formulated
in terms of an arbitrary idempotent semifield. Suppose that, given vectors
p, q,g,h ∈ X

n , and a matrix B ∈ X
n×n , the problem is to find all regular

vectors x ∈ X
n that

minimize x−p⊕ q−x,

subject to Bx ≤ x,

g ≤ x ≤ h.

(1)

The solution of the problem, given in [23], involves the introduction of a
parameter to represent the minimum value of the objective function. Then,
the problem reduces to solving a parametrized system of linear inequalities.
The existence conditions of regular solutions for the system serve to evaluate
the parameter, whereas the solution of the system is taken as a complete
solution to the initial optimization problem. The results obtained take the
form of the following statement.

Theorem 1. Let B be a matrix with Tr(B) ≤ 1 , p be a nonzero vector, q
and h be regular vectors, and g be a vector such that h−B∗g ≤ 1 .

Then, the minimum value in problem (1) is equal to

θ = (q−B∗p)1/2 ⊕ h−B∗p⊕ q−B∗g, (2)

and all regular solutions of the problem are given by

x = B∗u,
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where u is any regular vector such that

g ⊕ θ−1p ≤ u ≤ ((h− ⊕ θ−1q−)B∗)−. (3)

The conditions of the theorem have the following meaning. The require-
ment of a regular vector h is a necessary condition that allows regular so-
lutions of the inequality g ≤ x ≤ h . The condition Tr(B) ≤ 1 is necessary
and sufficient to have a set of regular solutions to the inequality Bx ≤ x ,
whereas h−B∗g ≤ 1 is for a non-empty intersection of this solution set with
the set defined by the constraints g ≤ x ≤ h .

The assumptions of a non-zero vector p and a regular vector q are
sufficient to keep the minimum value θ > 0 , which allows the inverse θ−1 to
exist. These two assumptions can be replaced by a list of weaker conditions,
which is, however, insufficient for application to the location problems under
consideration.

Consider two consequences of the theorem, which solve problem (1) when
one of the inequality constraints is eliminated. First, we exclude the double
inequality to write the problem

minimize x−p⊕ q−x,

subject to Bx ≤ x.
(4)

The general solution, which is offered by Theorem 1, takes the form of
the next result (see, also [21]).

Corollary 2. Let B be a matrix with Tr(B) ≤ 1 , p be a non-zero vector,
and q be a regular vector. Then, the minimum value in problem (4) is equal
to

θ = (q−B∗p)1/2,

and all regular solutions are given by

x = B∗u, θ−1p ≤ u ≤ θ(q−B∗)−.

Furthermore, we consider another special case of the constrained problem
at (1), formulated to

minimize x−p⊕ q−x,

subject to g ≤ x ≤ h.
(5)

A solution goes as follows (see, also [22]).

Corollary 3. Let p be a non-zero vector, q and h be regular vectors, and
g be a vector such that g ≤ h . Then, the minimum value in problem (5) is
equal to

θ = (q−p)1/2 ⊕ h−p⊕ q−g,

and all regular solutions of the problem are given by the condition

g ⊕ θ−1p ≤ x ≤ (h− ⊕ θ−1q−)−.
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Finally, we present a solution to the unconstrained problem [21]

minimize x−p⊕ q−x. (6)

Corollary 4. Let p be a non-zero vector, and q be a regular vector. Then,
the minimum value in problem (6) is equal to

θ = (q−p)1/2,

and all regular solutions are given by

θ−1p ≤ x ≤ θq.

Below we show how to apply the results of tropical optimization in this
section to solve the constrained rectilinear single-facility location problem
under study.

5 Transformation and solution of location problem

We are now in a position to turn back to the location problem formulated
above. The solution begins with the representation of the problem in terms
of tropical mathematics. We apply a useful transformation technique, which
can serve as a template to handle other optimization problems, and hence
is of independent interest. Furthermore, we derive, in the framework of
tropical optimization, a direct solution to the problem in the general setting,
and then present solutions to special cases of the problem, where some or all
of constraints are removed. The section concludes with direct representation
of the solutions in terms of the conventional algebra.

5.1 Representation in terms of tropical optimization

We start with the general constrained location problem, which is formulated
to find all vectors x = (x1, x2)

T ∈ R
2 that

minimize max
1≤j≤m

(ρ(x, rj) + wj),

subject to ρ(x, rj) ≤ dj , j = 1, . . . ,m;

s ≤ x1 ≤ t;

(7)

where rj = (r1j , r2j)
T ∈ R

2 are given vectors and dj, wj ∈ R with dj ≥ 0
are given numbers for all j = 1, . . . ,m , and s, t ∈ R are given numbers such
that s ≤ t .

To solve problem (7), we represent it in terms of the semifield Rmax,+

with the maximum in the role of addition and the arithmetic addition in the
role of multiplication. Clearly, the context of location analysis guarantees
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the regularity, in terms of Rmax,+ , of all vectors involved in the problem
setting.

First, we note that the rectilinear distance between two vectors a =
(a1, a2)

T and b = (b1, b2)
T in terms of the operations in the semifield Rmax,+

takes the form

ρ(a, b) = (a−1
1

b1 ⊕ b−1
1

a1)(a
−1
2

b2 ⊕ b−1
2

a2).

Consider the distance between the points x and rj for each j = 1, . . . ,m .
An application of the above formula and simple algebra give

ρ(x, rj) = r1jr2jx
−1
1

x−1
2

⊕ r−1

1j r2jx1x
−1
2

⊕ r1jr
−1

2j x
−1
1

x2 ⊕ r−1

1j r
−1

2j x1x2.

To represent this distance in a compact vector form, we introduce the
vectors y = (y1, y2)

T and cj = (c1j , c2j)
T for all j = 1, . . . ,m , with elements

y1 = x1x2, c1j = r1jr2j ,

y2 = x−1
1

x2, c2j = r−1

1j r2j .

It is not difficult to see that the elements of the vector x are uniquely
determined by those of y through the equalities

x1 = y
1/2
1

y
−1/2
2

, x2 = y
1/2
1

y
1/2
2

.

Note that the above relations between x1, x2 and y1, y2 directly cor-
respond to the obvious linear transformations, which are associated in the
conventional arithmetic with the interchange between Chebyshev and recti-
linear distances.

With the new vector notation, the distance between x and rj becomes

ρ(x, rj) = y−cj ⊕ c−j y.

We are now in a position to rewrite the objective function in problem
(7) by using vectors p = (p1, p2)

T and q = (q1, q2)
T as follows:

m
⊕

j=1

wj(y
−cj ⊕ c−j y) = y−p⊕ q−y,

where the right-hand side is obtained by regrouping terms and substitution

p =

m
⊕

j=1

wjcj, q− =

m
⊕

j=1

wjc
−
j .

Furthermore, we examine the inequality constraints in (7). The con-
straints, which involve the distance between vectors, take the form of the
inequalities

y−cj ⊕ c−j y ≤ dj , j = 1, . . . ,m.
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Note that each inequality is equivalent to the pair of inequalities y−cj ≤
dj and c−j y ≤ dj . Consider the first inequality y−cj ≤ dj and verify,
using the properties of conjugate transposition, that it is equivalent to the
inequality cj ≤ djy . Indeed, multiplication of the former inequality by y

from the left gives cj ≤ yy−cj ≤ djy , whereas the left multiplication of the
latter inequality by y− results in the former one. The inequality c−j y ≤ dj
is equivalent to y ≤ djcj by similar arguments.

Then, after slight rearrangement of the inequalities obtained, we repre-
sent the inequality constraints under consideration in the alternative form

d−1

j cj ≤ y, y− ≥ d−1

j c−j , j = 1, . . . ,m.

These inequalities combine to produce the two equivalent inequalities
m
⊕

j=1

d−1

j cj ≤ y, y− ≥
m
⊕

j=1

d−1

j c−j .

Finally, we replace the last inequalities by the one double inequality

g ≤ y ≤ h,

where we use the vector notation g = (g1, g2)
T and h = (h1, h2)

T , defined
by

g =

m
⊕

j=1

d−1

j cj, h− =

m
⊕

j=1

d−1

j c−j .

It remains to represent, in terms of the new vector y , the last inequality
constraint

s ≤ x1 ≤ t.

We rewrite the left and right inequalities as s2x−1
1

≤ x1 and t−2x1 ≤
x−1
1

, or equivalently, as the inequalities s2x−1
1

x2 ≤ x1x2 and t−2x1x2 ≤
x−1
1

x2 .
After substitution y1 = x1x2 and y2 = x−1

1
x2 , we have the inequalities

s2y2 ≤ y1 and t−2y1 ≤ y2 . In vector form, these inequalities are given by

By ≤ y,

where the matrix B is defined, using the notation 0 = −∞ , as follows:

B =

(

0 s2

t−2
0

)

.

Finally, location problem (7) reduces to the tropical optimization prob-
lem

minimize y−p⊕ q−y,

subject to By ≤ y,

g ≤ y ≤ h,

(8)

which coincides with that of (1), where the unknown vector x is replaced
by y .
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5.2 Derivation of direct solution

We now apply Theorem 1 to derive a direct solution to problem (8). To
describe the results, we need to calculate the matrices

B∗ = I ⊕B =

(

1 s2

t−2
1

)

, B2 =

(

s2t−2
0

0 s2t−2

)

= s2t−2I.

The description also involves a direct representation for the elements of
the vectors p = (p1, p2)

T , q = (q1, q2)
T , g = (g1, g2)

T and h = (h1, h2)
T ,

given by

pi =

m
⊕

j=1

wjcij , q−i =

m
⊕

j=1

wjc
−1

ij , gi =

m
⊕

j=1

d−1

j cij , h−i =

m
⊕

j=1

d−1

j c−1

ij ,

(9)
where i = 1, 2, and c1j = r1jr2j and c2j = r−1

1j r2j for all j = 1, . . . ,m .
We start with calculating, as intermediate results, the row vectors

q−B∗ =
(

q−1
1

⊕ t−2q−1
2

, s2q−1
1

⊕ q−1
2

)

,

h−B∗ =
(

h−1
1

⊕ t−2h−1
2

, s2h−1
1

⊕ h−1
2

)

.

To represent the existence conditions imposed and the minimum value
provided by the theorem, we find

q−B∗p = q−1
1

p1 ⊕ t−2q−1
2

p1 ⊕ s2q−1
1

p2 ⊕ q−1
2

p2,

q−B∗g = q−1
1

g1 ⊕ t−2q−1
2

g1 ⊕ s2q−1
1

g2 ⊕ q−1
2

g2,

h−B∗p = h−1
1

p1 ⊕ t−2h−1
2

p1 ⊕ s2h−1
1

p2 ⊕ h−1
2

p2,

h−B∗g = h−1
1

g1 ⊕ t−2h−1
2

g1 ⊕ s2h−1
1

g2 ⊕ h−1
2

g2.

According to Theorem 1, the conditions for problem (8) to have solutions
are specified by the inequalities

Tr(B) ≤ 1, h−B∗g ≤ 1.

Since Tr(B) = trB ⊕ trB2 = s2t−2 ≤ 1 if s ≤ t , the first inequality is
obviously valid. The second condition takes the form of the inequality

h−1
1

g1 ⊕ t−2h−1
2

g1 ⊕ s2h−1
1

g2 ⊕ h−1
2

g2 ≤ 1. (10)

An application of (2) to write the minimum value of the objective func-
tion yields

θ = (q−1
1

p1 ⊕ t−2q−1
2

p1 ⊕ s2q−1
1

p2 ⊕ q−1
2

p2)
1/2

⊕ h−1
1

p1 ⊕ t−2h−1
2

p1 ⊕ s2h−1
1

p2 ⊕ h−1
2

p2

⊕ q−1
1

g1 ⊕ t−2q−1
2

g1 ⊕ s2q−1
1

g2 ⊕ q−1
2

g2. (11)
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We now describe the solution set of vectors y = (y1, y2)
T . It follows

from Theorem 1 that problem (8) has the solution

y = B∗u,

where the intermediate vector u = (u1, u2)
T satisfies the condition at (3).

First, we represent the above vector equality in scalar form as

y1 = u1 ⊕ s2u2, y2 = t−2u1 ⊕ u2. (12)

To describe the set of admissible vectors u , we take the double inequality
at (3) to consider the corresponding scalar inequalities

g1 ⊕ θ−1p1 ≤ u1 ≤ (h−1
1

⊕ θ−1q−1
1

⊕ t−2h−1
2

⊕ θ−1t−2q−1
2

)−1,

g2 ⊕ θ−1p2 ≤ u2 ≤ (s2h−1
1

⊕ θ−1s2q−1
1

⊕ h−1
2

⊕ θ−1q−1
2

)−1.

It is not difficult to verify that at least one of these inequalities holds as
an equality. To see this, we can substitute for θ each term on the right-hand

side of (11). Consider, for instance, the case that θ = q
−1/2
1

p
1/2
1

. Under this
assumption, we have

p
1/2
1

q
1/2
1

= θ−1p1 ≤ g1 ⊕ θ−1p1

≤ (h−1

1
⊕ θ−1q−1

1
⊕ t−2h−1

2
⊕ θ−1t−2q−1

2
)−1 ≤ θq1 = p

1/2
1

q
1/2
1

,

which means that both left and right parts of the first inequality coincide,
and thus this inequality reduces to an equality. The other cases are examined
in the same way.

Taking into account that one of the above inequalities acts as an equality,
we rewrite them in the one-parametrized form

u1 = (g1 ⊕ θ−1p1)
1−α(h−1

1
⊕ θ−1q−1

1
⊕ t−2h−1

2
⊕ θ−1t−2q−1

2
)−α,

u2 = (g2 ⊕ θ−1p2)
1−α(s2h−1

1
⊕ θ−1s2q−1

1
⊕ h−1

2
⊕ θ−1q−1

2
)−α,

(13)

where α is a real parameter such that 0 ≤ α ≤ 1.
Finally, note that the solution of the initial problem (7) in terms of the

vector x = (x1, x2)
T can be calculated from the elements of the vector y as

follows:
x1 = y

1/2
1

y
−1/2
2

, x2 = y
1/2
1

y
1/2
2

. (14)

5.3 Direct solutions to location problems

In this subsection, we turn back to the conventional notation and summarize
the result obtained to provide direct, explicit solutions of the general location
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problem and of its special cases. Consider the general problem formulated
in the scalar form

minimize max
1≤j≤m

(|x1 − r1j |+ |x2 − r2j |+ wj),

subject to |x1 − r1j |+ |x2 − r2j | ≤ dj , j = 1, . . . ,m;

s ≤ x1 ≤ t.

(15)

After translating the formulae at (9), (10), (11), (12), (13) and (14) back
into the language of conventional algebra, with eliminating both y1 and y2 ,
the results of the previous subsection are summarized as follows.

Theorem 5. Define the notation

p1 = max
1≤j≤m

(wj + r1j + r2j), p2 = max
1≤j≤m

(wj − r1j + r2j),

q1 = min
1≤j≤m

(−wj + r1j + r2j), q2 = min
1≤j≤m

(−wj − r1j + r2j),

g1 = max
1≤j≤m

(−dj + r1j + r2j), g2 = max
1≤j≤m

(−dj − r1j + r2j),

h1 = min
1≤j≤m

(dj + r1j + r2j), h2 = min
1≤j≤m

(dj − r1j + r2j),

(16)

and suppose that

max(g1 − h1, g1 − h2 − 2t, g2 − h1 + 2s, g2 − h2) ≤ 0. (17)

Then, the minimum value in problem (15) is equal to

θ = max((p1 − q1)/2, (p1 − q2)/2− t, (p2 − q1)/2 + s, (p2 − q2)/2,

p1 − h1, p1 − h2 − 2t, p2 − h1 + 2s, p2 − h2,

g1 − q1, g1 − q2 − 2t, g2 − q1 + 2s, g2 − q2), (18)

and all solutions are given by

x1 = max(u1, u2 + 2s)/2−max(u1 − 2t, u2)/2,

x2 = max(u1, u2 + 2s)/2 + max(u1 − 2t, u2)/2,
(19)

where

u1 = (1− α)max(g1, p1 − θ) + αmin(h1, q1 + θ, h2 + 2t, q2 + 2t+ θ),

u2 = (1− α)max(g2, p2 − θ) + αmin(h1 − 2s, q1 − 2s + θ, h2, q2 + θ)

for all real α such that 0 ≤ α ≤ 1.

As a consequence of the theorem, which also takes into account Corol-
laries 2, 3 and 4, we present solutions to special cases of the problem with
reduced sets of constraints and without constraints. Consider the problem,
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which has only the upper-bound distance constraints. In ordinary notation,
the problem is defined as follows:

minimize max
1≤j≤m

(|x1 − r1j |+ |x2 − r2j |+ wj),

subject to |x1 − r1j |+ |x2 − r2j | ≤ dj , j = 1, . . . ,m.
(20)

The next statement offers a direct, explicit solution to the problem.

Corollary 6. Under the notation of Theorem 5, suppose that

max(g1 − h1, g2 − h2) ≤ 0.

Then, the minimum value in problem (20) is equal to

θ = max((p1 − q1)/2, (p2 − q2)/2, p1 − h1, p2 − h2, g1 − q1, g2 − q2),

and all solutions are given by

x1 = (u1 − u2)/2, x2 = (u1 + u2)/2,

where

ui = (1− α)max(gi, pi − θ) + αmin(hi, qi + θ), i = 1, 2,

for all real α such that 0 ≤ α ≤ 1.

Furthermore, we examine the problem with the boundary constraints in
the form

minimize max
1≤j≤m

(|x1 − r1j |+ |x2 − r2j |+ wj),

subject to s ≤ x1 ≤ t.
(21)

Corollary 7. Under the notation of Theorem 5, the minimum value in
problem (21) is equal to

θ = max(p1 − q1, p1 − q2 − 2t, p2 − q1 + 2s, p2 − q2)/2,

and all solutions are given by

x1 = max(u1, u2 + 2s)/2 −max(u1 − 2t, u2)/2,

x2 = max(u1, u2 + 2s)/2 +max(u1 − 2t, u2)/2,

where

u1 = (1− α)(p1 − θ) + α(min(q1, q2 + 2t) + θ),

u2 = (1− α)(p2 − θ) + α(min(q1 − 2s, q2) + θ)

for all real α such that 0 ≤ α ≤ 1.
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Finally, we consider the unconstrained problem

minimize max
1≤j≤m

(|x1 − r1j |+ |x2 − r2j |+ wj). (22)

A solution to the problem is described as follows.

Corollary 8. Under the notation of Theorem 5, the minimum value in
problem (22) is equal to

θ = max(p1 − q1, p2 − q2)/2,

and all solutions are given by

x1 = (u1 − u2)/2, x2 = (u1 + u2)/2,

where
ui = (1− α)(pi − θ) + α(qi + θ), i = 1, 2,

for all real α such that 0 ≤ α ≤ 1.

Note that, after elimination of the intermediate variables u1 and u2 , the
solution to the unconstrained problem becomes

x1 = (1− α)(p1 − p2)/2 + α(q1 − q2)/2

x2 = (2α− 1)θ + (1− α)(p1 + p2)/2 + α(q1 + q2)/2,

which agrees with that derived by geometric [35, 36] and algebraic [20, 24]
techniques.

6 Numerical examples and graphical illustrations

We illustrate the results obtained with small artificial examples of optimal
location of a facility with respect to m = 3 given points. The purpose of
the illustration is to provide a clear demonstration of the computational
technique used, and a transparent graphical representation of the solutions
offered. Although the problems under consideration involve only three given
points, the examples show strong evidence of the applicability of the method
to solve efficiently real-world problems of large scale.

Consider the problem of locating a new point on the plane to minimize
the maximum of distances from this point to three given points defined as

r1 =

(

1
2

)

, r2 =

(

5
9

)

, r3 =

(

7
5

)

.

The values of addends corresponding to these points are assumed to be

w1 = 2, w2 = 1, w3 = 1,
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whereas the upper bounds on the distances are to be

d1 = 7, d2 = 5, d3 = 5.

Finally, the left and right boundary of the feasible location region are
given by

s = 4, t = 8.

To describe the solutions to the problem under various constraints, we
first calculate the numbers

p1 = max
1≤j≤3

(wj + r1j + r2j) = 15, p2 = max
1≤j≤3

(wj − r1j + r2j) = 5,

q1 = min
1≤j≤3

(−wj + r1j + r2j) = 1, q2 = min
1≤j≤3

(−wj − r1j + r2j) = −3,

g1 = max
1≤j≤3

(−dj + r1j + r2j) = 9, g2 = max
1≤j≤3

(−dj − r1j + r2j) = −1,

h1 = min
1≤j≤3

(dj + r1j + r2j) = 10, h2 = min
1≤j≤3

(dj − r1j + r2j) = 3.

We start with problem (22) without constraints. According to Corol-
lary 8, we find the minimum

θ = max(p1 − q1, p2 − q2)/2 = 7.

Next, we calculate the intermediate variables

u1 = (1− α)(p1 − θ) + α(q1 + θ) = 8,

u2 = (1− α)(p2 − θ) + α(q2 + θ) = 6α− 2,

and finally obtain the solution in the parametrized form

x1 = (u1 − u2)/2 = 5− 3α, x2 = (u1 + u2)/2 = 3 + 3α,

where α is any real number such that 0 ≤ α ≤ 1.
Substitutions α = 0 and α = 1 give two points

x′ =

(

5
3

)

, x′′ =

(

2
6

)

,

which define the ends of the line segment representing the solutions.
The solution to the unconstrained problem is illustrated in Fig. 1 (left).

The illustration shows the given points r1 , r2 and r3 , indicated by filled
circles. For each point rj , the four open circles placed distance wj > 0
from the filled circle designate artificial points to account for the addends.
The representation of the solution involves the minimal 45◦ -tilted rectangle
enclosing all artificial points. The solution set is given by the thick line
segment, which goes through the centers of the long sides between two hor-
izontal lines drawn through the bottom-left and top-right vertices of the
rectangle.

18



Suppose now that the boundary constraints s ≤ x1 ≤ t are imposed,
where s = 4 and t = 8. To solve the problem under these constraints, we
apply Corollary 7.

First, we find that the minimum in the problem

θ = max(p1 − q1, p1 − q2 − 2t, p2 − q1 + 2s, p2 − q2)/2 = 7

remains the same value as for the unconstrained problem examined above.
Furthermore, we calculate the intermediates

u1 = (1− α)(p1 − θ) + α(min(q1, q2 + 2t) + θ) = 8,

u2 = (1− α)(p2 − θ) + α(min(q1 − 2s, q2) + θ) = −2 + 2α,

and then obtain the solution given by

x1 = max(u1, u2 + 2s)/2−max(u1 − 2t, u2)/2 = 5− α,

x2 = max(u1, u2 + 2s)/2 + max(u1 − 2t, u2)/2 = 3 + α.

The solution set forms a line segment with the extreme points, which
answer α = 0 and α = 1 to be

x′ =

(

5
3

)

, x′′ =

(

4
4

)

.

The solution is shown in Fig. 1 (right), where the feasible region is rep-
resented as the strip area between two vertical lines at x1 = s and x1 = t .
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Figure 1: Unconstrained solution (left) and solution under boundary con-
straints (right).
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Consider the problem, in which the upper-bounds dj on the distances
between the new and given points are used instead of boundary constraints
examined above. To apply Corollary 6, we verify the condition

max(g1 − h1, g2 − h2) = −1 ≤ 0.

It follows from the corollary that the minimum in the problem now
becomes

θ = max((p1 − q1)/2, (p2 − q2)/2, p1 − h1, p2 − h2, g1 − q1, g2 − q2) = 8.

Furthermore, we calculate

u1 = (1− α)max(g1, p1 − θ) + αmin(h1, q1 + θ) = 9,

u2 = (1− α)max(g2, p2 − θ) + αmin(h2, q2 + θ) = −1 + 4α.

The solution is written as

x1 = (u1 − u2)/2 = 5− 2α, x2 = (u1 + u2)/2 = 4 + 2α,

and constitutes a line segment having the ends at the points

x′ =

(

5
4

)

, x′′ =

(

3
6

)

.

A graphical illustration of the solution is provided in Fig. 2 (left). The
plot demonstrates the feasible location area as the intersection of turned
squares drawn for each point rj to have the distance from the vertices of
the square to the point equal to dj . A thick line segment that coincides
with the lower long side of the small turned rectangle, which represents the
feasible area, shows the solution.

We conclude this section with the solution to the general location prob-
lem, which combines both boundary and upper-bound distance constraints.
By following the solution offered by Theorem 5, we begin with the validation
of the condition

max(g1 − h1, g1 − h2 − 2t, g2 − h1 + 2s, g2 − h2) = −10 ≤ 0.

The evaluation of the minimum value yields

θ = max((p1 − q1)/2, (p1 − q2)/2− t, (p2 − q1)/2 + s, (p2 − q2)/2,

p1 − h1, p1 − h2 − 2t, p2 − h1 + 2s, p2 − h2,

g1 − q1, g1 − q2 − 2t, g2 − q1 + 2s, g2 − q2) = 8.

After calculation of the intermediate expressions

u1 = (1− α)max(g1, p1 − θ) + αmin(h1, q1 + θ, h2 + 2t, q2 + 2t+ θ) = 9,

u2 = (1− α)max(g2, p2 − θ) + αmin(h1 − 2s, q1 − 2s + θ, h2, q2 + θ) = −1 + 2α,
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Figure 2: Solutions under upper-bound distance constraints (left), and under
both boundary and upper-bound distance constraints (right).

we obtain the solution given by

x1 = max(u1, u2 + 2s)/2 −max(u1 − 2t, u2)/2,= 5− α,

x2 = max(u1, u2 + 2s)/2 + max(u1 − 2t, u2)/2 = 4 + α.

The solution to the problem is depicted in Fig. 2 (right) by the thick line
segment between the points

x′ =

(

5
4

)

, x′′ =

(

4
5

)

,

which correspond to setting α = 0 and α = 1.

7 Application to CCTV monitoring facility loca-

tion

In this section, we present an application to a real-world problem that arises
in the deployment of CCTV video surveillance systems in the indoor envi-
ronment, including office, industrial, commercial, educational, social, health-
care and other buildings.

A typical CCTV system is composed of three major components [42, 43,
44]: imaging sensors (video cameras) generating an input video stream, a
transmission system to transmit video signal data, and a central video mon-
itoring/processing facility. The design and deployment of CCTV systems in
the indoor environment give rise to a range of location problems. Specifi-
cally, the problems of camera placement consist in finding optimal locations
of cameras in a surveillance zone under various operational objectives and
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constraints, such as to maximize the coverage area subject to a fixed number
of available cameras (see, e.g., overviews in [45, 46]). Below, we examine
a different problem with the assumption that the placement of cameras in
a CCTV system is already fixed and the problem is to determine the opti-
mal location of the central monitoring facility to reduce losses in the wired
transmission network of the system under some technological constraints.

We consider the CCTV video surveillance system, which is set up in
a multi-floor building that is composed by rectangular shapes, with rect-
angular rooms and corridors at each floor, as illustrated by the scheme in
Fig. 3. The intra-building conduit system consists of vertical riser shafts,
horizontal cable trays, ladder racks and other facilities to provide full con-
nectivity between any points in the building through the paths, which are
parallel or perpendicular to the walls and to the ceiling. Rooms on all floors
are equipped with surveillance cameras mounted at upper corners, where
two walls and the ceiling meet at a right angle. To transmit video data,
every camera is directly connected by a coaxial cable using intra-building
cable runs to a central control viewing room, located in a dedicated area on
the ground floor, which accommodates monitoring, data storage and video
analytics facilities. In the scheme in Fig. 3, the feasible location region is
surrounded by hatched border.

The use of coaxial wires imposes constraints on the maximum cable
distance, which ranges, depending on the gauge of the cable, from several
tens to a few hundreds of metres [43, 44]. Another critical issue is the
increasing attenuation (loss) of video signal as the transmission distance and
frequency increase, which makes it difficult to handle video data, especially
when transmitting high-quality video. Since the length of the wire between
each camera and the control room depends on where the room is located, the
attenuation is reduced by appropriate room location. Considering that the
signal attenuation is measured proportional to the transmission distance, the
attenuation can be identified with the distance to formulate the following
minimax problem.

For a given placement of m surveillance cameras in a multi-floor building
environment, we need to find the optimal location of the central monitoring
facility (the control room) in a feasible area on the ground floor to mini-
mize the maximum attenuation in the wired transmission network subject
to maximum distance constraints on the wires between cameras and the fa-
cility. As it is easy to see, the problem takes the form of (15) and, therefore,
has the direct solution provided by Theorem 5.

The procedure offered by the theorem involves simple straightforward
calculations using the horizontal coordinates (r1j , r2j) and the vertical height
wj of all cameras j = 1, . . . ,m . Given a common distance constraint d
on the wire length, the individual constraint for camera j is calculated as
dj = d − wj . The most computationally intensive part of the procedure is
the evaluation of the intermediate variables pi , qi , gi and hi for i = 1, 2
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according to (16), which takes at most linear time with respect to the num-
ber of cameras. The condition (17) is verified to ensure that the distance
bounds dj and the location bounds s and t can be simultaneously satis-
fied to provide non-empty feasible location region. The procedure completes
with the evaluation of the optimal distance θ using (18) and the derivation
of parametrized representation for the coordinates (x1, x2) of the optimal
location zone in the form of (19).

Solutions to the central monitoring facility location problem are then
obtained by plotting the optimal location area, which typically takes the
form of a line segment (depicted in Fig. 3 by a thick dashed line), on the
ground floor map to determine an appropriate place to deploy the facility
and to develop the transmission network.

8 Conclusions

In this paper, we used tropical mathematics to derive new solutions to con-
strained minimax single-facility location problems with addends on the plane
with rectilinear distance. Tropical mathematics, which deals with the theory
and application of algebraic systems with idempotent addition, offers a use-
ful problem formulation and solution framework to provide direct, explicit
solutions to a range of classical and novel problems in operations research,
management science and other fields.

To handle the location problems under study, we have formulated these
problems in the tropical mathematics setting, and then solved them by ap-
plying recent results in tropical optimization. In contrast to the known solu-
tion approaches that are mainly based on numerical iterative algorithms, in-
cluding linear programming and graph optimization, the solutions obtained
are given in a simple closed form, which is ready for both further analysis by
analytical techniques and straightforward computation with no more than
a linear computational cost. As the solution method for the location prob-
lems, we have proposed an explicit computational technique that involves
easy direct computations, and may help to augment and supersede known
approaches when indirect algorithmic solutions are less preferred or even
impossible.

Future research will focus on the solution of the problem with additional
constraints to define a more general feasible location area on the plane.
Extensions of the approach to solve other minimax location problems, in-
cluding rectilinear problems in three-dimensional space and multi-facility
location problems, are also of interest.
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Figure 3: Location of CCTV monitoring facility in multi-floor building en-
vironment.
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